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ABSTRACT:  

The integration of Brain–Computer Interface (BCI) technology into assistive mobility devices has opened new possibilities for enhancing the independence of 

individuals with severe motor disabilities. Among various approaches, Electroencephalography (EEG)-based control systems have gained popularity due to their 

non-invasive nature and practical applicability. This paper presents a review and comparative analysis of ten recent research studies focused on the development of 

EEG-controlled smart wheelchairs. The selected works explore diverse aspects of BCI implementation, including EEG signal acquisition, preprocessing, feature 

extraction, classification algorithms, and control mechanisms. By highlighting the strengths and limitations of each approach, this review provides valuable insights 

into current design trends, challenges such as noise in EEG signals and user adaptability, and potential improvements using hybrid systems or machine learning 

models. The study aims to guide future research toward more accurate, user-friendly, and robust EEG-based wheelchair solutions for real-world deployment. 
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I.INTRODUCTION 

Mobility is a fundamental human need, yet for individuals suffering from severe physical disabilities such as paralysis, spinal cord injuries, or 

neuromuscular disorders, traditional methods of movement and communication are often inaccessible. To address this challenge, assistive technologies 

have emerged as powerful tools to enhance autonomy and quality of life. Among these, Brain–Computer Interface (BCI) systems have gained 

significant attention for their potential to establish a direct communication pathway between the brain and external devices, bypassing the need for 

muscular control. 

In particular, Electroencephalography (EEG)-based BCI systems have proven to be a non-invasive, cost-effective, and practical approach for 

controlling devices like robotic arms, home automation systems, and smart wheelchairs. These systems interpret brain signals generated during specific 

mental tasks (e.g., eye blinks, motor imagery, or concentration) and translate them into control commands. When integrated with a wheelchair platform, 

EEG-based BCI systems can offer users the ability to navigate their environment with minimal physical effort—often using only thoughts. 

 

Over the past decade, numerous research studies and prototypes have explored different EEG signal acquisition devices, feature extraction algorithms, 

classifiers, and control strategies for developing reliable and efficient brain-controlled wheelchairs. This paper presents a comprehensive review and 

comparative analysis of ten selected research works that represent significant contributions in this domain. The goal is to provide insight into the 

technological evolution, current capabilities, and existing limitations of EEG-based wheelchair control systems, while also identifying future research 

opportunities in this growing field. 

II.LITERATURE REVIEW 

 

1. Anusha and Vasanthi (2012) introduced a brain-controlled wheelchair using EEG signals to enable disabled individuals to control their 

mobility. They employed basic EEG signal processing techniques to classify different brain waves associated with specific motor tasks, such 

as attention and relaxation. The researchers used EEG signals to control wheelchair movement by translating these brainwave patterns into 

actionable commands. Their approach was simple yet demonstrated the feasibility of a non-invasive control method. However, challenges 
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included signal noise and the need for reliable feature extraction techniques to ensure accurate control in dynamic environments, highlighting 

the need for further refinement. 

 

2. Gaurav and Arora (2016) focused on the development of a modular BCI system for wheelchair automation. They combined EEG signal 

acquisition using OpenBCI and software like LabVIEW for signal processing and control. Their system integrated an Arduino-based 

microcontroller to interface with the wheelchair’s movement system, providing an accessible solution for assistive mobility. Their research 

explored various control methods, addressing issues of real-time EEG processing, signal accuracy, and system responsiveness. By using a 

low-cost hardware setup, the authors demonstrated that BCI technology could provide an affordable solution for users with disabilities, 

while acknowledging the challenge of reducing error rates in signal interpretation. 

 

 

3. Khemapech and Siriwattanarungsee (2015) proposed a mind-controlled wheelchair system using EEG signals and an Arduino 

microcontroller. Their research utilized EEG headsets to capture brain activity, focusing on simple signals like eye blinks and motor imagery 

to control wheelchair movements. The system was designed to be cost-effective, making it accessible to a larger population. The authors 

emphasized the need for safety features to prevent erratic movements, given the potential for inaccurate EEG signal interpretation. Their 

research also highlighted the challenges of ensuring that the wheelchair’s motion response was sufficiently responsive and smooth for users 

with motor disabilities. 

 

4. Chowdhury et al. (2020) reviewed various EEG-based BCI systems developed for smart wheelchair control, analyzing the strengths and 

weaknesses of existing techniques. They categorized the systems based on signal processing, feature extraction methods, and classification 

algorithms used in previous research. The study highlighted machine learning models as a promising solution to improve signal classification 

accuracy and responsiveness in dynamic environments. The authors discussed the challenges of noise reduction, real-time signal processing, 

and the need for user training to enhance control precision. Their review underscored the importance of developing adaptive systems for 

more personalized wheelchair navigation, pointing to hybrid approaches as the future of BCI control. 

 

5. Aslam et al. (2020) explored the use of hybrid EEG and eye-tracking systems for wheelchair control. The integration of EEG and eye-

tracking allowed for more accurate control by compensating for the limitations of EEG signals alone, such as low accuracy and signal noise. 

Their system was designed to provide a more robust and reliable control mechanism, enhancing the user experience. By focusing on adaptive 

algorithms, they aimed to personalize the wheelchair’s response to the mental state of the user, offering a customized control scheme. The 

study demonstrated that combining these two input modalities could significantly improve the performance of brain-controlled mobility aids. 

 

6. Praveen and Srikanth (2014) proposed a low-cost, EEG-based control system for wheelchairs using Arduino and basic signal processing 

algorithms. Their approach emphasized the affordability and simplicity of the system, which used EEG signals to control the wheelchair’s 

movement. The authors focused on real-time signal processing, integrating a simple Arduino platform to decode brain signals into 

actionable wheelchair commands. Despite its simplicity, the study highlighted several challenges, such as handling EEG noise and ensuring 

real-time accuracy in the wheelchair's motion. This research demonstrated the potential for creating cost-effective assistive devices for users 

with limited resources. 

 

 

7. Demuth, Webb, and Florentino (2013) explored the use of SSVEPs (Steady-State Visual Evoked Potentials) for controlling a wheelchair. 

SSVEPs, brain signals generated when focusing on a flickering visual stimulus, offer high accuracy and speed in controlling devices like 

wheelchairs. This study demonstrated the potential of SSVEP-based systems to improve upon motor imagery-based BCIs, which are more 

prone to noise and signal variability. The research showed that SSVEPs could provide precise control in real-time wheelchair movements, 

making it a promising alternative to traditional EEG methods. However, the study also noted challenges related to stimulus alignment and 

user adaptation to the SSVEP control system. 

 

8. Shih, Gunawan, and Anggraini (2019) designed a smart wheelchair controlled by EEG signals, incorporating machine learning algorithms 

to improve signal classification and overall system accuracy. The researchers focused on enhancing the system’s robustness by developing 

adaptive signal processing techniques that could handle environmental noise and adapt to individual user needs. They explored user-

specific customization as a key factor for improving wheelchair navigation accuracy, particularly for users with neurological impairments. 

The study suggested that incorporating advanced algorithms could lead to more efficient and adaptive BCI systems, ultimately resulting in 

a more reliable user experience. 

 

9. Cecotti (2010) explored a self-paced, calibration-free system based on SSVEPs for use in BCI-controlled devices, including wheelchairs. 

The study demonstrated that users could immediately interact with the system without requiring an extensive training period or initial 

calibration. The self-paced nature of the system reduced cognitive load and improved user comfort. This approach has significant potential 

for improving usability in brain-controlled systems, as it allows individuals with severe disabilities to control their wheelchair more intuitively. 

The study also addressed challenges in signal detection and real-time processing that are critical for efficient control of assistive devices. 
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10. Khan, Ali, and Ghaffar (2019) developed a brain-controlled wheelchair using EEG headsets and Arduino-based microcontrollers. Their 

system focused on real-time EEG signal processing to achieve precise control over the wheelchair’s movements. The researchers highlighted 

the importance of signal preprocessing to reduce noise and improve the system’s responsiveness. They also noted that real-time feedback 

was essential for enhancing user interaction and system performance. This study contributed to the growing body of work on affordable, low-

cost EEG solutions for assistive mobility, proposing improvements in signal filtering and control algorithms to enhance real-world 

usability. 

III. METHODOLOGY 

The proposed EEG-based brain-controlled wheelchair system is an innovative assistive technology designed to empower individuals with severe physical 

disabilities by allowing them to navigate their environment using only brain signals. The complete methodology integrates biomedical signal acquisition, 

real-time processing, intelligent classification, and robotic control. The workflow is divided into several key components, as visually represented in the 

system's block diagram. Each component plays a vital role in achieving accurate and reliable motion based on user intent. 

 

 

• The first and most crucial stage of the system involves capturing brain activity using an EEG headset. This device measures electrical impulses 

from the brain through electrodes placed on the scalp. These signals are extremely weak (in microvolts) and are typically generated from the 

motor cortex when the user imagines movement or performs voluntary blinks. The EEG headset captures these signals in real time and 

transmits them either through Bluetooth or a USB interface to a connected computer or microcontroller. Commonly used headsets include 

NeuroSky, Emotiv, or OpenBCI, which are designed for non-invasive applications. The purpose of this module is to act as the “mind interface” 

where the system detects user intent without requiring physical movement. This stage is sensitive to noise and interference, so the placement 

of electrodes and the quality of the EEG headset directly affect the performance of the entire system.-recorded dataset as shown in the figure 

below . 

 
  

               Fig. 1. EEG-Based Brain-Controlled Wheelchair System 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• EEG signals captured by the headset are inherently noisy and contain artifacts from muscle activity, eye blinks, and external electrical 

interference. Therefore, preprocessing is essential to isolate clean brainwave signals that are suitable for analysis. In this stage, the raw EEG 

signal is passed through filters such as bandpass filters (0.5–50 Hz) to eliminate low-frequency drifts and high-frequency electrical noise. 

Additionally, techniques like Independent Component Analysis (ICA) or Common Average Referencing (CAR) can be applied to separate 

useful brainwave components from unwanted noise. Some preprocessing modules also normalize the signals or segment them into windows 

for more efficient processing. Without this step, irrelevant or distorted data could severely affect the accuracy of subsequent feature extraction 

and classification. By applying preprocessing algorithms, the system ensures that only the most relevant mental commands are considered for 

controlling the wheelchair, thereby improving reliability and user safety. 

 

• Once the EEG signal has been cleaned and filtered, the next step is to extract meaningful patterns or “features” that correlate with user 

intentions. These features may include time-domain statistics like signal mean, variance, or peak amplitude, as well as frequency-domain 

properties such as power spectral density in alpha or beta bands. In cases using blink or motor imagery, features may represent the number of 

blinks or the concentration of certain brainwave types. After feature extraction, a classification algorithm is employed to translate these features 

into specific commands. Machine learning techniques such as Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Linear 
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Discriminant Analysis (LDA), or lightweight neural networks are trained on labeled datasets to recognize mental states like "move forward," 

"turn left," or "stop." The classifier continuously monitors real-time EEG data and outputs a control label. This decision forms the basis for 

commanding the wheelchair's movement accurately. 

 

• The classified EEG command is forwarded to a microcontroller, which serves as the control interface between the software and hardware 

systems. This unit, commonly an Arduino Uno, ESP32, or Raspberry Pi, receives digital command signals and translates them into control 

logic. For instance, a classification output labeled “1” might correspond to a forward movement command, while “2” triggers a left turn. The 

microcontroller handles signal timing, motor control pulse generation, and integrates safety mechanisms such as signal verification and 

emergency stop triggers. In more advanced systems, it may also manage additional sensors (e.g., obstacle detection or GPS modules). The 

microcontroller is programmed using platforms like Arduino IDE or Python-based libraries, and its role is critical for real-time execution. It 

acts as the command center that ensures the user’s mental intent is translated quickly and safely into physical action by the wheelchair. The 

system is designed to be energy-efficient and responsive to maintain smooth operation. 

 

• The motor driver circuit serves as a bridge between the low-power control signals from the microcontroller and the high-power requirements 

of the wheelchair’s DC motors. A commonly used motor driver, the L298N dual H-bridge module, can control both the speed and direction 

of two motors simultaneously. When the microcontroller outputs a command (e.g., move forward), the driver interprets it and sends the 

appropriate voltage and current to the motors. The H-bridge configuration allows for precise directional control—by altering the polarity of 

the voltage applied to each motor, it can achieve forward motion, reverse motion, and turns. This component is essential for amplifying signals 

while protecting the microcontroller from potential current surges. Additionally, PWM (Pulse Width Modulation) is used for speed control, 

allowing for smoother starts and stops. Reliable motor driver operation ensures that the wheelchair moves efficiently and reacts promptly to 

the user’s brain commands. 

 

• The final stage of the system involves executing the user's command through actual movement of the wheelchair. The mobility platform 

typically includes a pair of geared DC motors attached to a lightweight wheelchair frame. Depending on the control signals from the motor 

driver, the motors rotate in the appropriate direction to move the wheelchair forward, backward, left, or right. The movement is usually 

differential—by varying the speed or direction of each motor, the wheelchair can perform turns and adjustments. For enhanced usability and 

safety, additional sensors like ultrasonic detectors may be mounted to detect obstacles, and a manual override can be included for emergencies. 

The mobility system is designed to be robust, power-efficient, and smooth in operation. Real-time feedback is crucial; hence, the system 

continuously listens for updated EEG commands and responds with minimal delay. This makes the wheelchair truly responsive and usable 

for individuals with very limited motor capabilities. 

IV. RESULTS AND DISCUSSION   

  

The performance evaluation of the proposed EEG-based brain-controlled wheelchair was carried out through structured experimental trials across five 

different users. Each user interacted with the system by issuing mental commands, including eye blinks and motor imagery (MI), to control directional 

movement. The primary evaluation metrics included classification accuracy, response time, and detection success rate of command types, as well as 

general system reliability and user experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first graph depicts the classification accuracy obtained across the five participants. As shown, accuracy values ranged from 87.3% to 91.0%, with 

User 4 attaining the highest accuracy. These results suggest that individual brainwave patterns and cognitive engagement levels significantly influence 

system performance. Users with clearer and more consistent EEG signals (possibly due to focused attention or better headset contact) performed better. 

An average classification accuracy of 89.4% indicates that the signal preprocessing and feature classification stages are sufficiently robust for real-time 

operation. It also reflects the effectiveness of the SVM classifier in handling non-linear EEG signal patterns. 

 

The second graph depicts the classification accuracy obtained across the five participants. As shown, accuracy values ranged from 87.3% to 91.0%, with 

User 4 attaining the highest accuracy. These results suggest that individual brainwave patterns and cognitive engagement levels significantly influence 

system performance. Users with clearer and more consistent EEG signals (possibly due to focused attention or better headset  

 

contact) performed better. An average classification accuracy of 89.4% indicates that the signal preprocessing and feature classification stages are 
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sufficiently robust for real-time operation. It also reflects the effectiveness of the SVM classifier in handling non-linear EEG signal patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third graph compares the success rates of different control modalities used within the system. Blink detection emerged as the most reliable 

command, with a success rate of 95%, primarily due to its high amplitude and frequency characteristics that are easy to detect algorithmically. This 

makes it ideal for binary or emergency commands (e.g., stop, start, or turn). In contrast, left and right motor imagery achieved slightly lower success 

rates—84% and 86% respectively. Motor imagery relies on the user’s ability to imagine movements without executing them physically, which is more 

cognitively demanding and less consistent, especially for untrained users. The variability in MI command success underlines the importance of user-

specific calibration and the potential role of neurofeedback training to improve consistency over time. 

Qualitative observations also revealed that users found the blink-based interface intuitive and less fatiguing, while motor imagery required a learning 

curve but offered richer command possibilities. The system’s stability was tested over extended usage sessions (~30 minutes), and it maintained 

operational consistency without overheating, data loss, or unintended activation. Power consumption of the motors and microcontroller was efficient, and 

safety mechanisms, such as an emergency triple-blink command, were triggered reliably during trials. 

In conclusion, the proposed system demonstrates promising results in both quantitative metrics and user satisfaction. The high classification accuracy and 

low response time enable real-time navigation, while the use of multiple command types (blink and MI) offers flexibility to accommodate different user 

preferences or physical abilities. However, the study also reveals challenges such as inter-user variability and the need for better user training for motor 

imagery control. Future work may involve the integration of adaptive machine learning models that learn from each individual user’s brainwave patterns 

and dynamically adjust over time, as well as expanding the system to include obstacle detection, GPS-based path planning, and IoT integration for remote 

monitoring. 

V. FUTURE WORK AND RESEARCH  

While the present system demonstrates the viability of brain-computer interface (BCI) technologies for assistive mobility, several enhancements can 

further improve its functionality, accuracy, and user adaptability. Future research will focus on both hardware and software improvements to overcome 

current limitations and expand the scope of application. 

 

One key area is the integration of adaptive machine learning algorithms, particularly deep learning models such as convolutional neural networks 

(CNNs) or recurrent neural networks (RNNs), which can improve the robustness of EEG signal classification over time. These models can be trained on 

larger datasets to better capture individual differences and reduce the need for frequent recalibration. Incorporating real-time learning mechanisms will 

allow the system to adjust dynamically based on the user’s changing cognitive states, fatigue levels, or environmental noise. 

 

Additionally, multi-modal signal integration—combining EEG with electromyography (EMG), electrooculography (EOG), or eye-tracking—can 

provide a hybrid control interface. This will allow the system to distinguish between intentional and accidental brain signals and enhance command 

precision. For example, combining EOG with EEG can improve the accuracy of directional commands and reduce false positives caused by involuntary 

blinks or muscle twitches. 

 

On the hardware side, future versions of the system could include wireless EEG headsets with dry electrodes, making the system more comfortable, 

portable, and user-friendly for long-term use. Integration with smartphone-based apps or IoT platforms can provide real-time monitoring of user vitals, 

GPS tracking, and emergency alerts to caregivers or family members. 

 

Another important direction for future research involves the development of context-aware navigation systems, where the wheelchair can interpret 

surroundings using ultrasonic sensors, LiDAR, or cameras. Coupled with AI-based obstacle detection and path planning, the wheelchair can offer semi-

autonomous navigation that enhances safety, especially in crowded or unfamiliar environments. 

 



International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 3394-3400                        3399 

 

Finally, extensive clinical trials with differently-abled individuals, including those with ALS, cerebral palsy, or spinal cord injuries, are needed to validate 

the system’s effectiveness in real-world scenarios. Long-term usability studies will provide insights into user satisfaction, cognitive load, and physical 

fatigue, ultimately guiding more inclusive and personalized assistive technologies. 

VI. CONCLUSION  

The development and implementation of a brain-controlled wheelchair using EEG signals represent a significant advancement in assistive technology, 

particularly for individuals suffering from severe motor disabilities such as quadriplegia, cerebral palsy, or advanced-stage muscular dystrophy. This 

project aimed to explore the practicality of a non-invasive brain-computer interface (BCI) system that enables users to operate a wheelchair using only 

their brain activity, specifically through eye blinks and motor imagery (MI). The system combined hardware components such as an EEG headset, Arduino 

microcontroller, motor drivers, and a wheelchair platform with software techniques including signal filtering, feature extraction, and supervised machine 

learning classification. 

The experimental results demonstrate that the proposed system is both functional and effective. The average classification accuracy across five users 

exceeded 89%, which indicates that the system can reliably interpret the user's intent from EEG signals. Blink-based commands showed the highest 

reliability, achieving a 95% success rate, while motor imagery commands maintained reasonably high accuracy at 84–86%. The system’s response time 

averaged 1.2 seconds, a figure that validates its real-time operational capabilities, making it suitable for continuous navigation in controlled environments. 

One of the key strengths of this project is its adaptability. The design is modular and can be expanded to incorporate more complex control commands or 

additional bio-signals, such as EMG (electromyography) or EOG (electrooculography), to create a more robust hybrid BCI system. Furthermore, the use 

of machine learning allows the system to be trained and customized for individual users, accounting for variations in brainwave patterns. With further 

development, this technology can become more accessible through the use of wireless, dry-electrode EEG headsets, and mobile app-based control 

dashboards, significantly enhancing usability and convenience. 

Despite its promising results, there are challenges and limitations that must be addressed in future work. These include the system’s sensitivity to noise 

and artifacts in EEG data, the mental effort required from users for motor imagery commands, and the need for initial training to ensure accurate signal 

recognition. Long-term usability testing is also necessary to evaluate performance consistency over extended periods and in dynamic, real-world 

environments. 

In conclusion, the brain-controlled wheelchair system presented in this research offers a compelling solution for enhancing the independence and quality 

of life of people with physical disabilities. It leverages cutting-edge BCI technology to translate human cognitive intentions into physical movement, 

creating a seamless interaction between the human brain and a mobility device. This research not only confirms the technical feasibility of EEG-based 

wheelchair control but also sets the stage for future innovations in intelligent, adaptive assistive technologies. With continued refinement and clinical 

validation, such systems hold the potential to transform how individuals with severe disabilities interact with their surroundings, empowering them with 

greater autonomy and dignity. 
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