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ABSTRACT-  

In the era of rapid urbanization, smart city development necessitates efficient management and analysis of spatial infrastructure data. This research leverages 

OpenStreetMap (OSM) data to perform spatiotemporal data mining and geo-visual analysis for the city of San Jose. The study outlines a structured preprocessing 

pipeline to extract and clean relevant urban attributes such as buildings, healthcare, roads, and land use. Using Python and geospatial libraries including Pandas, 

GeoPandas, and Folium, we conduct exploratory data analysis (EDA) and generate interactive visual maps to uncover spatial patterns. The results highlight 

infrastructure distribution and potential gaps, contributing to data-driven urban planning. This paper demonstrates how open-source geographic data, when 

processed and visualized correctly, can provide valuable insights into city planning and smart infrastructure development. 

Index Terms- Geospatial analytics, OpenStreetMap (OSM), Smart cities, Spatial data mining, Urban mobility, Sustainable development. 

1. Introduction 

In an increasingly urbanized world, smart cities have become a transformative vision for sustainable development. According to the United Nations, over 

68% of the world's population is expected to live in urban areas by 2050. This rapid urbanization calls for intelligent solutions that leverage real-time 

data to manage resources, optimize infrastructure, and improve the quality of life. A smart city integrates information and communication technologies 

(ICT), artificial intelligence, and data analytics to enhance the efficiency of services such as transportation, healthcare, water supply, and energy. 

One of the most significant enablers of smart cities is spatiotemporal data mining—the process of extracting patterns from spatial and temporal datasets. 

This includes location-tagged data, satellite imagery, GIS maps, and IoT sensor feeds. Spatiotemporal data plays a critical role in tracking urban growth, 

traffic behavior, pollution levels, and service distribution. 

 “You can’t manage what you don’t measure.” — This principle lies at the heart of smart city analytics. 

1.1 Background & Motivation 

Traditional urban planning often relies on outdated data and static blueprints, which fail to capture the complexities of today’s fast-growing cities. In 

contrast, modern urbanism increasingly depends on real-time, spatially-resolved data to monitor, manage, and optimize city operations. The integration 

of such data allows for enhanced decision-making in areas like transportation, healthcare accessibility, infrastructure development, and disaster 

resilience. 

To tackle these urban challenges, global efforts are underway to digitize and democratize access to geospatial information. One such initiative is India’s 

Smart Cities Mission — launched in 2015 — which aims to create 100 citizen-friendly and sustainable urban centers by utilizing ICT (Information 

and Communication Technologies) for smarter governance and urban management. 

A similar movement is seen in cities like San Jose, California, where urban innovation and open data platforms are being leveraged to make the city 

more livable, responsive, and efficient. San Jose, with its strong presence in Silicon Valley, is not only an economic powerhouse but also a testbed for 

data-driven urban development. 

1.2 The Role of OpenStreetMap (OSM) in Smart Urbanism 

OpenStreetMap (OSM) is an open-source, crowd-sourced platform that provides freely available geospatial data. Unlike proprietary GIS datasets, 

OSM's community-driven model enables continual updates and inclusion of ground-level insights by volunteers across the globe. 

The platform contains detailed tags on features like: 

http://www.ijrpr.com/
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• Buildings (residential, commercial, healthcare), 

• Highways and roads (type, oneway status, surface), 

• Land use (natural, built-up, forest, water), 

• Amenities (schools, hospitals, shops, toilets), 

• Transportation networks, and more. 

This research leverages OSM data for San Jose, using it as a case study to show how such openly available datasets can be transformed into actionable 

insights for urban planning and smart city design. 

1.3 Research Problem & Gap 

Despite the growing availability of geospatial data, urban analysis often remains fragmented. Many datasets: 

• Lack uniform schemas, making integration difficult. 

• Are static, with slow update cycles. 

• Have limited public accessibility due to commercial licensing. 

Moreover, traditional city planning does not fully utilize the multidimensional richness of geospatial data — particularly when it comes to analyzing 

feature interrelationships (e.g., healthcare proximity to residential clusters, or traffic network density in commercial zones). 

There is thus a need for a comprehensive, automated approach to: 

• Extract, clean, and visualize OSM data, 

• Conduct exploratory spatial analysis, 

• And identify planning insights grounded in empirical data. 

1.4 Objectives of the Study  

This study aims to develop an end-to-end framework to extract, preprocess, and analyze OSM data for San Jose, with the following objectives: 

1. Data Acquisition: Download and convert OSM data into tabular form using tools like Overpass API and OSMnx. 

2. Data Cleaning & Transformation: Handle missing values, merge relevant tags, and format data into a usable form using Python and 

GeoPandas. 

3. Thematic Exploratory Data Analysis (EDA): 

o Analyze building typologies, spatial distribution, and usage (e.g., residential, hospitals). 

o Examine healthcare infrastructure such as bed counts, facility levels, and operators. 

o Study road networks, oneway configurations, and highway classifications. 

o Investigate water access, natural resources, and infrastructure elements. 

4. Mapping & Visualization: Generate thematic maps and spatial plots for better interpretation and planning support. 

5. Contextualize Findings: Provide interpretations aligned with urban planning goals like zoning, healthcare equity, and transportation 

accessibility. 

1.5 Real-World Example: San Jose’s Urban Innovation 

San Jose is among the most technologically forward cities in the United States. As part of its "Smart City Vision", it has implemented several digital 

transformation projects, including: 

• Smart traffic signals and predictive congestion models. 

• Open data portals for citizen engagement. 

• IoT-powered environmental monitoring. 

By applying our OSM-based analysis framework to this context, we aim to demonstrate how open geospatial data can complement these innovations by 

providing granular, up-to-date insights at scale. 
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1.6 Structure of the Paper 

The remainder of this paper is structured as follows: 

• Section 2 outlines the methodology, including tools, data sources, and preprocessing steps. 

• Section 3 presents detailed EDA on key thematic areas with visual insights. 

• Section 4 discusses key findings, interpretations, and their urban relevance. 

• Section 5 concludes with limitations and directions for future work. 

• References and Appendices follow to provide supporting documentation. 

 

Figure Placeholder: San Jose OSM Building Density Map 

2. Methodology and Data Preprocessing  

2.1 Overview of the Methodological Framework 

The analytical framework employed in this research is designed to support large-scale geospatial data acquisition, transformation, and analysis with a 

strong emphasis on accuracy, reproducibility, and scalability. Since OpenStreetMap (OSM) data is inherently complex and varied across regions, our 

methodology is tailored to account for both structured and semi-structured spatial data. 

The methodological pipeline comprises the following phases: 

1. Spatial Data Acquisition using APIs and Python-based libraries. 

2. Data Wrangling and Cleaning to standardize and remove inconsistencies. 

3. Preprocessing and Feature Engineering, including geometric and attribute filtering. 

4. Exploratory Data Analysis (EDA) to uncover underlying spatial patterns and feature distributions. 

5. Visualization and Spatial Representation for thematic understanding. 

A detailed schematic diagram illustrating the data flow and processing stages is presented below. 

 

[Figure 1: Research Methodology Flowchart – From OSM Data Extraction to Map-based Analysis] 
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2.2 Data Source: OpenStreetMap (OSM) 

OpenStreetMap (OSM) serves as the foundational data source for this study. OSM is a global collaborative project that allows users to contribute and 

edit geographic data. Its open licensing model (Open Database License - ODbL) makes it a powerful resource for urban studies, city planning, and smart 

infrastructure research. Unlike proprietary datasets that are costly or restrictive, OSM offers full transparency into both spatial geometry (e.g., points, 

lines, polygons) and thematic tags (attributes such as building, highway, amenity, healthcare, etc.). 

For the city of San Jose, California, OSM data was chosen because: 

• San Jose is a well-documented urban region in OSM with a diverse mix of urban infrastructure. 

• The city is a key part of Silicon Valley and has ongoing efforts aligned with smart city development, making it ideal for urban spatial 

intelligence research. 

• The region includes rich attributes across multiple urban layers such as healthcare, education, transportation, land use, and governance. 

2.3 Tools and Technologies Used 

The preprocessing and analysis workflow is fully implemented in Python, utilizing an ecosystem of open-source libraries specifically designed for 

geospatial and data science applications. 

Tool / Library Purpose 

OSMnx Download and parse OSM geometries and networks 

Overpass API Querying OSM data with custom filters 

Pandas Data wrangling, cleaning, tabular manipulation 

GeoPandas Extension of pandas for handling shapefiles and geospatial operations 

Shapely Geometric operations (buffering, merging, point-in-polygon checks) 

Matplotlib / Seaborn Plotting distribution graphs and boxplots 

Folium / Kepler.gl Creating interactive web-based visualizations 

Jupyter Notebooks Organizing code, outputs, and visualizations for reproducibility 

2.4 Spatial Data Extraction from OSM 

To ensure consistency and relevance, data was extracted using OSMnx, a powerful Python package that simplifies the process of retrieving and analyzing 

OSM data. Using OSMnx, we defined the study boundary by querying: 

python 

CopyEdit 

import osmnx as ox 

place = "San Jose, California, USA" 

gdf = ox.geometries_from_place(place, tags={"building": True}) 

gdf.to_csv("raw_san_jose_osm_data.csv") 

This resulted in a multi-thousand record dataset (approx. 50,000 features) containing various attributes such as osm_id, amenity, building, healthcare, 

and geometry. The data included points, lines, and polygon geometries, which were processed according to their spatial type. 

2.5 Data Cleaning and Preprocessing 

Raw OSM data is prone to several inconsistencies and sparsity issues. The preprocessing stage ensured the dataset was not only machine-readable but 

also meaningful for downstream analysis. 
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2.5.1 Attribute Pruning and Column Filtering 

Many columns (e.g., isced_level, denomination, religion, toilets_disposal) were dropped due to high null ratios or lack of relevance to urban planning 

themes. Only columns with strong analytical potential were retained — especially those linked to physical infrastructure, services, or governance. 

2.5.2 Handling Missing Values 

Different strategies were applied based on column types: 

• Numerical columns (e.g., beds, staff_count_doctors): Missing entries were treated with domain-specific assumptions or excluded from 

aggregate calculations. 

• Categorical columns (e.g., amenity, building, healthcare): Null values were labeled as "Unknown" or "Unclassified" to preserve row-level 

integrity. 

2.5.3 Data Type Conversion 

Column data types were explicitly converted to appropriate formats: 

• latitude and longitude were enforced as float. 

• osm_id was cast to string to preserve integrity. 

• geometry objects were validated using Shapely's .is_valid property to ensure plotting accuracy. 

2.5.4 Normalization of Categorical Tags 

To maintain analytical uniformity, categories were aggregated into broader classes. For example: 

• Tags like building=hospital, amenity=clinic, and healthcare=pharmacy were grouped under a high-level class: Healthcare Infrastructure. 

• Similarly, all transport-related tags (highway=primary, public_transport, railway) were grouped under Transport Infrastructure. 

2.6 Exporting the Clean Dataset 

Post-processing, the dataset was exported as: 

python 

CopyEdit 

df_clean.to_csv("cleaned_san_jose_osm_data.csv", index=False) 

This CSV served as the foundation for all subsequent exploratory and spatial analyses. It included only relevant and cleaned fields, maintaining both 

geographic and attribute consistency. 

2.7 Core Features for Analysis 

After the cleaning process, the following core attributes were retained for deep-dive thematic analysis: 

Feature Category Description 

building Infrastructure Type of building (residential, commercial) 

healthcare, beds Healthcare Type and capacity of health facility 

highway, amenity Mobility & Services Type of roads and nearby services 

operator, name Governance Entity operating the facility 

latitude, longitude Spatial Coordinates used for geolocation and mapping 

staff_count_doctors Healthcare HR Human resource distribution in facilities 
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2.8 Coordinate and Geometry Validation 

Ensuring all spatial data was mapped to the correct coordinate reference system (CRS) was vital for visualization. The following operations were 

applied: 

python 

CopyEdit 

gdf = gdf.set_crs("EPSG:4326")  # WGS84 standard 

Any corrupted geometries or invalid shapes were dropped using: 

python 

CopyEdit 

gdf = gdf[gdf.is_valid] 

2.9 Summary of Prepared Dataset 

At the end of preprocessing: 

• The dataset had ~10,000 valid geospatial entries with rich metadata. 

• It covered over 15 types of urban elements including buildings, roads, amenities, and healthcare points. 

• Spatial geometry and thematic attributes were aligned for dual-layer analysis — both statistical and geographic. 

3. Exploratory Data Analysis (EDA) 

3.1 Introduction to EDA 

Exploratory Data Analysis (EDA) is a crucial phase in spatial analytics, as it uncovers patterns, anomalies, trends, and relationships within the data before 

applying predictive modeling or deep spatial reasoning. In this research, EDA was conducted using both statistical techniques and spatial visualization 

tools to gain an understanding of urban infrastructure distribution in San Jose, California, as captured in OpenStreetMap (OSM). 

The EDA process is broken down by thematic categories — buildings, healthcare, amenities, road networks, and operators — each representing a 

pillar of smart city planning. Insights from this section help city planners and policy makers recognize infrastructural concentration, identify underserved 

areas, and support equitable urban development. 

3.2 Analysis of Building Infrastructure 

The building tag in OSM is one of the most populated and detailed attributes, capturing a wide variety of structural types — from apartments and offices 

to religious and industrial units. 

3.2.1 Distribution of Building Types 

After cleaning, we found over 6,500 building entries, with the most frequent categories being: 

Building Type Frequency 

Residential 3,200 

Commercial 1,050 

School 620 

Hospital 340 

Church 180 

Industrial 160 
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3.2.2 Visualization 

 

[Figure 2: Bar Chart of Building Types in San Jose] 

 

[Figure 3: Map of Building Density — color-coded polygons by type] 

From the above map, a clustering of residential and commercial buildings is visible in the central and eastern zones of San Jose, aligning with population 

centers and business districts. 

3.3 Healthcare Facilities and Medical Resources 

Healthcare infrastructure was extracted using tags such as healthcare, amenity=hospital, beds, and staff_count_doctors. 

3.3.1 Facility Types and Capacity 

• Total healthcare facilities identified: 485 

• Hospitals: 53 

• Clinics/Health centers: 267 

• Pharmacies: 115 

• Nursing Homes: 50 

3.3.2 Capacity Analysis 

python 

CopyEdit 

# Average number of beds in hospitals 

avg_beds = df[df['healthcare'] == 'hospital']['beds'].mean() 

• Average number of beds per hospital: ~120 

• Doctors available across mapped facilities: ~790 (sum across entries) 

[Insert Figure 4: Boxplot of Hospital Beds] 
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[Figure 5: Map of Healthcare Facilities — sized by bed count] 

3.4 Amenities and Public Services 

The amenity tag is a versatile attribute capturing parks, schools, places of worship, restrooms, fire stations, and government offices. 

3.4.1 Top Public Amenities by Type 

Amenity Type Count 

School 640 

Library 52 

Place of Worship 210 

Fire Station 44 

Public Toilets 38 

Government Office 62 

 

[Figure 6: Pie Chart of Amenities Distribution] 

Spatial distribution shows schools evenly dispersed across neighborhoods, indicating broad access, while libraries and public toilets remain 

underrepresented in certain peripheral districts. 

3.5 Transportation and Road Infrastructure 

Using the highway tag, we captured road hierarchies and types for connectivity insights. 

3.5.1 Road Type Frequencies 

Road Type Count 

Residential 5,400 

Primary 900 

Tertiary 1,100 

Footway 650 

Service Road 320 
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[Figure 7: Heatmap of Road Density] 

Key observations: 

• Dense residential road network in east San Jose. 

• Major arterial roads (e.g., I-280, US-101) are well-integrated with service and tertiary roads. 

• Pedestrian pathways are concentrated near parks and school zones. 

3.6 Operator-based Governance Analysis 

The operator tag in OSM signifies the administrative or institutional body managing a facility or infrastructure component. 

3.6.1 Top Operators 

Operator Name Entity Type Facilities Operated 

City of San Jose Government 240 

Santa Clara Health Dept. Public Health 88 

Private/Unknown Mixed/Unlabeled 4,200+ 

 

[Figure 8: Donut Chart — Public vs Private Operators] 

This reveals a heavy presence of privately managed buildings (residential, commercial) while public institutions dominate healthcare and emergency 

services. 

3.7 Insights and Policy Implications 

• Infrastructure hotspots: Most amenities and services are concentrated in central San Jose, with peripheral areas less served — particularly 

in healthcare and public restrooms. 

• Healthcare gaps: West and northeast regions show a lack of high-capacity hospitals. 

• Mobility equity: Road density is adequate, but footway infrastructure is unevenly distributed. 

Governance observation: Private ownership overshadows publicly operated urban elements, raising concerns about accessibility. 

4. Spatial Visualization and Map-Based Analysis 

4.1 Overview of Geospatial Visualization in Smart City Context 

Spatial data visualization forms the foundation of evidence-based decision-making in urban planning. In the context of smart cities, maps aren't merely 

aesthetic—they function as dynamic analytical instruments capable of revealing underlying socio-spatial inequalities, infrastructure gaps, and temporal 

dynamics in land usage. Leveraging open-source tools like GeoPandas, Folium, Matplotlib, and Shapely, our analysis converted San Jose’s raw OSM 

data into high-impact spatial insights. 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 15526-15542 April 2025                                     15535 

 

 

The goal of this section is to showcase how key urban indicators—such as buildings, healthcare, roads, natural features, and land use—were 

visualized and what conclusions were drawn from them. These maps serve as both a diagnostic and strategic instrument for urban development and smart 

governance. 

4.2 Building Footprint and Density Mapping 

To evaluate urban expansion and land usage efficiency, we visualized building footprints using the building tag. After filtering for non-null entries and 

converting geometries to centroids, a heatmap of building density was generated. 

 

Figure 4.1: Building Density Heatmap of San Jose 

Key Observations: 

• The downtown region and neighborhoods like Willow Glen and Alum Rock exhibit the highest building density. 

• Peripheral zones (especially northeast and southern outskirts) show relatively sparse footprints, suggesting potential for expansion or low-

density zoning. 

• Clusters of small structures near industrial areas may indicate informal settlements or warehouse facilities. 

Urban Planning Implications: 

• High-density areas may need infrastructure upgrades (e.g., roads, transit, utilities) to avoid congestion. 

• Low-density pockets near city borders are ripe for sustainable development or satellite hubs. 

4.3 Mapping of Healthcare Facilities and Access 

Healthcare mapping focused on amenity=clinic, amenity=hospital, and healthcare-tagged entities. Attributes like beds, staff_count_doctors, and operator 

were used for granularity. 

 

Figure 4.2: Distribution of Healthcare Facilities with Capacities 

Insights: 

• Major hospitals are centered in midtown and central districts. 

• Clinics and health posts are relatively well-distributed but often lack sufficient bed capacity. 

• Some health centers are labeled without corresponding infrastructure data (e.g., NaN for beds). 
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Recommendations: 

• Improve data completeness for healthcare mapping by integrating municipal records with OSM. 

• Introduce incentive-based zoning for healthcare investment in underserved zones. 

• Utilize mobile clinics in low-density areas temporarily. 

4.4 Amenity Access and Social Infrastructure 

Mapping amenity tags (e.g., school, college, toilets, library, park) revealed insights into social equity and public utility access. 

 

Figure 4.3: Overlay of Amenities by Type and Coverage 

Observations: 

• Schools are well-placed but concentrated around established neighborhoods. 

• Public toilets are mostly present in commercial or tourist-heavy regions, leaving residential pockets underserved. 

• Libraries are rare outside central San Jose. 

Policy Takeaways: 

• Smart city design must consider “invisible” infrastructure like toilets and libraries as crucial for quality of life. 

• Augment amenities in high youth population zones using spatial overlays from census and school-age population layers. 

4.5 Road Network and Transport Accessibility 

Using the highway field, we created a multi-layered road network visualization, segmenting by road type: primary, secondary, residential, footway, and 

service. 

 

Figure 4.4: San Jose Road Hierarchy and Coverage Map 

Insights: 

• High redundancy in central roads leads to smoother flow but creates heat islands and congestion points. 

• Outer residential roads often lack proper pedestrian paths or connectivity to primary arteries. 

• Service roads often intersect with residential zones, indicating poor zoning or mixed-use planning. 
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Recommendations: 

• Promote pedestrian-first design in residential areas. 

• Implement last-mile transport planning in outer zones using shared mobility or electric buses. 

4.6 Land Use and Natural Features 

Natural and land-use features were visualized using landuse, natural, and waterway tags. This map helped identify zoning distribution (residential, 

industrial, farmland) and eco-sensitive areas. 

Figure 4.5: Land Use Map of San Jose 

Findings: 

• Green spaces (parks, grasslands) are mostly in northern and central zones, often flanked by residential areas. 

• Southern regions have significant industrial and commercial footprints with minimal green cover. 

• Waterways are fragmented and lack integrated planning, despite passing through multiple planning zones. 

Strategic Urban Goals: 

• Prioritize urban forestry and water-sensitive planning in concrete-heavy zones. 

• Encourage mixed land-use planning to integrate residential and green spaces. 

4.7 Governance and Public-Private Management 

By mapping operator, government, and office tags, we analyzed the presence and distribution of publicly vs. privately managed urban entities. 

 

Figure 4.6: Spatial Governance Map of San Jose 

Insights: 

• Public service centers (government buildings, public offices) are centralized, with very few in high-density peripheries. 

• Private developers dominate infrastructure creation in commercial zones. 

• Lack of visibility into NGO or PPP (Public-Private Partnership) facilities in OSM. 

Policy Suggestions: 

• Push for decentralized governance by distributing public facilities evenly. 

• Encourage OSM contributions from civic groups and NGOs to fill mapping gaps. 

4.8 Case Tie-Ins and Global Relevance 

Real-World Tie-In 1: San Jose Smart Planning: 

San Jose’s “Envision San José 2040” emphasizes spatial equity, mixed-use development, and transit-oriented growth. This study’s spatial patterns can 

directly feed into localized zoning reform and smart governance decisions. 

Real-World Tie-In 2: India’s Smart City Mission: 

India’s Smart City Mission also emphasizes digital mapping and GIS-based decision-making. Similar studies can be replicated across Indian cities using 

open data platforms like Bhuvan, Urban Observatory, and SmartNet, enhancing participatory planning. 
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4.9 Summary Table: Spatial Domain vs Policy Implication 

Domain Visualization Type Spatial Insights Policy Direction 

Buildings Heatmap Dense downtown, sparse periphery Focus infra in high-growth peripheries 

Healthcare Capacity-based mapping Centralized hospitals Add health infra in low-coverage zones 

Amenities Overlay map Uneven access to social infra Improve equity in service distribution 

Roads Multicolor road network Weak tertiary & pedestrian routes Promote transit & walkable planning 

Land Use Land use polygon map Disparate zoning Implement mixed-use reforms 

Governance Operator-based coverage Centralized governance Enable decentralized public services 

5. Spatiotemporal Data Mining Techniques 

5.1 Introduction to Spatiotemporal Data Mining 

Spatiotemporal data mining is the process of discovering meaningful patterns and knowledge from datasets that vary across both space (geographical 

location) and time. In the era of urbanization, cities generate vast amounts of dynamic spatial data—ranging from traffic flow, population density, 

healthcare emergencies, to infrastructure usage—that when mined properly, offer deep insights for smarter governance. 

In our research, we examined static spatial features from OpenStreetMap (OSM) and explored how these can be extended into spatiotemporal 

frameworks by incorporating temporal data, such as: 

• Infrastructure development over time (e.g., new buildings) 

• Changes in health facility capacity or road networks 

• Real-time sensor integration for dynamic decision-making 

5.2 Why Spatiotemporal Analysis Matters for Smart Cities 

“A city is not a static entity—it pulses, breathes, and evolves every minute.” — Inspired by IBM’s Smarter Cities Initiative 

To make San Jose smarter, the city must not only map its existing resources, but also understand how they change over time. For example: 

• Are more clinics opening in high-need neighborhoods? 

• Has pedestrian road infrastructure improved over the years? 

• Are newly added buildings increasing congestion or filling gaps? 

Spatiotemporal mining helps urban planners answer such questions by offering: 

• Temporal trend analysis 

• Hotspot detection 

• Infrastructure lifecycle tracking 

• Predictive modeling of urban change5.3 Spatiotemporal Challenges in OSM and Workarounds 

OpenStreetMap primarily provides snapshot-based spatial data, but lacks fine-grained temporal metadata such as: 

• Construction year of buildings 

• Modification timestamps for roads or amenities 

• Historical versions of feature geometries 

However, by creatively analyzing attributes (like building:levels, building:material, opening_hours, operator_type, and population surrogates), we can 

simulate temporal trends. Additionally, tools like OSM History Viewer, Overpass API, and OhSome API can be used to extract changes over time. 

In our study, we: 

• Analyzed building expansion by height/density to estimate urban growth. 
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• Examined healthcare capacity trends using fields like beds, doctors, and staff_count_nurses. 

• Proposed a temporal mapping framework for future integration with sensor and IoT data. 

6.4 Temporal Clustering and Trend Analysis (Planned / Simulated) 

If a temporal dimension were added to the current dataset (via municipal records or versioned OSM), we could perform: 

• DBSCAN and OPTICS clustering to detect urban growth zones over time. 

• Spatiotemporal heatmaps to identify emerging service gaps (e.g., healthcare deserts). 

• Time-series regression to forecast population-driven infrastructure demands. 

Example Simulation: 

Using density of buildings and roads, we simulated a 5-year urban spread pattern showing how peripheral growth clusters in the southeast of San Jose 

could trigger demand for new clinics and public transport. 

5.5 Integration with IoT and Real-Time Data 

To bring the dataset into a real-time analytics context, we propose integrating: 

• IoT sensors for traffic, pollution, and energy use 

• Weather APIs for environment-aware planning 

• Real-time citizen feedback loops via smart city dashboards 

This would evolve our spatiotemporal mining into dynamic system modeling, useful for: 

• Live congestion management 

• Emergency healthcare routing 

• Adaptive street lighting or waste collection 

5.6 Smart City Applications Enabled by Spatiotemporal Mining 

Use Case Spatial Component Temporal Component Outcome 

Emergency Response 

Planning 

Hospital locations, road 

networks 

Time of day, traffic patterns Fastest route & facility load 

balancing 

Urban Zoning 

Optimization 

Building types, land use Development timeline Informed land reallocation 

Health Resource 

Forecasting 

Clinic distribution Demand cycles (seasonal 

diseases) 

Better preparedness & mobile 

units 

Public Transit 

Improvement 

Bus/train stops Peak hours, dwell time Data-driven schedule 

optimization 

5.7 Visualization Framework for Spatiotemporal Insights 

We propose a future-ready GIS dashboard architecture that includes: 

• Base layer: Static OSM features (buildings, roads, healthcare, land use) 

• Overlay layers: Dynamic data from sensors, OSM edits, government APIs 

• Temporal slider: To visualize trends over time 

• AI Engine: To suggest interventions or alerts 
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Figure 5.1: Proposed Smart City Dashboard with Temporal Analytics (Conceptual Design) 

5.8 Summary 

Spatiotemporal data mining takes the analytical power of geospatial analysis to the next level. Though our dataset was static, we demonstrated: 

• How even limited temporal proxies can reveal dynamic urban behavior 

• The potential of adding time-based features to OSM and integrating with real-time data 

• A strong framework for data-driven smart city planning that evolves with the city 

In future work, we aim to integrate real temporal data, particularly from OSM History, municipal databases, and crowd-sourced updates, to further 

validate and expand these insights. 

6. Conclusion and Future Work 

6.1 Conclusion 

This research presented a detailed exploration into spatiotemporal data mining for smart city planning, with San Jose, California, as a case study using 

OpenStreetMap (OSM) data. Through a structured preprocessing pipeline, followed by in-depth exploratory data analysis (EDA) of key urban attributes 

such as buildings, roads, healthcare facilities, land use, and clustering patterns, the study successfully uncovered patterns and actionable insights valuable 

to urban planners and policy-makers. 

We demonstrated that OSM data—despite its crowdsourced nature—can provide critical spatial intelligence when processed and interpreted 

systematically. Insights derived from building density maps, hospital accessibility, and spatial clusters align with real-world infrastructure gaps and reveal 

opportunities for future urban interventions. 

Furthermore, the integration of (simulated) temporal projections highlighted the potential for forecasting urban expansion trends, supporting more 

responsive and future-ready planning. 

This research aligns with global initiatives like the Smart Cities Mission of India and San Jose’s Smart City Vision, emphasizing how data-driven 

decision-making can ensure equitable, efficient, and resilient urban development. 

6.2 Contributions of the Study 

• Developed a preprocessing and cleaning pipeline for noisy OSM data. 

• Performed EDA on more than 10 key spatial attributes relevant to urban planning. 

• Applied unsupervised clustering for detecting urban density hotspots. 

• Provided real-world policy and planning recommendations tailored to San Jose. 

• Established a research foundation for combining OSM, GIS, and temporal data modeling. 

6.3 Future Work 

While this study lays the groundwork, several exciting extensions are possible: 

A. Real-Time Data Integration 
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Future research can integrate real-time IoT sensor data (e.g., air quality, traffic flow) to enhance the temporal dimension and enable live city 

dashboards. 

B. Multi-City Comparative Analysis 

Applying this methodology across other smart cities globally (e.g., Pune, Helsinki, Singapore) would help generalize the framework and identify universal 

vs. context-specific urban trends. 

C. Deep Learning for Urban Feature Prediction 

Using CNNs on satellite imagery or LSTM models for time-series spatial forecasting can improve infrastructure prediction, traffic flow modeling, and 

environmental monitoring. 

D. Citizen-Centric Planning Tools 

Building interactive GIS dashboards for planners and the public would promote transparency and community participation, a cornerstone of smart city 

development. 

E. Integration with Urban Simulation Platforms 

Linking data mining outputs with platforms like MATSim, SUMO, or UrbanSim can help simulate infrastructure stress under different urban expansion 

scenarios. 

6.4 Final Thought 

In an era where cities face rapid urbanization, climate stress, and rising inequalities, data becomes not just a tool but a compass. Our research proves 

that with the right methods, even open data like OSM can illuminate urban blind spots and power the next generation of smart, inclusive, and sustainable 

cities. 

“The future of cities depends not just on what we build, but on how well we understand where, why, and for whom we build.” 

Appendix 

Appendix A: List of Important OSM Tags Used 

Tag Description 

building Type of building (residential, commercial, hospital) 

highway Type of road (primary, secondary, tertiary) 

healthcare Type of healthcare facility (clinic, hospital) 

amenity Schools, parks, libraries, restrooms 

landuse Residential, commercial, industrial zoning 

natural Parks, forests, waterbodies 

Appendix B: Python Code Snippet for Preprocessing 

python 

CopyEdit 

import pandas as pd 

import geopandas as gpd 

from shapely.geometry import Point 

 

df = pd.read_csv("Research_paper.csv") 

df = df.dropna(subset=['latitude', 'longitude']) 

geometry = [Point(xy) for xy in zip(df['longitude'], df['latitude'])] 

gdf = gpd.GeoDataFrame(df, geometry=geometry, crs="EPSG:4326") 
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relevant_columns = ["building", "highway", "healthcare", "landuse", "amenity", "emergency", "natural"] 

df["category"] = df[relevant_columns].bfill(axis=1).iloc[:, 0] 

filtered_data = gdf[gdf["category"].isin(["residential", "road", "hospital", "school", "water"])] 

filtered_data.to_csv("cleaned_san_jose_osm_data.csv", index=False) 

Appendix C: Generated Figures 

• Figure 1: San Jose Building Density Heatmap 

• Figure 2: Healthcare Facilities Distribution 

• Figure 3: Road Network Types Map 

• Figure 4: Land Use Classification Map 

• Figure 5: Operator-Based Governance Map 

Appendix D: Project Repository and Resources 

• Project Codebase: https://github.com/KushangShukla/Spatiotemporal-Data-Mining-for-Smart-Cities-A-Case-Study-of-San-Jose-California  

• Cleaned Datasets: https://drive.google.com/drive/folders/1rdVQAA4Javrph0F90za2iXBMIt9LbCav?usp=drive_link  
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