
International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 5555-5558 May 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Boosting Developer Productivity with AI Code Completion: A Prep

Master Case Study

Saurabh Bhardwaj1, Aditya Singh2, Vivek Kumar Chaurasia3

1Assistance Professor of (Information Technology) Raj Kumar Goel Institute of Technology, Ghaziabad, UP, India saurafit@rkgit.edu.in
2Information Technology, Raj Kumar Goel Institute of Technology, Ghaziabad, UP, India adityasinghpatel786@gmail.com
3Information Technology, Raj Kumar Goel Institute of Technology, Ghaziabad, UP, India vivekchaurasiyatutorials@gmail.com

ABSTRACT:

Speed and efficiency are paramount in contemporary software development for effective project delivery. This research investigates the influence of AI-aided code

completion tools on developer productivity in collaborative settings, with an emphasis on PrepMaster, a live coding environment. Through the inclusion of AI code

suggestion functionality, PrepMaster seeks to minimize coding time, increase accuracy, and optimize the overall developer experience. By using a case study

methodology, this paper assesses pre- and post-AI productivity measures among different user groups. The results show an immense improvement in coding

productivity, especially in syntactic error elimination and repeated coding operations. This study provides insights into the worth of smart code assistants in actual,

team-based development environments.

Keywords: AI Code Completion, Developer Productivity, PrepMaster, Code Intelligence, Multi-User IDE, Machine Learning, Collaborative Coding

1 Introduction

The pressure for high-quality, quick software development has forced developers to adopt tools that simplify and speed up the coding process. One of the

most powerful developments in this area is AI-based code completion. Such tools not only make intelligent suggestions on the basis of relevant code

snippets but also learn from the situation to provide helpful suggestions, which ease the developers' cognitive load. In a collaborative or multi-user setup,

such assistance can be even more revolutionary.

PrepMaster, a cloud collaborative coding platform, embeds AI code completion features to strengthen developer workflow. This study examines the

impact of such integration on productivity, code quality, and satisfaction through a case study with real users in team environments.

2 Problem Statement

With more and more complicated software projects, coders are meant to develop lean, clean, and efficient code at higher speed than ever. But actually,

much time gets wasted in back-and-forth work on recurring tasks, copy-paste work on boilerplate code, or toggling in between tools just to discover the

syntax documentation or debug simple problems. That keeps the process delayed and increases cognitive exhaustion. In my time at PrepMaster, our

development team was also experiencing similar problems—squeezed deadlines, expanding codebases, and the burden of keeping quality up. We

wondered if AI-powered code completion tools, such as GitHub Copilot or Tab Nine, could really make our developers work faster and smarter. This

case study delves into how incorporating AI-coded assistance into our pipeline affected productivity, code quality, and developer experience altogether—

what did work, what didn't, and what we learned in the process.

3 Related Works

Prior research has investigated AI-aided tools like GitHub Copilot, Kite, and Tab Nine, showing increased individual coding efficiency and code quality.

But their performance and efficiency in team settings are not widely studied. A few works also quantify productivity by lines of code per hour, frequency

of bugs, and satisfaction of developers. These measures, although helpful, tend to neglect real-time collaboration and team interaction.

This paper fills these gaps by centering on a platform specifically tailored for real-time, multi-user programming, and giving a more subtle understanding

of AI's effect in collaborative environments.

http://www.ijrpr.com/
mailto:saurafit@rkgit.edu.in
mailto:adityasinghpatel786@gmail.com
mailto:vivekchaurasiyatutorials@gmail.com

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 5555-5558 May 2025 5556

Other research has measured productivity based on metrics such as lines of code per hour, bugs encountered, and programmer satisfaction surveys.

Although these are quantifiable, they tend to miss qualitative information like cognitive load, programmer confidence in AI recommendation, and

maintenance of code in the long run. Additionally, these studies have typically been concerned with single-person programming environments and not

pair programming or collaborative scenarios.

4 Methodology

In order to assess the impact of AI code completion software on developer productivity and teamwork, this research was implemented within PrepMaster's

real-time, multi-user coding environment. We applied a mixed-methods approach with both quantitative measures (such as task duration and bug count)

and qualitative ratings (such as team experience and satisfaction). GitHub Copilot and Tab Nine were embedded into the setting, and developers utilized

them within collaborative coding sessions.

The research included 20 developers, divided into five groups of four. The groups consisted of junior and mid-level programmers. Through working on

actual coding problems in two phases over three weeks, the participants completed tasks. In Phase 1, they coded without the aid of AI to establish a

baseline. In Phase 2, they worked on comparable tasks with the assistance of AI code completion tools. The difficulty and duration of tasks along with

collaboration settings were maintained the same to compare consistently.

The platform was instrumented to track metrics such as:

• Average time per function/module.

• Number of AI Suggestions accepted.

• Syntax error rates.

• Frequency of code satisfaction.

5 Model and Terminology

In this case study, we designed our evaluation model for a controlled, two-phase experiment that entailed groups of developers collaborating on coding

exercises. The overarching objective was to quantify the effect that using AI code completion tools, namely GitHub Copilot and Tab Nine, has on team

productivity, code quality, and developer experience. All experiments were carried out on the PrepMaster platform, which enables real-time multi-user

coding, making it the perfect vehicle for examining collaborative development behaviour.

The experiment was split into two major phases: a baseline phase in which tasks were performed without the aid of AI, and an assisted phase in which

the same groups utilized AI code completion. By keeping task difficulty and group composition constant across both phases, we guaranteed that the

impact of AI could be easily seen.

To translate and analyse the data, we depended on various critical terminologies including task execution time, lines of code (LOC), frequency of bugs,

and developer satisfaction. Using these metrics, we were able to measure both objective outcomes and subjective perceptions. Furthermore, terminologies

such as cognitive load, code reusability, and team dynamics assisted us in comprehending the general influence of AI on collaboration and mental effort

in software development.

6 Technology

This research combined some of the latest tools in software development with code assistants powered by artificial intelligence to design an accurate

collaborative coding environment. The core platform for this experiment was PrepMaster, a cloud-based, real-time collaborative coding tool that features

multi-user editing, version control, and task tracking. It was chosen because it mimicked real-world development team scenarios.

6.1 Security & Authentication:

To protect user information and uphold the integrity of the platform, PrepMaster has sophisticated security measures in place. At the heart of its

authentication process is JWT (JSON Web Tokens), which provides secure session management and verifies user identity. This implies only authenticated

users have access to their projects and are able to make code changes. OAuth2 is also implemented for convenient login through third-party services like

GitHub and Google, so that it becomes easy for developers to use the platform without compromising security. SSL/TLS encryption is also implemented

to encrypt communication between users and the platform, which ensures data privacy and keeps it out of reach for unauthorized users.

6.2 API & Third-Party Integration:

The PrepMaster platform integrates multiple external APIs and services to offer additional functionality. GitHub API is utilized for syncing repositories,

observing code changes, and following issues in real-time. The integration provides developers with the ability to work on their existing GitHub projects

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 5555-5558 May 2025 5557

while enjoying the AI-enhanced code completions. Slack API is employed for team communication, allowing the platform to notify users in real-time of

task completion, code suggestions, and bug reporting, keeping everyone informed. To manage background processes and large-scale data operation,

Google Cloud Functions are utilized, which provide unhindered execution of AI model updates and data processing activities without a negative impact

on the performance of the platform.

7 Real-Time Collaboration Challenges

The central aspect of collaborative, real-time editing of numerous developers is intrinsic to PrepMaster, though this presents a new set of operational and

technical concerns. Keeping numerous simultaneous changes simultaneously synchronized with multiple developers updating overlapping lines of code

can more typically create problems concerning version management as well as resultant code incompatibilities. It can then ensue those developments

undertaken by a developer clash with another, making them incongruous as well as dysfunctional. Moreover, the requirement that changes should be

visible at once with zero lag is an important obstacle because even a minimal delay will impact the work and coordination between members. Codebase

synchronization is critical to the uniformity of things, but making these modifications work in real-time across users and ensuring integrity in data is a

sophisticated technical challenge. As the platform expands and more developers enter the project, keeping the system responsive becomes even more

important, needing sophisticated infrastructure and effective data management to contain conflicts and ensure a seamless collaborative experience.

8 Application

PrepMaster platform is based on AI-driven code completion, real-time collaboration, and integration with current development tools to greatly increase

developer productivity and team collaboration. PrepMaster's AI-driven code completion feature is one of its most important uses, which is based on

machine learning algorithms that create context-aware suggestions as developers code. This assists in saving developers' time by codifying repetitive

activities and providing them with instant resolutions for generic coding patterns, helping them concentrate more on more creative, intricate forms of

problem-solving in development. PrepMaster further facilitates real-time collaboration, allowing developers to cooperate on the same codebase together,

making instantly visible changes across the team members. This minimizes the back-and-forth communication that is characteristic in conventional

development processes and allows distributed teams to collaborate smoothly irrespective of location. Integration of PrepMaster with software like GitHub

and Slack allows teams to synchronize their code repositories smoothly and receive updates or notifications of problems, thus further enhancing team

workflow and communication. The platform also has AI-driven error detection and code review, which automatically detects potential bugs and

inefficiencies that may become issues later, thus enhancing the overall quality of the code. Finally, PrepMaster is a learning experience for developers,

particularly beginners in coding, since it gives recommendations based on best practices, enabling them to enhance their skills and use efficient coding

methods. By integrating these capabilities, PrepMaster not only enhances personal productivity but also enables improved collaboration and more

effective software development procedures among groups.

9 Conclusion

The PrepMaster solution is a tremendous step ahead of improving developer productivity, team cooperation, and the overall efficiency of software

development. Through the usage of AI-enhanced code completion, real-time collaboration, and smooth integration with critical development tools,

PrepMaster is not only a tool but a complete solution that solves main pain points within the contemporary development process. The capacity to make

context-aware code suggestions speeds up development so that developers can concentrate on cracking hard problems instead of being bogged down by

routine coding activities. Real-time collaboration makes it possible for teams, no matter where they are geographically located, to collaborate seamlessly,

keeping everyone in the loop and eliminating communication gaps. Additionally, integration with platforms such as GitHub and Slack automates the

process of development so that code remains updated at all times, and teams remain synchronized with each other's work continuously. The AI-powered

features like error detection and code review make the code output even better by catching possible bugs early in the development cycle so that there is

less likelihood of making expensive errors down the road.

Additionally, PrepMaster is a highly useful skill-building tool. It facilitates junior developers to acquire skills at a faster rate by providing suggestions

that comply with best practices, improving their coding skills and comprehension of industry best practices. The integration of AI with collaboration

capabilities on the platform ensures that developers have a hub where they can develop their skills continuously, resulting in greater job satisfaction and

improved retention rates for development teams.

Though difficulties like security, model accuracy, and real-time conflict management still exist, PrepMaster's uniqueness in leveraging AI and its emphasis

on collaboration, efficiency, and code quality make it a must-have for developers today. As technology advances even further, PrepMaster's contribution

to software development's future will undoubtedly expand, offering an even more potent solution to address the ever-increasing complexity of developers'

and teams' needs globally.

10 Future Scope

The future of PrepMaster is promising, fuelled by the growth of artificial intelligence, machine learning and collaborative development tools. As the

landscape of software development continues to change.

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 5555-5558 May 2025 5558

The platform has great potential for additional innovation and growth in the following areas:

In the future, PrepMaster can implement more intelligent AI models that learn from each individual developer’s coding patterns, project history, and

preferred syntax styles. Using transformer-based models like OpenAI’s Codex or Google’s Codey, the system could offer more context-aware, style-

sensitive, and goal-oriented suggestions. This means the AI will not just auto-complete syntax but also predict entire functions, refactor code, or even

suggest architectural patterns based on the problem at hand.

Today, AI code recommendations can be restricted to mainstream languages such as JavaScript or Python. However, in the future, PrepMaster might

accommodate a large number of languages (e.g., Go, Rust, Kotlin, Swift, Dart) and frameworks (e.g., Flutter, Spring Boot, Django). This will enable the

platform to reach backend, frontend, mobile, and game developers, making it a single AI tool for all development environments.

11 References

1. Van der Geer, J., Hanraads J. A. J., & Lupton, R. A. (2000). The art of writing a scientific article. Journal of Science Communication,

163, 51–59.

2. Strunk, W., Jr., & White, E. B. (1979). The elements of style (3rd ed.). New York: MacMillan.

3. Mettam, G. R., & Adams, L. B. (1999). How to prepare an electronic version of your article. In B. S. Jones & R. Z. Smith (Eds.), Introduction

to the electronic age (pp. 281–304).

4. New York: E-Publishing Inc. Shen, D., Wu, G., & Suk, H. I. (2017). "Deep learning in medical image analysis." Annual Review of

Biomedical Engineering, 19, 221-248.

5. Fachinger J., den Exter M., Grambow B., Holgerson S., Landesmann C., Titov M., et al. (2004). Behaviour of spent HTR fuel elements

in aquatic phases of repository host rock formations. 2nd Int. Topical Meeting on High Temperature Reactor Technology, Beijing, China,

paper #B08.

6. Fachinger, J. (2006). Behaviour of HTR fuel elements in aquatic phases of repository host rock formations. Nuclear Engineering &

Design, 236, 54

