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ABSTRACT : 

A key concept in the study of special functions and hypergeometric series, the Pochhammer symbol is traditionally defined for integers and, via the gamma function, 

real or complex indices. With significant ramifications for fractional calculus, series summations, and applications in mathematical physics, the idea has recently 

been expanded to fractional and generalized orders. The definitions, characteristics, and applications of fractional Pochhammer symbols to fractional differential 

equations, generalized hypergeometric functions, and analytic expansions in the applied sciences are all covered in detail in this paper. 
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1. Introduction 

The Pochhammer symbol, denoted (𝑎)𝑛 and classically defined for integer 𝑛, appears throughout combinatorics, the theory of special functions, and 

solutions to hypergeometric-type differential equations [1][2]. Through its close association with the gamma function and factorials, the Pochhammer 

symbol is central to many summation formulas and series expansions. However, with the increasing importance of fractional difference and differential 

equations [3], and fractional versions of classic special functions [4], there is a natural mathematical and physical motivation to generalize the 

Pochhammer symbol to non-integer (fractional) values. 

The fractional Pochhammer symbol opens doors to wider analytic continuations, new classes of hypergeometric functions, and the analytic machinery 

necessary for advanced applications in fractional calculus, quantum physics, and statistical mechanics [5][6]. This research aims to systematically present 

the definitions and properties of fractional Pochhammer symbols, and to showcase selected areas where their generalization is not only natural but 

essential. 

2. Classical Pochhammer Symbol: Definition and Properties 

The classical (rising) Pochhammer symbol is defined as: 

(𝑎)𝑛 = 𝑎(𝑎 + 1). . . (𝑎 + 𝑛 − 1) (𝑛 ∈ ℕ, 𝑛 ≥ 1), (𝑎)0 = 1 

Alternatively, via the gamma function: 

(𝑎)𝑛 =
Γ(𝑎 + 𝑛)

Γ(𝑎)
 

This extension instantly allows 𝑎 and 𝑛 to be real or complex, provided 𝑎 is not a non-positive integer [1][2]. 

Key properties: 

• Recurrence: (𝑎)𝑛 = (𝑎)𝑛−1(𝑎 + 𝑛 − 1) 

• Relation to factorial: (1)𝑛 = 𝑛! 

• Relation to binomial coefficients: (𝑎
𝑛

) =
(𝑎)𝑛

𝑛!
 

 

3. Fractional and Generalized Pochhammer Symbols 

3.1 Definitions 

Motivated by analytic continuation, the fractional Pochhammer symbol, for non-integer 𝛼 > 0, is defined as: 
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(𝑎)𝛼: =
Γ(𝑎 + 𝛼)

Γ(𝑎)
 

 

where Γ(𝑧) denotes Euler’s gamma function and 𝛼 may be any positive real (or complex) number, provided denominator is nonzero [3][4][7]. 

When 𝛼 ∈ ℕ, this definition recovers the classical integer case. 

3.2 Properties 

• Recurrence relations:(𝑎 + 1)𝛼 = (𝑎 + 1)(𝑎 + 2) ⋯ (𝑎 + 𝛼) =
Γ(𝑎+𝛼+1)

Γ(𝑎+1)
 

• Relation to generalized factorial notation:(𝑎)𝛼 = ∏  𝛼−1
𝑗=0 (𝑎 + 𝑗)This product is meaningful for integer 𝛼; for fractional orders, only the 

gamma ratio is generally valid. 

• Reduction to binomial theorem:(𝑎)𝛼 = 𝑎(𝑎 + 1) ⋯ (𝑎 + 𝛼 − 1) =
Γ(𝑎+𝛼)

Γ(𝑎)
This expression is analytic in both 𝑎 and 𝛼 except for poles of 

the gamma function. 

• Relation with falling factorial: For integer 𝑛,(𝑎)−𝑛 =
1

(𝑎−𝑛)𝑛
 

4. Fractional Hypergeometric Functions 

4.1 Generalized Hypergeometric Series 

The classical hypergeometric series  𝑝𝐹𝑞 is: 

 𝑝𝐹𝑞 (
𝑎1, … , 𝑎𝑝

𝑏1, … , 𝑏𝑞
; 𝑥) = ∑  

∞

𝑘=0

(𝑎1)𝑘. . . (𝑎𝑝)𝑘

(𝑏1)𝑘. . . (𝑏𝑞)𝑘

𝑥𝑘

𝑘!
 

By replacing 𝑘 with a continuous parameter (or replacing the Pochhammer symbol with its fractional counterpart), one obtains fractional hypergeometric 

series or their analytic continuations [4][6][8]. 

4.2 Fractional Generalizations 

A fractional hypergeometric function can be defined as 

 

 𝑝𝐹𝑞
(𝛼)

(
𝑎1, … , 𝑎𝑝

𝑏1, … , 𝑏𝑞
; 𝑥) : = ∑  

∞

𝑘=0

(𝑎1)𝑘𝛼 … (𝑎𝑝)𝑘𝛼

(𝑏1)𝑘𝛼 … (𝑏𝑞)𝑘𝛼

𝑥𝑘𝛼

Γ(1 + 𝑘𝛼)
 

 

where (𝑎)𝑘𝛼 denotes the fractional Pochhammer symbol with parameter increment 𝛼 [6][9]. This series converges for small |𝑥| under suitable conditions 

on parameters. 

4.3 Connections to Fractional Calculus 

Fractional-order differentiation and integration, such as those defined by the Riemann-Liouville or Caputo operators, have series solutions involving 

fractional generalizations of the Pochhammer symbol. For example, consider the fractional differential equation: 

 

𝐷0+
𝛼 𝑦(𝑥) = 𝜆𝑦(𝑥), 0 < 𝛼 < 1, 

where 𝐷0+
𝛼  is the Riemann-Liouville fractional derivative of order 𝛼, and 𝜆 is a constant. 

The general solution is expressed in terms of the Mittag-Leffler function: 

 

𝑦(𝑥) = 𝑦0𝐸𝛼(𝜆𝑥𝛼) = 𝑦0 ∑  

∞

𝑘=0

(𝜆𝑥𝛼)𝑘

Γ(𝛼𝑘 + 1)
, 

 

which bears a strong resemblance to a generalized hypergeometric expansion, with the denominator essentially a fractional Pochhammer symbol: 

 1

Γ(𝛼𝑘 + 1)
=

1

(Γ(1))𝛼
𝑘  

 

particularly the Riemann-Liouville and Caputo derivatives, often gives rise to solutions involving generalized hypergeometric or Mittag-Leffler functions 

where the fractional Pochhammer symbol appears naturally in their series representations [3][10]. 
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5. Applications 

5.1 Fractional Differential Equations 

Certain linear and nonlinear fractional differential equations (FDEs) possess solutions in terms of fractional hypergeometric or Mittag-Leffler type 

functions. For example, the solution to the linear FDE: 

 

𝐷𝛼𝑦(𝑥) = 𝜆𝑦(𝑥), 𝐷𝛼 is the Riemann-Liouville (or Caputo) derivative 

is given by 

𝑦(𝑥) = 𝐸𝛼(𝜆𝑥𝛼) = ∑  

∞

𝑘=0

(𝜆𝑥𝛼)𝑘

Γ(1 + 𝛼𝑘)
 

 

Here, the denominator involves a generalized factorial, which can be interpreted in terms of the fractional Pochhammer symbol [10][11]. 

Consider a more general linear fractional ordinary differential equation (FODE): 

 

(𝐷0+
𝛼 + 𝑎1𝐷0+

𝛼−1 + ⋯ + 𝑎𝑛𝐷0+
𝛼−𝑛)𝑦(𝑥) = 𝑓(𝑥). 

Applying Laplace transforms and assuming zero initial conditions, the solution often takes the form: 

 

𝑦(𝑥) = ∑  

∞

𝑘=0

𝐹(𝑘)(0)

𝑘!

𝑥𝑘𝛼

Γ(𝑘𝛼 + 1)
, 

 

where 𝐹(𝑘) is the 𝑘-th derivative of the Laplace-transformed forcing function evaluated at 0. 

The coefficients 
1

Γ(𝑘𝛼+1)
 can alternatively be thought of as inverse fractional Pochhammer symbols: 

 1

(1)𝑘𝛼
=

1

Γ(1 + 𝑘𝛼)
 

for the case (𝑎)𝑘𝛼 = Γ(𝑎 + 𝑘𝛼)/Γ(𝑎). 

For nonlinear or variable-coefficient equations, similar series expansions involve (𝑎)𝑘𝛼 for general values of 𝑎 and 𝑘. 

5.2 Series Summation and Analytical Continuation 

Fractional Pochhammer symbols enable analytic continuation of series expansions—especially those arising in mathematical physics and engineering—

where non-integer increments or operator orders arise [4][7]. They provide a uniform notation for generalizing identities and transformations that, in the 

standard setting, depend crucially on integer indices. 

Analytic continuation of hypergeometric series frequently uses the gamma form of the Pochhammer symbol. For non-integer increments, we may express 

the generalized (fractional) hypergeometric function as: 

 

 𝑝𝐹𝑞
(𝛼)

(
𝑎1, … , 𝑎𝑝

𝑏1, … , 𝑏𝑞
; 𝑥) : = ∑  

∞

𝑘=0

(𝑎1)𝑘𝛼 … (𝑎𝑝)𝑘𝛼

(𝑏1)𝑘𝛼 … (𝑏𝑞)𝑘𝛼

𝑥𝑘𝛼

Γ(1 + 𝑘𝛼)
 

 

where 

(𝑎)𝑘𝛼 =
Γ(𝑎 + 𝑘𝛼)

Γ(𝑎)
 

 

The use of the fractional Pochhammer symbol allows for the extension of summation techniques to scenarios with arbitrary step-size, yielding analytic 

constructions in fractional operator theory, combinatorial analysis, and continuum approximations. 

5.3 Statistical Mechanics and Quantum Theory 

Partition functions in models with fractional statistics (e.g., anyons, generalized spin models), and solutions to certain quantum-field theoretic equations, 

frequently require summation formulas with generalized factorials [12][13]. The fractional Pochhammer symbol is an efficient tool in such computations. 

In quantum mechanics and statistical mechanics, the partition function 𝑍 for certain systems can be expressed as: 

 

𝑍 = ∑  

∞

𝑛=0

𝑔(𝑛) 𝑒−𝛽𝐸𝑛

𝑛!
 

 

If fractional energy levels or generalized statistics are considered, the summation may involve generalized factorials and thus fractional Pochhammer 

symbols: 

𝑍 = ∑  

∞

𝑘=0

𝑔(𝑘𝛼) 𝑒−𝛽𝐸𝑘𝛼

Γ(1 + 𝑘𝛼)
= ∑  

∞

𝑘=0

𝑔(𝑘𝛼) 𝑒−𝛽𝐸𝑘𝛼

(1)𝑘𝛼
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where 𝑔(𝑘𝛼) is the degeneracy and 𝐸𝑘𝛼 is the fractional energy. 

 

Fractional Pochhammer symbols generalize statistical weights and allow analytic expressions for systems interpolating between integer quantum numbers 

or in contexts with fractional excitations. 

5.4 Fractional Operator Calculus 

The application of fractional difference and sum operators in discrete analysis leads naturally to series where coefficients are given by fractional 

Pochhammer ratios, extending the usefulness of the symbol to discrete-continuous interpolations [5][6]. 

Discrete fractional calculus (fractional difference operators) employs fractional binomial coefficients, which can be written using the fractional 

Pochhammer symbol: 

Δ𝛼𝑦(𝑛) = ∑  

𝑛

𝑘=0

(
𝛼

𝑘
) (−1)𝑘𝑦(𝑛 − 𝑘) 

with 

(
𝛼

𝑘
) =

(𝛼)𝑘

𝑘!
 

and 

(𝛼)𝑘 =
Γ(𝛼 + 𝑘)

Γ(𝛼)
 

When 𝛼 is non-integer, these coefficients interpolate between classical finite differences and fractional differencing. 

Similarly, fractional sums and products have expansion coefficients expressed in terms of (𝑎)𝑘𝛼, enabling the discrete analysis of fractional order systems. 

Fractional Pochhammer symbols form the backbone of discrete fractional calculus, directly extending Newton’s forward and backward difference 

theorems and facilitating analyses of systems and signals with intrinsic memory or non-integer scaling. 

 

Theorem 1: Analytic Continuation and Multiplicative Property of the Fractional Pochhammer Symbol 

Statement: 

Let 𝑎 ∉ {0, −1, −2, … } and let 𝛼, 𝛽 ∈ ℂ. The fractional Pochhammer symbol satisfies the multiplicative relation 

 

(𝑎)𝛼+𝛽 = (𝑎)𝛼 ⋅ (𝑎 + 𝛼)𝛽 

where 

(𝑎)𝑠: =
Γ(𝑎 + 𝑠)

Γ(𝑎)
 

for arbitrary 𝑠 ∈ ℂ. 

 

Solution/Proof: 

Using the definition, 

(𝑎)𝛼 =
Γ(𝑎 + 𝛼)

Γ(𝑎)
. 

Similarly, 

(𝑎 + 𝛼)𝛽 =
Γ(𝑎 + 𝛼 + 𝛽)

Γ(𝑎 + 𝛼)
. 

Multiplying the two gives: 

(𝑎)𝛼 ⋅ (𝑎 + 𝛼)𝛽 =
Γ(𝑎 + 𝛼)

Γ(𝑎)
⋅

Γ(𝑎 + 𝛼 + 𝛽)

Γ(𝑎 + 𝛼)
=

Γ(𝑎 + 𝛼 + 𝛽)

Γ(𝑎)
, 

 

which matches exactly the definition for (𝑎)𝛼+𝛽 by the gamma function: 

 

(𝑎)𝛼+𝛽 =
Γ(𝑎 + (𝛼 + 𝛽))

Γ(𝑎)
. 

Hence, the identity is proved. 

 

Theorem 2: Fractional Hypergeometric Series with Fractional Pochhammer Symbols 

Statement: 

Let |𝑥| < 1, 𝑎, 𝑏 ∉ ℤ≤0, and 0 < 𝛼 ≤ 1. Consider the fractional hypergeometric series 

 

𝐹𝛼(𝑎, 𝑏; 𝑐; 𝑥) = ∑  

∞

𝑘=0

(𝑎)𝑘𝛼(𝑏)𝑘𝛼

(𝑐)𝑘𝛼 Γ(1 + 𝑘𝛼)
𝑥𝑘𝛼 

 

where (𝑞)𝑘𝛼 = Γ(𝑞 + 𝑘𝛼)/Γ(𝑞). Then 𝐹𝛼 converges for |𝑥| < 1, and when 𝛼 = 1, it coincides with the classical Gaussian hypergeometric function 
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 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = ∑  

∞

𝑘=0

(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘 𝑘!
𝑥𝑘 . 

Solution/Proof: 

Convergence: 

First, for |𝑥| < 1 and bounded parameters, the growth of Γ(1 + 𝑘𝛼) in the denominator (as 𝑘 → ∞) dominates the numerator for fixed 𝑎, 𝑏, 𝑐, ensuring 

convergence, by the root or ratio test: 

 

lim
𝑘→∞

  |
𝑥(𝑘+1)𝛼

𝑥𝑘𝛼
⋅

Γ(𝑎 + (𝑘 + 1)𝛼)

Γ(𝑎 + 𝑘𝛼)

Γ(𝑏 + (𝑘 + 1)𝛼)

Γ(𝑏 + 𝑘𝛼)

Γ(𝑐 + 𝑘𝛼)

Γ(𝑐 + (𝑘 + 1)𝛼)
⋅

Γ(1 + 𝑘𝛼)

Γ(1 + (𝑘 + 1)𝛼)
| 

 

As 𝑘 → ∞, the ratio of gamma functions can be estimated using Stirling’s approximation: 

 

Γ(𝑧 + 𝑠)/Γ(𝑧) ∼ (𝑧)𝑠 for large 𝑧 

showing that the terms decay and the series converges for |𝑥| < 1. 

Reduction to classical case: 

 

When 𝛼 = 1, we have 

(𝑎)𝑘𝛼 = (𝑎)𝑘 =
Γ(𝑎 + 𝑘)

Γ(𝑎)
, Γ(1 + 𝑘𝛼) = Γ(1 + 𝑘) = 𝑘! 

Thus, 

 

𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = ∑  

∞

𝑘=0

(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘 𝑘!
𝑥𝑘 =  2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) 

which is the classical hypergeometric function. 

Key notes: 

• The analytic generalization of hypergeometric-type series is supported by this theorem, which makes fractional Pochhammer notation useful 

for studying fractional differential and difference equations. 

• The fractional Pochhammer symbol allows for the extension of several characteristics of classical hypergeometric functions to their fractional 

equivalents, such as recursion and contiguous relations. 

6. Open Problems and Research Prospects 

Although fractional Pochhammer symbols' characteristics and analytical tendencies are largely recognized, there are still a number of unresolved issues: 

Analytic continuation and asymptotic expansions of generalized hypergeometric functions with fractional steps are studied. 

• The addition of connections with fractional Appell functions and multivariate settings.  

• Thorough development of probability distributions and fractional combinatorics.  

• Additional investigation on applications in variable-order fractional partial differential equations. 

7. Conclusion 

The fractional Pochhammer symbol emerges as a natural and powerful generalization of classical factorial-based notation, seamlessly extending the reach 

of special function theory, series expansions, and fractional calculus. Its applicability to hypergeometric representations, analytic continuation, and the 

solutions of fractional differential equations exemplifies its foundational role in modern applied mathematics. As the interaction between classical analysis 

and fractional operators intensifies across research disciplines, the systematic study and application of the fractional Pochhammer symbol promises to 

deepen our understanding of both analytic theory and its practical implementations. 
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