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ABSTRACT: 

New analytical tools for studying fractional calculus and related mathematical structures are made possible by the extension of the classical Gamma function to the 

fractional domain. In this paper, we explore the features of fractional Gamma functions, discuss their inherent relationships to fractional differential and integral 

operators, and thoroughly study their construction. We discuss recent developments in the subject, including Mellin transforms, Mittag-Leffler functions, and the 

application of fractional Gamma functions to fractional differential equation solutions. In order to illustrate their usefulness in mathematical physics and engineering, 

a number of applications and examples are provided. 
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1. Introduction 

A significant special function in mathematics, the gamma function Γ(z) extends the factorial function to complex and real parameters. It was first presented 

by Euler in the 18th century and is a fundamental concept in many applied and mathematical domains, from differential equations to probability theory 

and beyond [1,2]. Fractional analogues of classical special functions, such as fractional gamma functions, have been developed and studied in recent 

decades due to the growing interest in fractional calculus, which is the study of derivatives and integrals of arbitrary (non-integer) order [3,4]. 

Fractional calculus and Gamma functions interact profoundly. For example, the Gamma function is intrinsic to the definition of the kernel of the Riemann–

Liouville and Caputo fractional operators [5,6]. Furthermore, the analytical formulation of solutions to fractional order differential equations easily leads 

to generalized Gamma and Mittag-Leffler functions [7]. The characteristics and applications of fractional Gamma functions are still being studied despite 

their growing importance [8,9]. 

This paper aims to elucidate the construction, properties, and applications of fractional Gamma functions, with particular emphasis on their connection 

to fractional calculus. We provide a self-contained account of the relevant mathematical groundwork and demonstrate the utility of these functions in 

several applied contexts. 

2. Facts about Classical Gamma Function and Fractional Calculus 

The Gamma function is classically defined for ℜ(𝑧) > 0 by the improper integral 

Γ(𝑧) = ∫  
∞

0

𝑡𝑧−1𝑒−𝑡𝑑𝑡, 

which exhibits various important properties, such as the recursive relation 

Γ(𝑧 + 1) = 𝑧Γ(𝑧) 

and the reflection formula associated with complex analysis [2,10]. 

Some standard results of the Gamma function are as follows: 
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On the other hand, fractional calculus generalizes the concept of integer-order differentiation and integration to arbitrary real or complex orders. The 

commonly used Riemann–Liouville fractional integral of order 𝛼 > 0 is defined as [5]: 

(𝐼𝛼𝑓)(𝑥) =
1

Γ(𝛼)
∫  

𝑥

0

(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡. 

Similarly, one may define fractional derivatives via analytic continuation. The appearance of the Gamma function in these definitions is neither 

incidental nor superficial—it is closely related to the analytic structure and inversion formulae of fractional calculus [3]. 

3. Fractional Gamma Functions: Definitions and Generalizations 

Several approaches to defining fractional Gamma functions have been proposed, mainly driven by analytic continuation, fractional difference 

equations, and generalizations inspired by fractional operators. 

3.1. Generalized Fractional Gamma Function 

A principal generalization is due to M.A. Al-Mekhlafi et al. [8], who define a fractional Gamma function, denoted Γ𝛼(𝑧), as 

Γ𝛼(𝑧) = ∫  
∞

0

𝑡𝑧−1𝑒−𝑡
𝛼
𝑑𝑡,ℜ(𝑧) > 0, ℜ(𝛼) > 0. 

This representation recovers the standard Gamma function when 𝛼 = 1, i.e., Γ1(𝑧) = Γ(𝑧). 

3.2. Properties 

For 𝛼 ≠ 1, Γ𝛼(𝑧) loses some properties of the standard Gamma function, such as the simple recurrence relation. However, it satisfies the following 

scaling property [8,11]: 

Γ𝛼(𝑧) =
1

𝛼
Γ (

𝑧

𝛼
). 

This can be shown via the substitution 𝑠 = 𝑡𝛼 ⇒ 𝑡 = 𝑠1/𝛼, 𝑑𝑡 =
1

𝛼
𝑠1/𝛼−1𝑑𝑠. 

4. Fractional Calculus and the Role of Generalized Gamma Functions 

4.1. Connection via Kernel Functions 

The kernel of the classical Riemann–Liouville integral, (𝑥 − 𝑡)𝛼−1/Γ(𝛼), is directly related to the Gamma function. When considering generalized 

kernels for instance, those involving stretched exponentials or Mittag-Leffler functions fractional Gamma functions naturally encode the scaling and 

normalization necessary for the coherent definition of fractional operators [7]. 

4.2. Fractional Difference and q-Gamma Functions 

Some efforts in discrete fractional calculus involve the fractional difference operator and its relationship to the q-Gamma function, a q-analogue 

generalization [12]. The q-Gamma function, Γ𝑞(𝑧), serves as the fundamental object in discrete settings, and its fractional generalizations aid in the 

study of discrete processes with memory. 

4.3. Mellin Transform and Fractional Integrals 

The Mellin transform connects the fractional Gamma function with a broad class of functions: 

ℳ[𝑒−𝑡
𝛼
](𝑧) = ∫  

∞

0

𝑡𝑧−1𝑒−𝑡
𝛼
𝑑𝑡 = Γ𝛼(𝑧) 

 

thus establishing a bridge between integral transforms used in solving fractional differential equations and fractional Gamma structures [13]. 

 Mittag-Leffer introduced the one-parameter function and it is defined as follows: 
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Or 

Mittag-Leffer Functions of Two-Parameter 

R.P. Agarwal and Erdelyi introduced the two-parameter Mittag-Leffer functions during 1953-1954. This function is defined as follows: 

One Parameter Mittag-Leffer function can be obtain by taking   , i.e. 

 

 

 

 

Exponential function (  plays an important role in conventional calculus i.e. integer order calculus equations. Similarly, the Mittag-

Leffer functions plays important role in the fractional order calculus. 

 

 

Riemann-Liouville 

In this approach, the following is the definition of fractional derivatives: 

,       

 

where  is real number and  is an integer.  

 

 

5. Applications and Examples 

5.1. Solution of Fractional Differential Equations 

The Mittag-Leffler function, defined as 

𝐸𝛼(𝑧) =∑  

∞

𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 1)
, 

is a direct generalization of the exponential function wherein the Gamma function in the denominator is replaced by a 𝛼-dependent argument. The 

solution to the simplest Caputo-type fractional differential equation, 

𝐷𝑡
𝛼𝑦(𝑡) = −𝜆𝑦(𝑡), 𝑦(0) = 𝑦0, 

 

is given by 

𝑦(𝑡) = 𝑦0𝐸𝛼(−𝜆𝑡
𝛼), 

demonstrating the central role fractional Gamma functions play in the structure of Mittag-Leffler solutions [7]. 
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Example 1: To find the fractional derivative of  of order , where     . 

We are applying the formula.So we get the following: 

 

 
Now using the definition of Mittag-Leffer functions, we get the following result 

. 

 

 

Example 2: To find the fractional integral of exponential function i.e. 

 

 

Apply the Riemann-Liouville approach for fractional integral (by equation 4), we have 

 

 

Taking the substitution 

 

 

 

 
 

 

 

 
 in which incomplete Gamma function and the relation between Mittag- Leffer function and incomplete Gamma function are defined. 

So, the above expression can be written as 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Above are  the some examples to understand the concept of fractional calculus.

5.2. Anomalous Relaxation and Physics 

In physics, fractional Gamma functions emerge in the time-domain solutions of anomalous diffusion models, viscoelasticity, and non-exponential 

relaxation phenomena. The kernels involving Γ𝛼(𝑧) provide precise normalization and scaling for models with non-local temporal memory [14,15]. 

5.3. Probability and Statistics 

Generalized Gamma distributions, with densities 

𝑓(𝑡) =
𝛽𝑡𝛼−1𝑒−(𝑡/𝜆)

𝛽

𝜆𝛼Γ(𝛼/𝛽)
, 𝑡 > 0, 𝛼, 𝛽, 𝜆 > 0, 

are used to model a variety of statistical data, notably in survival analysis and reliability engineering. The normalization factor involves the Gamma 

function generalized by the parameter 𝛽, which in turn links to the fractional gamma family [16]. 
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6. Discussion 

The theoretical foundations and real-world calculations of fractional calculus are closely related to the study of fractional Gamma functions. These 

generalized functions are crucial links between the quickly developing field of fractional differential equations and classical analysis.  

Although a large portion of special function theory is based on the classical Gamma function, its fractional generalizations allow analytical methods to 

be used to situations with memory, non-locality, and anomalous scaling rules. Additional research directions include numerical techniques utilizing the 

fractional Gamma and related functions, spectral theory, and the systematic study of generalized fractional operator semigroups. 

7. Conclusion 

Fractional Gamma functions generalize the classical Gamma function and extend its reach into the domain of fractional calculus. Through their various 

representations, properties, and applications, they are key components in developing both foundational theory and applied methodologies for fractional 

integral and differential equations. Ongoing research continues to deepen understanding, uncovering further connections and applications across 

mathematics and the physical sciences. 
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