
International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025) Page – 16402-16406

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Apache Kafka: A Distributed Event Streaming Platform

Sahil Gupta, Dr.Akhil Pandey ,Dr. Vishal Shrivastava, Dr. Devesh Kumar Bandil

Department of Computer Science & Engineering, Student of Computer Science & Engineering, Arya College of Engineering and IT, Kukas, Jaipur

ABSTRACT :

Apache Kafka is a distributed streaming system for enabling real-time data streams. Apache Kafka originally emerged at LinkedIn and was donated later to the

Apache Software Foundation. Apache Kafka has now become the cornerstone of data-driven architecture. We are referring to architecture, components,

applications, advantages of Kafka, and what makes Apache Kafka stand apart from other data stream technologies here in this paper.

This paper looks at the complex architecture of Apache Kafka, its producers, consumers, and brokers, and what role is played by Zookeeper. This paper also

states the most significant points that contribute to the popularity of Kafka, its applications, and how it differs from other streaming platforms. With this in-depth

research, readers will be acquainted with why Apache Kafka is so much a part of the age of real-time data processing

KEYWORDS :

• Apache Kafka,

• Event Streaming,

• Real-Time Data,

• Distributed System

• Big Data

INTRODUCTION

Apache Kafka is a highly available and scalable platform to develop real-time data streams as well as streaming applications. It has revolutionized

data processing and analytics into a messaging system that is efficient and fast and is what businesses require today. It was originally developed as log

processing at LinkedIn but has now become a mature product that industries utilize to process large amounts of streaming data.

In today's data-driven world, organizations produce enormous amounts of data from numerous sources such as web applications, sensors, transactional

systems, and IoT devices. The data has to be captured, stored, and processed in real-time in a manner that keeps the organization competitive. Kafka's

publish-subscribe model makes it most suitable to process the streams of data in real-time continuously with assured data delivery and processing.

Kafka is also very robust in dealing with high levels of use case loads like real-time streaming, fraud detection, predictive analytics, and data

integration. Its compatibility with other technologies like Apache Spark, Hadoop, and Elasticsearch makes Kafka the hub of data infrastructure today.

1.1.1 Background and Motivation

The advent of big data and the need to process data in real time gave birth to Apache Kafka. The traditional messaging systems were not able

to cope with the growing needs of modern applications, which required fault -tolerant and scalable data pipelines.

Kafka emerged to meet this need with a high-throughput messaging system that could consume massive data streams.

The motivation for Kafka's development was to develop a single platform that could handle log data gathering, real-time processing, and stream

processing. LinkedIn, where Kafka was born, was facing the challenge of processing and managing huge amounts of user activity

data. The design of Kafka addressed these challenges in the way of low-latency horizontally scalable messaging system.

1.1.2 The Birth of Kafka

Kafka was initially developed at LinkedIn in 2011 by Jay Kreps, Neha Narkhede, and Jun Rao to solve the company's data pipeline problem. LinkedIn

needed a system that could handle high-throughput data streams and offer guaranteed data delivery at that time. Kafka was designed to handle real-time

data streams with fault-tolerant and scalable architecture

Following its successful adoption on LinkedIn, Kafka was open-sourced and merged into the Apache Software Foundation. It has since emerged

as one of the most popular event streaming platforms employed by businesses worldwide to develop data-intensive applications.

International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025) Page – 16402-16406 16403

1.1.3 Objectives of the Study

The major objectives of Apache Kafka are:

• High Throughput: For processing large amounts of data with low latencies.

• Scalability: To facilitate data partitioning for horizontal scaling among brokers.

• Fault Tolerance: For the purpose of guaranteeing data availability and persistence even during broker failure.

• Real-time Processing: For enabling stream processing for real-time data analysis.

• Data Integration: For smooth integration with diverse data consumers and sources.

1.1.4 Key Features

Apache Kafka is full of robust features that make it an event streaming and data processing application of choice. Some of the key features include:

1.1.5 Publish-Subscribe Model:

 Kafka publish-subscribe model is designed to enable efficient publish and subscribe across many producers and consumers in real time.

1.1.6 Durability and Reliability:

 The data is retained by configurable retention policies and replicated across brokers for reliability..

1.1.7 Scalability:

 Kafka supports horizontal scaling with topic partitioning, which enables concurrent processing and increased throughput.

1.1.8 Stream Processing:

 Kafka Streams API and ksqlDB provide robust features to build real-time applications and perform advanced transformations on data

streams

1.1.9 Integration Capabilities:

 Kafka connect supports seamless integration with external data systems such as databases, data lakes, and messaging systems.

1.1.10 Architecture Overview:

 Kafka architecture has four primary components:

Producer:

A Producer is utilized to publish data to Kafka topics. Producers send data records to specific topics, usually from application logs, sensor data, or

transactional systems. Kafka producers are designed for high throughput and low latency in data delivery.

 Consumer:

A Consumer reads from Kafka topics. Consumers may subscribe to one topic or many topics and read records in real-time or batch mode.

Consumer groups are also supported by Kafka, where multiple consumers may read from different partitions of a topic, providing load balancing

and scalability.

 Broker

A Broker is a data store and manager server for records. Kafka clusters can be made up of multiple brokers, and data is spread among them.

Brokers handle requests from producers, consumers, and other brokers to efficiently handle data streams.

 Zookeeper

Zookeeper is a coordination service that controls cluster metadata, leader election, and configuration data. It helps brokers and

consumers discover topic configurations and cluster topology

International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025) Page – 16402-16406 16404

Use Cases:

Apache Kafka finds wide usage across various sectors for a variety of purposes. The use cases listed below indicate how the capabilities of Kafka

are best leveraged

1.1.11 Log Aggregation

Logs from applications sourced from various places are made centralized by Kafka so that organizations are able to analyze system performance,

debug faults, and perform audits more effectively.

1.1.12 Real Time Analytics

Companies use Kafka to process data streams in real-time to gain real-time insights into customer behavior, sales trends, and operational efficiency

1.1.13 Data Pipelines

Kafka enables building scalable and fault-tolerant data pipelines for moving data efficiently between applications and systems

1.1.14 Event Sourcing

Kafka is a source of truth as it keeps a record of a sequence of events, which is necessary to build stateful applications and maintain audit logs.

1.1.15 Fraud Detection

Financial services utilize Kafka for real-time fraud detection by analyzing transactional streams of data and raising alarms in real time.

.

1.1.16 IOT Data Processing

Kafka handles very large volumes of sensor data from IoT devices, allowing real-time monitoring, predictive maintenance, and automated response

1.1.17 Recommendation Systems

Online stores use Kafka to provide recommendations based on real-time consumer behavior

STREAM PROCESSING

Apache Kafka stream processing is real-time processing of continuous streams of data as it is being created. Compared to traditional batch processing

systems that run data at a set interval, stream processing provides for immediate analysis, reformatting, and aggregation of data as it traverses the

system

Kafka provides two principal tools for stream processing:

International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025) Page – 16402-16406 16405

Kafka Stream API’s

 A heavy-duty library by which developers are able to implement applications that ingest data streams either in Java or Scala. Kafka

Streams offers an extensive list of operations like data filtering, transforming, aggregating, and joining data from many topics.

 Stateful operations also become possible due to local storage for storing states of intermediate processing.

kSqlDB

 A SQL-like abstraction layer for stream processing that allows users to query streaming data using straightforward SQL statements.

This simplifies it for users who are not skilled programmers, accelerating data-driven application development

Kafka stream processing allows companies to react to data in real-time as it happens, speeding up and enhancing data-driven decision-making.

With Kafka Streams or ksqlDB integrated into their infrastructure, companies can create intelligent, event-driven applications that allow them to

provide real-time insights..

Comparison With Other Messaging Systems:

Apache Kafka stands out from traditional messaging systems due to its architectural advantages and feature set. A comparison with other systems like
RabbitMQ and Apache Pulsar highlights Kafka’s strengths

Feature Kafka RabbitMQ Pulsar

Message

Mode

Publish-

Subscribe,

Event

Streaming

Message

Queueing

Publish-

Subscribe,

Event

Streaming

Scalability

Highly

Scalable

Limited

Horizontal

Scaling

Horizontally

Scalable

Stream

Processing

Kafka

Streams,

ksqlDB

No Native

Support

Pulsar

Functions

Replication

Multi-

Cluster

Replication

Limited

Support

 -

International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025) Page – 16402-16406 16406

Insallation

Installation on Windows

1. Download Kafka: Download the current Kafka binary from the Apache Kafka official website.

2. Install Java: Install Java (JDK 8 or higher) and configure JAVA_HOME

3. Unzip Kafka: Unzip the Kafka binaries into your destination directory.

4. Begin Zookeeper:

5. Start Kafka Server:

6. Create a Topic:

7. Begin Producer and Consumer

Installation of Mac/Linux

1. Download Kafka:

2. Extract Kafka:

3. Begin Zookeeper:

4. Begin Kafka:

5. Create a Topic:

6. Begin Producer and Consumer:

Kafka is now successfully installed and running on your system

Challenges & Limitations

 Operational Complexity: Requires specialized expertise to install and operate efficiently.

 Ordering of Messages Guarantees: Absolute ordering between partitions is likely to be difficult to guarantee.

 Storage Cost: Storage of high-throughput data streams is likely to be expensive.

Conclusions

Apache Kafka is a scalable event streaming platform that has revolutionized the processing of data in contemporary distributed systems. Scalability,

dependability, and adaptability make it the preferred choice for top organizations handling loads of real-time data. As much as it presents operational

issues, continuous progress and maintenance by communities render it popular. Continuous expansion of security, management, and analytics will
continue to maintain Kafka at the top of the data landscape.

REFERENCES :

1. Apache Kafka Documentation.

2. Boyer, R., & Mehta, G. (2021). Kafka: The Definitive Guide. O'Reilly Media

3. Sharma, S. (2020). Real-Time Data Streaming with Apache Kafka. Packt Publishing.

4. Gollapudi, S. (2019). Mastering Kafka Streams and ksqlDB. Packt Publishing

5. Palino, T. (2019). Kafka in Action. Manning Publications

