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ABSTRACT— 

 The objective of this research is to develop a cost-effective and autonomous robotic arm system for intelligent object sorting in warehouse-like environments using 

TinyML. The proposed system is designed to identify labeled packages in real-time using an embedded vision model and perform corresponding pick-and-place 

operations without human intervention. Emphasis is placed on low power consumption, local processing, and minimal hardware complexity to ensure deployability 

in constrained settings. The integration of edge-based machine learning with predefined motion control enables responsive and efficient handling of categorized 

items. This work contributes toward practical automation solutions for small-scale inventory management and demonstrates the feasibility of TinyML in real-time 

robotic applications. 

Keywords—TinyML, Robotic Arm, Object Detection, Edge AI, On-Device Learning, Warehouse Automation. 

I. INTRODUCTION 

    The increasing demand for automation in warehouse management systems has prompted the development of intelligent solutions capable of reducing 

human intervention, optimizing space utilization, and improving operational efficiency. Among the various technologies driving automation, robotics 

and machine learning have shown significant potential in enhancing sorting, categorization, and pick-and-place tasks. However, the high computational 

power requirements of traditional machine learning models often make them impractical for deployment on resource-constrained embedded systems, 

especially in environments where low cost and low power consumption are critical. 

  Tiny Machine Learning (TinyML) offers a promising approach for deploying machine learning models directly on embedded devices, allowing real-

time processing without the need for cloud-based computation. This research focuses on leveraging TinyML to enable real-time object classification for 

an autonomous robotic arm used in warehouse sorting. The system integrates a vision-based approach, where an ESP32-CAM captures images of labeled 

boxes, and a TinyML model processes these images to classify them as either "apple" or "mango." Based on the classification result, an Arduino Nano 

controls the movement of the robotic arm to place the object in the appropriate storage space. The integration of Light Dependent Resistor (LDR) sensors 

ensures that storage spaces are monitored for occupancy, allowing the system to make decisions based on available space. 

   This paper aims to present a comprehensive solution for a scalable, low-cost, and energy-efficient robotic sorting system suitable for small to medium-

scale warehouse environments. By combining edge-based machine learning with a lightweight robotic arm design, the proposed system offers a practical 

alternative to traditional automated sorting systems. 

II. LITERATURE SURVEY 

   Zhang et al. [1] proposed an automated robotic arm system capable of inventory management, where a camera-based object detection system was 

employed to classify items. Despite its effectiveness, the reliance on cloud-based computation introduces latency and dependency on a stable network 

connection. 

 Tan et al. [2] explored integrating low-cost embedded systems, such as Raspberry Pi and Arduino, to control robotic arms for warehouse tasks. These 

solutions emphasize cost-efficiency but are still limited by power consumption and computational capacity. 

   Lobaton et al. [3] demonstrated the feasibility of using TinyML on embedded devices such as Arduino boards for low-power robotic systems. The study 

showed that machine learning models could be deployed on small microcontrollers without the need for cloud computing. 

  Saha et al. [4] discussed the integration of ESP32 microcontrollers with TinyML for object detection tasks, emphasizing the potential of low-cost, low-

power platforms for real-time machine learning on embedded devices. These advancements make TinyML a promising solution for autonomous robotic 

systems in warehouse environments where computational resources are limited. 
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   Li et al. [5] utilized the ESP32-CAM module for image classification tasks in a warehouse setting. Their study demonstrated the use of lightweight 

models like MobileNetV2 and Tiny-YOLO to perform object classification directly on the device with minimal latency, making them suitable for edge 

devices. 

    MobileNetV2, a lightweight deep learning model, has been widely used for object classification tasks in embedded systems, as it provides a good 

balance between accuracy and computational efficiency [6]. These advances in embedded vision systems make it possible to deploy object detection and 

classification tasks on resource-constrained devices in warehouse automation. 

   Zhang et al. [7] demonstrated the use of LDR sensors in a sorting system, where sensors monitored available storage space to ensure that the robotic 

arm only placed items in sections that were not full. This integration is vital for improving the efficiency and responsiveness of autonomous robotic arms 

in real-world environments. 

III. PROPOSED METHODOLOGY 

   The proposed system automates the sorting of boxes into distinct storage spaces based on real-time object classification using TinyML. The 

methodology is divided into four key sections: System Design, Hardware, Software, and Architecture, each contributing to a modular, scalable, and 

efficient solution. 

A. System Design 

   The system is engineered to identify the label on incoming boxes (Apple or Mango), process it using a compact ML model on an ESP32-CAM, and 

execute appropriate robotic arm movement to place the box in its designated bin. Storage occupancy is dynamically tracked using LDR sensors. The aim 

is to mimic an autonomous warehouse sorting workflow with lightweight, embedded intelligence and efficient motion control. 

  B. Hardware Components 

    1)  ESP32-CAM: Serves as the vision and intelligence unit of the system. It captures real-time images of boxes placed in front of it and processes them 

using a TinyML model trained via Edge Impulse.  

  2) Arduino Nano: The Arduino Nano is dedicated to handling the mechanical operations of the robotic arm. Upon receiving the classification result 

from the ESP32-CAM, it interprets the label and activates predefined motion logic. This logic determines how the robotic arm should move to perform 

the pick-and-place operation.  

   3)  ESP32 XIAO: The ESP32 XIAO handles peripheral tasks, including displaying the classification result on a 0.96" OLED screen and monitoring 

LDR sensors placed in the apple and mango bins to check for space availability.  

  4) Robotic Arm: Constructed with three servo motors (MG945, MG90S, SG90) and a 5V stepper motor, offering four degrees of freedom and controlled 

box handling. 

 

Fig  1. Robotic Arm 

   5) LDR Sensors:  Two LDR (Light Dependent Resistor) sensors are placed at the Apple and Mango storage sections to detect the occupancy status of 

each bin. 

   6) OLED Display: The 0.96-inch OLED display module, controlled by the ESP32 XIAO, acts as a visual feedback mechanism. It shows the classification 

result determined by the TinyML model 

     7) Power Supply: A 5V 3A supply powers the complete system. 

   8) Chassis: Entire structure is fabricated using a 3mm   sunboard, selected for its water resistance and lightweight properties. 
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C. Software Components 

    The system software includes a TinyML model trained using Edge Impulse, which was exported as an Arduino-compatible library and deployed on 

the ESP32-CAM for real-time image classification. Arduino IDE was used to program the ESP32-CAM, Arduino Nano, and ESP32 XIAO boards. The 

Nano executes predefined motion logic for the robotic arm, while the XIAO manages OLED display updates and LDR sensor readings. All code was 

written in embedded C/C++ using Arduino libraries for efficient microcontroller integration. 

D. Architecture Adopted 

       A simple architecture is proposed, following flow diagram (Fig. 2) depicts the architecture used: 

 

Fig. 2.  Flow architecture proposed 

IV. RESULT 

   The following figures depict the proposed system identifying the box label using the TinyML model deployed on the ESP32-CAM (Fig. 4), achieving 

an inference time of less than 0.7 seconds. Based on the classification output, the robotic arm receives the command via the Arduino Nano and performs 

the corresponding pick-and-place operation (Fig. 3).  

 

Fig .3. Pick and place operation 
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Fig .3. TinyML model development 

V. CONCLUSION 

    This paper presents the design and development of an autonomous robotic arm system integrated with TinyML for intelligent warehouse sorting. By 

leveraging a lightweight TinyML model deployed on the ESP32-CAM, the system efficiently classifies labeled boxes in real-time and performs accurate 

pick-and-place operations using a 4-DOF robotic arm. The integration of ESP32 XIAO for peripheral control and LDR-based occupancy detection ensures 

smooth and reliable functioning. The compact, cost-effective hardware and low-latency classification make the system suitable for small-scale automation 

in logistics and warehouse environments. Future work may explore dynamic path planning, cloud connectivity, and support for multi-class object 

detection. 
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