
International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 1404-1407

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

AI-Resume Analyzer Using Python

Omish Chandra1, Md Sufyan Alam2, Piyush Kumar Sahu3, Nehal Akhtar4

U.G. Student, Department of Computer Science & Engineering, Shri Shankaracharya Technical Campus, Junwani, Bhilai, India

omish4321@gmail.com, sufyanaalam007@gmail.com, piyushkumarsahu39@gmail.com, nehalakh10@gmail.com.

ABSTRACT:

The Resume Analyzer and Recommender System Using Python project seeks to transform the hiring process by automating the assessment of resumes through

advanced natural language processing (NLP) andmachine learning methods. In the current competitive job landscape, recruiters often face an overload of resumes

for a single position, rendering manual review both inefficient and prone to mistakes. This initiative tackles these issues by creating an AI-driven system that

analyzerand evaluates resumes according to established criteria, thereby greatly minimizing the need for manual input and enhancing precision. The project

utilizes Python, the Pyresparser library, and MySQL for data management, with Streamlit providing an intuitive interface for recruiters and candidates alike. By

ensuring secure storage and visualization of the processed data, the Resume Analyzer and Recommender System Using Python not only improves the efficiency

of resume evaluation but also generates insights that facilitate better decision-making. The system is intended to be both scalable and dependable, employing

cloud solutions and strong security protocols to safeguard sensitive information. Ongoing performance assessments and refinements guarantee that the Resume

Analyzer and Recommender System Using Python meets the requirements of contemporary recruitment, ultimately elevating the standard of the hiring process.

Keywords:- NLP (Natural Language Processing) Resume Parsing, Machine Learning, Recommender Systems, Data Security, Data Privacy, User

Engagement, Semantic Analysis, User Data Analysis: & Text Mining.

INTRODUCTION

This challenge makes a specialty of building an AI-driven tool that enables streamlining the resume screening procedure for recruiters. In preference to

manually going through each resume, this gadget robotically analyzes and evaluates them based totally on unique standards, saving effort and time even

as it improves accuracy in candidate choice.

The machine is developed in Python and makes use of the pyresparser library to extract relevant details from resumes, along with contact information,

abilities, training, and paintings. As soon as the statistic is extracted, it’s evaluated to see how nicely it matches the requirements for a given job role.

What sets this assignment apart is its use of advanced natural language processing (NLP) strategies. Traditional resume screening tools often depend

upon keyword matching, which isn’t constantly dependable—applicants can effortlessly game the system with the aid of stuffing their resumes with

key phrases. This AI-based method goes a step further by using information about the real context of the textual content. With strategies like

tokenization, component-of-speech tagging, and named entity recognition (NER), the system can, as it should, pick out and extract meaningful

statistics.

To make it handy and clean to use, the venture uses Streamlit for the consumer interface. Streamlit is a Python framework that facilitates constructing

interactive internet apps with minimal effort. Via this interface, recruiters can upload resumes, outline what they’re looking for, and look at the effects

in a clean, organized way. Task seekers also can use the tool to get remarks on their resumes and notice wherein enhancements are needed.

All extracted information is securely stored in a MySQL database, which is designed to address special parts of a resume—like skills, qualifications,

and past employment—in a dependent format. This makes it less complicated to retrieve and show information while wanted. The machine additionally

includes easy facts visualization equipment, so customers can quickly make sense of the evaluation.

 For the reason that the system may want to sooner or later be used at scale, specifically by agencies with high hiring volumes, it’s designed to be

scalableand dependable.

METHODOLOGY

This section walks through the full development process of the Resume Analyzer and Recommender System, highlighting the tools, technologies, and

logic behind its construction. From the user interface to backend logic, database integration, and security, every component is tailored to ensure a

seamless, secure, and efficient experience for both recruiters and job seekers.

Our recruitment analytics platform features a streamlined, interactive frontend built with Streamlit, chosen for its ability to rapidly assemble data-driven

web applications with minimal custom code. The interface prioritizes accessibility and simplicity, guiding users step by step through uploading resumes

and inspecting candidate insights. A clean, responsive design adapts seamlessly to different screen sizes, and key results—charts, summary panels, and

http://www.ijrpr.com/
mailto:omish4321@gmail.com
mailto:sufyanaalam007@gmail.com
mailto:piyushkumarsahu39@gmail.com
mailto:nehalakh10@gmail.com

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 1404-1407 1405

filter controls—are presented in an intuitive, visually appealing layout. Core UI modules include a file‐upload widget supporting PDF and DOCX

formats, a criteria settings panel where recruiters can specify desired skills, experience, and educational background, and a dynamic results area that

visualizes match scores, skill alignments, and other metrics.

Behind the scenes, our backend—written in Python—powers the system’s intelligence. Incoming resumes are funneled through Pyresparser, which

transforms unstructured text into structured records via tokenization, part‐of‐speech tagging, named entity recognition, and custom rules tailored to

extract job‐relevant details such as project titles and certifications. Once the data is parsed, each candidate record is evaluated against recruiter‐defined

benchmarks: we assign points based on alignment with required traits, aggregate them into a composite score, and rank applicants accordingly to

surface the strongest fits.

All parsed and scored records are stored in a MySQL database, selected for its robustness and performance in handling structured data. The schema

encompasses tables for users (both recruiters and applicants), raw and parsed resumes, evaluation criteria, and final results. We established the database

by installing a MySQL server, defining and creating tables, and writing population scripts. Indexes and optimized queries ensure rapid retrieval and

smooth overall performance.

Data flows through the system in real time: after a user uploads a resume, the backend parses and temporarily holds the extracted information for

analysis. Scores and ranking results are then committed to the database. When recruiters access the dashboard, the frontend fetches these records and

displays them in a neatly formatted view, allowing instantaneous feedback on candidate suitability.

Given the sensitivity of personal information, security underpins every layer. All communication between client and server is encrypted via HTTPS,

while sensitive data at rest is stored in an encrypted form. User authentication relies on hashed passwords and optional two‐factor verification, with

role‐based permissions enforcing access controls. The platform also incorporates GDPR best practices, prompting for user consent and anonymizing

data where necessary.

To ensure reliability and scalability, we deploy on a cloud infrastructure—AWS or Azure—configured to host Python services, MySQL, and an Nginx

web server. Dependencies such as Streamlit, Pyresparser, and MySQL connectors are managed through a Python environment, and Nginx handles

incoming HTTP(S) traffic.

In production, the database server is hardened with strict access controls and monitored for anomalies, with all tables and indexes optimized for

performance. The application itself is tested locally under Git version control before being transferred to the live server. SSL certificates secure web

traffic, and a load balancer distributes incoming requests across multiple application instances, ensuring consistent performance even under heavy load.

LITERATURE SURVEY

As organizations strive to streamline hiring, researchers have devoted considerable effort to automating resume handling. This review highlights

foundational and recent work in AI-driven resume analysis, tracing its journey from simple rule-based extractors to the modern era of deep-learning

models that power today’s candidate evaluation systems.

In the early days of automated resume parsing, researchers relied heavily on handcrafted pattern-matching and heuristic rules to convert unstructured

text into discrete fields. Systems developed in the late 1990s could accurately extract basic information—such as candidate names, dates of

employment, job titles, and skill lists—provided that resumes closely followed expected layouts. However, rule-based extractors often faltered when

faced with unconventional formats or novel document designs, exposing their inflexibility and underscoring the need for more adaptive methods.By the

2010s, advances in natural language processing began to address these limitations. Techniques like part-of-speech tagging and named-entity recognition

enabled parsers to understand context, distinguishing, for instance, “lead” as an action versus “Lead” as a role. More recently, deep-learning

transformers—most notably BERT—have been fine-tuned on large resume datasets to achieve much higher extraction accuracy. These models can

pinpoint skills, certifications, and career milestones with a level of precision that far outstrips earlier approaches, making them the current state of the

art in resume comprehension.

Parallel efforts have focused on automatically scoring and ranking candidates. Early machine-learning implementations used support vector machines

and decision-tree ensembles to compare resume features—like education, years of experience, and technical proficiencies—against predefined criteria,

yielding a numerical suitability score for each applicant. More sophisticated neural ranking architectures have since emerged, learning to order resumes

by measuring their semantic alignment with job descriptions and thereby capturing subtler matches, such as transferable skills.

Regardless of analytic rigor, even the best parsing and ranking engine is ineffective if recruiters cannot interact with it intuitively. Usability studies

emphasize the importance of clear, interactive dashboards that allow hiring managers to explore key metrics—skill distributions, experience timelines,

and aggregated scores—while giving applicants transparency into how their resumes are assessed. Such visual tools boost recruiter efficiency and foster

greater trust in automated hiring workflows.

With personal data at the core of resume processing, security and privacy are paramount. Modern systems employ end-to-end encryption for data both

in transit and at rest, enforce strong authentication (including optional multi-factor methods), and adhere closely to regulatory frameworks like GDPR.

Robust architectures combine encrypted storage, strict access controls, and regular compliance audits to safeguard sensitive candidate information.

Scalability presents another critical challenge. To handle thousands of submissions per hour without performance degradation, production systems

leverage distributed processing frameworks, database sharding, query caching, and load-balanced microservices. These strategies ensure consistent

throughput and low latency even under heavy load, making high-volume recruitment feasible.

A growing body of work also tackles bias and fairness in automated hiring. Early models trained on historical data often unwittingly propagated

existing prejudices. Fairness-aware learning techniques introduce constraints during training to equalize outcomes across demographic groups, and pre-

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 1404-1407 1406

processing methods can transform input data to reduce bias amplification. By integrating these safeguards, contemporary resume analyzerstrive to

combine high accuracy with equitable treatment for all candidates.

Hybrid parsing architectures offer a practical compromise when labeled training data are limited. In these systems, rule-based components first detect

well-defined sections—such as “Education” or “Work Experience”—then defer to neural models for more fluid text segments. This two-stage approach

balances the precision of handcrafted rules with the flexibility of statistical learning, reducing the annotation burden without sacrificing reliability.

Evaluating resume-analysis systems requires more than raw extraction accuracy. Standard metrics include precision and recall for entity recognition,

and ranking correlation coefficients—like Kendall’s Tau—for ordering quality. Shared benchmarks, such as the RESUME-NER dataset, facilitate head-

to-head comparisons, while user-study feedback captures recruiter satisfaction, transparency, and overall workflow impact.

As hiring processes become increasingly global, resume parsers must handle multiple languages and formatting conventions. Multilingual transformer

models—such as mBERT and XLM-R—trained on parallel corpora have demonstrated strong performance on resumes in Spanish, Mandarin, and

Arabic. Locale-aware adjustments for date formats, currencies, and naming conventions further ensure consistent accuracy across diverse candidate

pools.

Beyond batch processing, a new generation of interactive tools provides real-time feedback to applicants as they compose or upload resumes. Platforms

like ResumeCoach and SkillSyncer employ AI to flag missing keywords, suggest stronger phrasing, and correct formatting issues on the fly. Studies

show that this instant guidance not only elevates the quality of submissions but also educates candidates. howtohighlight their most relevant

experiences.

RESULT

Recent research in AI-driven resume analysis focuses on improving the recruitment process through natural language processing (NLP) and machine

learning. One paper presents an AI resume analyzer that processes resumes to provide personalized job recommendations by continuously analyzing

data for improved job matching. Another study, titled resume AI, uses advanced techniques like BERT and TF-IDF embeddings to extract key

information and rank resumes based on relevance to specific job profiles, offering multi-model intelligence for better recommendations.

Additional research highlights the integration of NLP models with job portals, enabling automatic resume parsing, ranking, and feedback generation for

applicants — suggesting skill upgrades to enhance employability. A study employing Latent Dirichlet Allocation (LDA) and SpaCy for entity detection

introduces a method of rating resumes by extracting relevant topics and assigning probabilities that reflect alignment with job requirements. Lastly,

researchers have also begun addressing ethical concerns in AI recruitment tools. The FAIRE benchmark was introduced to assess racial and gender

biases in large language models used for resume screening, revealing disparities in AI evaluations and emphasizing the need for fairness-aware

recruitment systems.

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 1404-1407 1407

CONCLUSION

The Python-based Resume Analyzer and Recommender System fulfills a vital role in today’s hiring environment by transforming the traditionally time-

consuming task of resume review into an efficient, data-driven process. By combining cutting-edge Natural Language Processing, machine learning

algorithms, and intuitive data visualizations, our solution accelerates candidate screening while boosting accuracy. Key components—Pyresparser for

parsing, MySQL for secure and scalable data storage, and Streamlit for an accessible web interface—work in concert to deliver a robust platform that

serves both recruiters and applicants.

 From the outset, we emphasized a thoughtful design that balances usability with technical depth. The frontend interface was crafted to guide users

smoothly through uploading resumes, setting evaluation parameters, and reviewing results. Behind the scenes, our backend processes unravel complex

resume structures, extract meaningful details, and compute relevance scores aligned with user-defined criteria. The underlying database schema was

optimized for rapid data retrieval, and we wove in comprehensive security controls—such as encrypted communication channels and role-based

access—to safeguard sensitive personal information.

Our holistic methodology covered every stage of deployment: configuring cloud servers, installing dependencies, defining and initializing database

tables, and finally, rolling out the live application with SSL-secured endpoints. Throughout development, we continuously measured performance,

tuning query speeds and load-balancing across multiple instances to ensure the system scales seamlessly under heavy demand.

This project significantly reduces the manual burden of sifting through large applicant pools. By automating routine evaluations, it helps eliminate

human bias and highlights top candidates with precision. Recruiters can now review high-quality candidate summaries at a glance, freeing up time to

focus on deeper interviews and strategic hiring decisions. Job seekers, in turn, benefit from transparent scoring and clear feedback on how well their

resumes align with job requirements.

Importantly, the system is designed to grow and adapt alongside evolving recruitment trends. Modular components allow for easy integration of new

parsing rules, machine learning models, or visualization widgets. Future iterations might incorporate real-time resume feedback tools, advanced fairness

constraints, or multilingual parsing capabilities—enhancements driven by user feedback and emerging research.

In essence, the Resume Analyzer and Recommender System Using Python showcases how AI and machine learning can revolutionize human resources

workflows. It not only expedites resume screening but also empowers recruiters with evidence-based insights, ushering in smarter, more equitable

hiring practices. As organizations seek greater agility in talent acquisition, this project lays the groundwork for next-generation HR solutions that are

both intelligent and user-centric.

REFERENCES :

1. "Natural Language Processing with Python" by Steven Bird, Ewan Klein, and Edward Loper

2. "Streamlit Documentation"

3. "MySQL 8.0 Reference Manual"

4. "Python for Data Analysis: Data Wrangling with Pandas, and NumPy" by Wes McKinney

5. "Building Machine Learning Powered Applications" by Emmanuel

6. "PyMuPDF and pdfminer libraries – Official Python package index (PyPI)”

7. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems" by

Aurélien win.

