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ABSTRACT : 

Large Language Model-based Multi-Agent Systems (LLM-MAS) have significantly enhanced problem-solving capabilities by enabling structured collaboration 

among intelligent agents. However, the intrinsic reliance on inter-agent communication exposes these systems to adversarial threats, potentially compromising their 

functionality. These systems leverage the capabilities of large-scale AI models to coordinate and execute complex tasks across diverse domains, including automated 

customer support, intelligent process automation, cybersecurity threat detection, and autonomous decision-making in financial and healthcare applications. The 

ability of LLM-powered agents to work together in a cooperative manner enhances scalability, efficiency, and decision accuracy. However, this interconnectivity 

also introduces significant security challenges, making LLM-MAS susceptible to a range of adversarial threats that can compromise their reliability, integrity, and 

overall performance. 

This study explores vulnerabilities in LLM-MAS communication, detailing how adversarial agents can intercept, modify, or inject malicious messages. To address 

these challenges, we propose the Secure-Agent Communication Framework (SACF), incorporating cryptographic authentication, real-time anomaly detection, and 

reinforcement learning-based verification. Our experiments across diverse datasets and agent architectures demonstrate SACF's effectiveness in mitigating 

adversarial interference. This research provides a comprehensive roadmap for securing LLM-MAS, highlighting key challenges and future directions. 
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1. INTRODUCTION 

Large Language Models (LLMs) have become an integral component of artificial intelligence, demonstrating remarkable proficiency in natural language 

processing, text generation, and problem-solving. Extending these capabilities, LLM-based Multi-Agent Systems (LLM-MAS) employ multiple LLM-

powered agents working collaboratively to address complex challenges. These systems find applications in fields such as software development, financial 

forecasting, scientific research, and autonomous robotics. 

Despite these advantages, LLM-MAS are susceptible to adversarial attacks targeting their communication protocols. Malicious entities that intercept, 

alter, or inject misleading messages can significantly impact system performance, leading to erroneous conclusions, security breaches, or even system 

failure. While prior research has largely focused on fortifying individual agents, securing inter-agent communication remains an unresolved challenge. 

This paper investigates the security risks inherent in LLM-MAS communication and introduces the Secure-Agent Communication Framework (SACF) 

as a robust defense mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1: Overview of Secure-Agent Communication Framework (SACF) 
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2. RELATED WORK 

Large Language Model-based Multi-Agent Systems (LLM-MAS) have been extensively studied across multiple domains, with recent research focusing 

on agent collaboration, decision-making, and robustness in various real-world applications. The increasing adoption of LLM-powered agents in domains 

such as healthcare, finance, cybersecurity, and robotics highlights the growing need to secure inter-agent communication from adversarial manipulation. 

Guo et al. (2024) highlight the potential of multi-agent cooperation in handling complex tasks, such as distributed computing, large-scale simulations, 

and real-time decision-making in critical infrastructures. Their work explores the benefits of decentralized intelligence, where multiple agents 

collaboratively process information to optimize computational efficiency and performance. However, their study does not account for security challenges, 

particularly how adversarial agents can exploit vulnerabilities in agent-to-agent interactions to manipulate system outcomes. 

Similarly, Song et al. (2023) discuss the role of LLM-based agents in autonomous robotics, particularly in applications requiring dynamic coordination, 

such as swarm robotics, self-driving vehicles, and industrial automation. Their research demonstrates that LLM-MAS can enhance adaptability and real-

time learning in autonomous systems. However, these systems remain vulnerable to adversarial communication attacks, which could lead to catastrophic 

failures in mission-critical applications. A compromised communication link could, for instance, reroute autonomous vehicles into unsafe pathways or 

disrupt coordinated robotic functions in manufacturing environments. 

Security Implications in LLM-MAS 

While prior research has focused on improving the efficiency and effectiveness of LLM-MAS, the security implications of inter-agent communication 

remain underexplored. Adversarial actors can exploit weaknesses in message exchange protocols to deceive agents, disrupt decision-making processes, 

and introduce systemic vulnerabilities. Unlike traditional cybersecurity threats that primarily target static systems, adversarial attacks on LLM-MAS 

involve dynamic and evolving threats that adapt to defensive mechanisms. 

Despite the growing recognition of adversarial attacks in NLP-based AI systems, research on securing LLM-MAS communication remains limited. Many 

existing security models focus on protecting individual models from adversarial inputs rather than securing the multi-agent communication layer. Key 

research areas that require further exploration include: 

1. Secure Multi-Agent Communication Protocols: Developing encrypted communication channels that prevent message interception, 

injection, and modification. 

2. Real-Time Anomaly Detection in Inter-Agent Communication: Utilizing machine learning and statistical methods to detect adversarial 

influence by identifying deviations from normal agent interactions. 

3. Trust and Reputation Systems for Agents: Implementing decentralized identity verification systems, such as blockchain-based 

authentication, to ensure that only trusted agents participate in the system. 

4. Redundancy and Fault-Tolerant Mechanisms: Designing fail-safe protocols that allow agents to cross-verify messages from multiple 

sources before making critical decisions. 

5. Adaptive Defense Mechanisms: Employing reinforcement learning models that enable agents to dynamically adjust their communication 

behaviors in response to detected threats. 

Adversarial Attacks in LLM-MAS    Communication 

Adversarial attacks in machine learning, particularly in natural language processing (NLP), have been well-documented in existing literature. Zhao et al. 

(2023) extensively review various adversarial attack vectors, including adversarial prompt injection, model manipulation, and misinformation attacks. 

These studies primarily assume that attackers have direct control over individual agents or the input data fed into the system. However, a significant gap 

remains in understanding how adversaries can exploit vulnerabilities in inter-agent communication protocols to influence agent behavior at a systemic 

level. 

This study fills the research gap by addressing adversarial manipulation within LLM-MAS communication protocols. Unlike prior works that focus on 

isolated agent security, our Secure-Agent Communication Framework (SACF) introduces a multi-layered defense strategy that ensures the integrity, 

confidentiality, and authenticity of agent interactions. By integrating cryptographic message authentication, real-time anomaly detection, and 

reinforcement learning-based verification, SACF provides a comprehensive security model tailored for multi-agent environments. 

By systematically analyzing adversarial vulnerabilities in inter-agent communication, this research contributes to the broader understanding of secure 

multi-agent systems. Future work should continue exploring the intersection of AI security, cryptography, and distributed intelligence to develop robust 

defenses against emerging adversarial threats in LLM-MAS ecosystems. 

3. THREAT MODEL AND SECURITY ANALYSIS 

Communication within Large Language Model-based Multi-Agent Systems (LLM-MAS) relies on structured message exchanges, making them prime 

targets for adversarial exploitation. These systems process and transmit large volumes of data between agents, and any vulnerabilities in the 

communication pipeline can lead to system-wide failures, data breaches, or malicious manipulation. Given their collaborative nature, securing LLM-

MAS requires addressing multiple attack vectors that adversaries can leverage to disrupt normal operations and compromise decision-making. 

One of the most significant threats is Message Interception, where an unauthorized entity eavesdrops on inter-agent communication. Attackers can 

extract sensitive data, learn agent behaviors, and analyze system weaknesses to craft more sophisticated attacks. This type of breach is particularly 

dangerous in applications like financial forecasting, autonomous systems, and cybersecurity monitoring, where intercepted messages can provide attackers 

with strategic advantages. 
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Another major concern is Message Injection, in which an attacker fabricates and inserts malicious messages into the communication stream. Unlike 

simple eavesdropping, injection attacks actively manipulate the system by misleading agents into making incorrect decisions. For example, in a robotic 

swarm system, an attacker could inject fake commands that cause robots to move erratically, fail missions, or even become non-functional. In fraud 

detection systems, injected messages could mislead an AI into classifying fraudulent transactions as legitimate, leading to financial losses. 

Similarly, Message Modification attacks involve altering legitimate messages in transit, leading to a distortion of communication between agents. This 

can cause misinformation to spread across the system, impacting collaborative decision-making. For instance, in multi-agent healthcare diagnosis 

systems, a modified message could alter patient data, leading to incorrect treatment recommendations. Attackers can manipulate communication 

pathways, modify values in real-time, and exploit inconsistencies in message authentication mechanisms. 

Another severe form of attack is the Denial-of-Service (DoS) Attack, where adversaries flood agents with an excessive number of requests, 

overwhelming their processing capabilities. By exploiting communication bottlenecks, attackers can degrade system performance or make it completely 

unresponsive. In real-time applications such as autonomous traffic management systems, DoS attacks could cause communication delays between 

vehicles, leading to congestion, erratic driving patterns, or accidents. In cloud-based LLM-MAS environments, attackers can overload servers with fake 

agent interactions, exhausting computational resources and making critical functionalities unavailable. 

Beyond these traditional attack vectors, new threats are emerging as LLM-MAS adoption increases. One such risk is Adversary-in-the-Middle (AiTM) 

Attacks, where an attacker positions themselves between communicating agents to manipulate, relay, or block messages in real time. This technique is 

particularly effective in decentralized communication architectures, where individual agents rely on trust-based models. Another evolving threat is 

Contextual Poisoning, where adversaries exploit the way LLMs process information by subtly injecting biased, misleading, or harmful context into 

communication chains. Over time, this can erode the decision-making accuracy of an entire multi-agent system, creating long-term vulnerabilities. 

# Simplified AiTM attack workflow in decentralized networks for agent in network: 

    if agent.security_level < threshold: 

        establish_middle_position(agent) 

        intercept_credentials(agent) 

        maintain_stealthy_connection() 

 

Given these evolving challenges, a robust defensive framework is essential for securing LLM-MAS. Traditional cryptographic techniques alone are not 

sufficient; instead, systems must incorporate adaptive security models, real-time anomaly detection, and reinforcement learning-based threat 

mitigation to counteract emerging adversarial tactics. Future research should focus on designing self-healing communication protocols that can detect, 

isolate, and recover from security breaches autonomously, ensuring that LLM-MAS can operate safely even in adversarial environments. 
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Table 1: Common Threats in LLM-MAS  

 

Communication within LLM-MAS occurs through structured message exchanges, making them vulnerable to various attack vectors 

• Message Interception: Unauthorized access to sensitive information by eavesdropping on agent communications. 

• Message Injection: Fabricated messages designed to mislead decision-making processes. 

• Message Modification: Altering legitimate messages to induce incorrect agent responses. 

• Denial-of-Service (DoS) Attacks: Overloading agents with excessive communication requests, degrading system performance. 

Each of these threats poses significant risks, necessitating a robust defensive framework for LLM-MAS. 

4. CENTRALIZED AND DECENTRALIZED COMMUNICATION SECURITY 

LLM-MAS can employ either centralized or decentralized communication architectures, each presenting unique security tradeoffs. 

Centralized Communication Security 

Advantages: 

• Simplified encryption via single-point TLS implementation. 

• Centralized monitoring enables real-time anomaly detection. 

• Standardized access control reduces identity spoofing risks. 

THREATS TYPE IMPACT 

1. Message 

Interception 

Unauthorized access to sensitive 

data 

2.  Injection 

 

False information leading to 

incorrect decisions 

 

3. Message 

Modification 

 

Altered data affecting system 

performance 

 

4. Denial-of-Service 

(DoS) 

 

System overload and failure 
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Vulnerabilities: 

• Single failure points allow complete system compromise via AiTM attacks. 

• Central message pools become high-value targets for prompt injection attacks. 

• Limited agent autonomy reduces collaborative defense capabilities. 

Decentralized Communication Security 

Advantages: 

• Distributed trust mechanisms prevent single-point failures. 

• Role-specific filtering enhances contextual security. 

• Dynamic routing circumvents compromised nodes. 

Vulnerabilities: 

• Longer detection times for coordinated attacks. 

• Increased attack surface from exposed peer-to-peer connections. 

• Challenges in implementing uniform encryption across heterogeneous agents. 

 

Table 2: Comparison of Centralized and Decentralized Security 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Comparison of Centralized and Decentralized Security 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECURE-AGENT COMMUNICATION FRAMEWORK (SACF) 

As adversarial threats targeting communication in Large Language Model-based Multi-Agent Systems (LLM-MAS) continue to evolve, a robust and 

multi-layered security approach is essential. The Secure-Agent Communication Framework (SACF) is designed to enhance the resilience of LLM-MAS 

by integrating multiple security mechanisms that safeguard inter-agent communication against interception, modification, injection, and other adversarial 

attacks. SACF achieves this through three key components: 

5.1 Cryptographic Message Authentication (CMA) 

Cryptographic Message Authentication (CMA) ensures that messages exchanged between agents are not altered by unauthorized entities. By leveraging 

Security Factor Centralized Decentralized 

Attack Success Rate 95.2% 40-50% 

Encryption Overhead 2.8ms/message 8.3ms/message 

Compromise 

Containment 

Full system Localized agent 

groups 

DoS Resistance Low High 

Challenge Key Issues Example Impact 

Communication 

Overhead 

Inefficient for low-level 

data; increased latency 

Infeasible for real-

time robotics 

Lack of 

Standardization 

Custom protocols limit 

interoperability 

Isolated agent 

ecosystems 

Scalability Exponential growth in 

complexity; routing issues 

Network congestion 

Real-Time 

Constraints 

Delays in dynamic 

environments 

Missed deadlines in 

autonomous tasks 

Semantic Ambiguity Misinterpretation of 

messages; lack of shared 

context 

Misaligned agent 

actions 

Security 

Vulnerabilities 

Susceptible to adversarial 

attacks 

Data  breaches; 
compromised 

decisions 

Human-Agent 

Interaction 

Difficulty conveying 

decisions; integrating 

feedback 

Poor user trust and 

collaboration 
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digital signatures and encryption, CMA guarantees both data integrity and authenticity. The implementation involves: 

• Digital Signatures: Each message is signed using a cryptographic key to ensure that only verified agents can send and receive information. 

• End-to-End Encryption (E2EE): Messages are encrypted before transmission and decrypted only by the intended recipient, preventing 

eavesdropping by malicious actors. 

• Key Exchange Mechanisms: Secure key management protocols such as Diffie-Hellman or Elliptic Curve Cryptography (ECC) ensure that 

secret keys are exchanged without exposure to attackers. 

• Message Authentication Codes (MACs): Hash-based authentication codes (HMAC) verify message integrity and detect any unauthorized 

modifications. 

Flowchart 1: Secure Message Authentication Workflow 

[Start] --> [Agent Sends Message] --> [Generate Digital Signature & Encrypt Message]  

    --> [Transmit Encrypted Message] --> [Recipient Receives Message]  

    --> [Verify Digital Signature] --> {Valid Signature?}  

    -->|Yes| [Decrypt & Accept Message]  

    -->|No| [Reject Message & Log Anomaly]  

    --> [End] 

pow 

                                         

 

 

 

 

 

 

Figure 5.1 

By implementing CMA, SACF prevents unauthorized alterations and ensures that only authenticated messages are processed by agents within the system. 

5.2 Anomaly Detection and Filtering (ADF) 

Anomaly Detection and Filtering (ADF) employs machine learning models to identify and block suspicious communication patterns in real-time. ADF 

operates using: 

• Behavioral Analysis: Agents continuously monitor incoming and outgoing messages, identifying deviations from normal interaction patterns. 

• Supervised and Unsupervised Learning: Models trained on known adversarial patterns help detect novel threats. 

• Real-Time Filtering: Suspicious messages are flagged, quarantined, or rejected before they can impact the system. 

• Adaptive Thresholding: Anomaly detection thresholds adjust dynamically based on environmental conditions and agent behavior. 

Algorithm 1: Machine Learning-Based Anomaly Detection 

Input: Incoming Message M, Agent Behavior Model B 

Output: Anomaly Flag (True/False) 

1. Extract Features from M (e.g., sender, content, structure) 

2. Compare M against Normal Behavior Profile in B 

3. Compute Anomaly Score S using Pre-trained ML Model 

4. If S > Threshold: 

     a. Flag M as Anomalous 

     b. Log and Isolate M for Further Analysis 

     c. Notify Security System 

5. Else: 

     a. Allow M to Proceed to the Next Stage 

6. Return Anomaly Flag 

 
                                        

Figure 5.2 
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This anomaly detection mechanism enables SACF to preemptively identify and neutralize potential attacks before they compromise multi-agent 

coordination. 

5.3 Reinforcement Learning-Based Verification (RLV) 

Reinforcement Learning-Based Verification (RLV) equips agents with adaptive security mechanisms that allow them to dynamically recognize and 

counteract adversarial influences. This approach involves: 

• Reinforcement Learning (RL): Agents are trained using RL algorithms to classify interactions as secure or suspicious based on learned 

attack patterns. 

• Reward-Based Adaptation: The verification process evolves continuously, improving its effectiveness as more adversarial interactions are 

encountered. 

• Multi-Agent Coordination: Collaborative filtering among agents enhances the detection of coordinated attack strategies. 

Flowchart 2: Reinforcement Learning-Based Threat Detection 

[Start] --> [Agent Receives Message] --> [Analyze Message Features]  

    --> [Pass Through Anomaly Detection Model] --> {Threat Detected?}  

    -->|Yes| [Apply Countermeasures] --> [Update RL Model]  

    -->|No| [Proceed to Standard Processing]  

    --> [End] 

 

 

 

 

 

 

 

Figure 5.3 

By integrating reinforcement learning, SACF enables agents to dynamically refine their security protocols based on evolving threats, making the overall 

system more resilient against adversarial manipulation. 

5.4 SACF Implementation and Deployment 

The implementation of SACF requires: 

• Secure Communication Middleware: Agents communicate over encrypted channels using TLS or hybrid encryption models. 

• Distributed Security Monitoring: Logs from anomaly detection are shared among agents to enhance collective defense mechanisms. 

• Automated Response Mechanisms: Agents autonomously adapt security configurations in response to new adversarial strategies. 

By integrating CMA, ADF, and RLV, SACF provides a comprehensive defense-in-depth approach that ensures the secure operation of LLM-MAS while 

maintaining efficient inter-agent communication. 

6. FUTURE RESEARCH DIRECTIONS 

6.1 Developing Quantum-Resistant Signature Schemes 

With the rapid advancements in quantum computing, traditional cryptographic methods such as RSA and ECC (Elliptic Curve Cryptography) are at risk 

of becoming obsolete due to quantum algorithms like Shor’s algorithm, which can efficiently factorize large numbers and break encryption schemes. This 

presents a significant challenge in securing inter-agent communication in LLM-MAS (Large Language Model-based Multi-Agent Systems), where 

cryptographic integrity is critical for maintaining trust and authenticity among agents. 

To mitigate these risks, future research should focus on developing quantum-resistant (or post-quantum) cryptographic signature schemes. This includes: 

• Lattice-Based Cryptography: Utilizing complex lattice problems that are currently resistant to quantum attacks, offering robust security 

while maintaining computational efficiency. 

• Hash-Based Signatures: Leveraging one-time and few-time signature schemes like XMSS (Extended Merkle Signature Scheme) and 

SPHINCS+, which rely on cryptographic hash functions rather than number factorization. 

• Code-Based Cryptography: Employing error-correcting codes to create secure encryption mechanisms that remain resistant to quantum 

decryption. 

• Multivariate Quadratic Equations: Using nonlinear polynomial equations to create cryptographic signatures that are difficult for quantum 

computers to solve. 

Adopting these quantum-resistant signature schemes will ensure that LLM-MAS systems remain secure against future threats posed by quantum 

advancements. Moreover, integrating hybrid cryptographic solutions that combine classical and quantum-resistant techniques can provide an additional 

layer of security during the transition to a fully quantum-secure infrastructure. 
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6.2 Creating Self-Healing Communication Protocols 

As adversarial attacks on LLM-MAS become more sophisticated, there is a growing need for self-healing communication protocols that can dynamically 

adapt to evolving threats. Self-healing protocols leverage AI-driven introspection techniques, particularly through Large Language Models, to detect 

anomalies, analyze attack patterns, and autonomously repair vulnerabilities in real-time. 

Key components of self-healing communication protocols include: 

• Adaptive Anomaly Detection: Using real-time monitoring and reinforcement learning-based models to recognize unusual message patterns 

and classify potential security breaches. 

• Autonomous Response Mechanisms: Deploying automated countermeasures such as re-encrypting compromised messages, rerouting 

communication pathways, or isolating affected agents to prevent adversarial spread. 

• Introspective Learning Models: Enabling agents to evaluate their own communication logs and interactions to identify and rectify 

weaknesses without human intervention. 

• Blockchain-Based Integrity Checks: Implementing decentralized verification techniques where each message exchange is cryptographically 

recorded, ensuring that adversarial modifications are detected and reversed promptly. 

• Redundancy and Failover Systems: Designing communication frameworks with built-in redundancy, ensuring that if one protocol fails due 

to an attack, an alternative protocol takes over seamlessly. 

By integrating these elements, self-healing communication protocols can enhance the resilience of LLM-MAS, enabling agents to maintain secure 

interactions even in adversarial environments. This approach significantly reduces downtime, minimizes human intervention, and strengthens the overall 

robustness of secure multi-agent collaborations. 

6.3 Balancing Security Overhead with Real-Time Requirements 

While strong security mechanisms are essential for protecting LLM-MAS, excessive security overhead can degrade real-time performance, leading to 

increased latency, higher computational costs, and inefficient resource utilization. Future research must focus on achieving an optimal balance between 

security robustness and real-time efficiency. 

Strategies to optimize security while maintaining real-time performance include: 

• Efficient Cryptographic Implementations: Exploring lightweight encryption schemes, such as Elliptic Curve Cryptography (ECC) or 

hardware-accelerated cryptographic functions, to reduce processing overhead without compromising security. 

• Adaptive Security Levels: Implementing context-aware security policies where the level of encryption and verification dynamically adjusts 

based on the sensitivity of the communication and current system load. 

• Parallel Processing for Security Tasks: Leveraging multi-threading and parallel computing techniques to perform encryption, authentication, 

and anomaly detection simultaneously, minimizing delays in message transmission. 

• Edge Computing for Real-Time Verification: Offloading security computations to edge nodes closer to the agents, reducing response times 

and improving efficiency in decentralized multi-agent networks. 

• Hybrid Security Models: Combining centralized authentication with decentralized message validation, allowing for rapid initial verification 

while ensuring long-term security through distributed consensus mechanisms. 

• Machine Learning-Assisted Threat Prediction: Utilizing AI-driven predictive analysis to anticipate security risks and preemptively allocate 

computational resources to the most critical security functions. 

By employing these strategies, researchers can develop security mechanisms that effectively protect LLM-MAS without imposing excessive 

computational burdens. Ensuring that real-time communication remains efficient while maintaining strong security postures will be crucial for the 

deployment of these systems in high-stakes environments such as autonomous robotics, financial transactions, and real-time data analytics. 

7. CONCLUSION 

This study highlights the vulnerabilities of inter-agent communication in LLM-MAS and introduces SACF as a robust defensive mechanism. By 

incorporating cryptographic authentication, anomaly detection, and adaptive reinforcement learning, SACF enhances the security of multi-agent 

collaborations, paving the way for future advancements in AI security. This study emphasizes the critical security challenges associated with inter-agent 

communication in Large Language Model-based Multi-Agent Systems (LLM-MAS), where the integrity, confidentiality, and authenticity of 

exchanged messages are paramount. As these intelligent agents collaborate in decentralized and dynamic environments, they become vulnerable to 

adversarial manipulation, including message interception, injection, modification, and denial-of-service attacks. Such threats can significantly 

compromise the reliability of decision-making processes, leading to severe consequences in domains such as autonomous systems, financial 

transactions, and cybersecurity operations. 

To address these vulnerabilities, this study introduces the Secure-Agent Communication Framework (SACF), a multi-layered defensive mechanism 

designed to fortify inter-agent communication against adversarial threats. SACF leverages three core security components to create a robust security 

model. 
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