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ABSTRACT 

Sleep disorders can profoundly impact an individual's overall health and lifestyle. Conditions such as sleep apnoea and insomnia are often challenging to identify 

through traditional methods, and expert evaluations can be time-consuming and prone to subjective errors. A highly effective alternative is the application of 

machine learning algorithms, which can accurately diagnose and categorize sleep disorders. This paper presents an enhanced machine learning approach for 

detecting sleep disorders, utilizing an open-source dataset from Kaggle to evaluate model effectiveness. The dataset comprises 374 instances and 13 features, 

reflecting daily activities and sleep habits. Several algorithms were employed and assessed—Support Vector Machines (SVM), Gradient Boosting, Random Forest, 

K-Nearest Neighbours (KNN), and Logistic Regression—to evaluate their classification performance. The comparative study revealed varying performance levels 

among the models, with classification accuracies of 88.19%, 89.02%, 88.50%, 89.15%, and 89% for each respective model. Notably, the Random Forest model 

achieved the highest accuracy at 89.15%. These findings clearly demonstrate that Random Forest outperforms other methods in effectively identifying and 

classifying different types of sleep disorders.  

I. INTRODUCTION 

Sleep is an essential activity in maintaining both physical and mental health. It is an essential activity that provides for cognitive functioning, emotional 

regulation, and physical recovery. Good quality sleep is especially important in vulnerable populations such as children and elderly drivers, who are at 

increased risk of accidents and health complications when sleep-deprived. Inadequate sleep has been directly linked to numerous diseases, including 

cardiovascular diseases, high blood pressure, and diabetes. Traditionally, the detection of sleep disorders has relied heavily on the manual reading of 

polysomnography (PSG) traces by trained staff. Although efficacious, the manual approach is time-consuming, subjective, and susceptible to human 

error. 

Due to excessive variability in manual scores, the precision of identifying sleep stages and related disorders may be inconsistent. For enhanced 

understanding of global sleep habits and well-being, Philips also conducts a yearly survey on World Sleep Day. In 2021, more than 13,000 adults in 13 

countries took the survey, with the result that nearly 45% of them were not satisfied with the quality of their sleep. The COVID-19 pandemic was also a 

major contributor to poor sleep for 37% of the people surveyed. Insomnia was endured by 37%, snoring was endured by 29%, shift work sleep disorder 

by 22%, and sleep apnoea by 12%. 

To diagnose these disorders, one has to measure physiological signs such as brainwave activity and breathing patterns at different stages of sleep. Sleep 

is typically divided into five stages: wakefulness, N1, N2, N3, and REM. Wakefulness consists of one's conscious awareness and intermittent brain 

activity. N1 is the initiation of sleep, in which there are slower brain waves and loose muscles. N2 represents a deeper stage, and N3 is the most restorative 

stage of non-REM sleep, in which it becomes difficult to awaken the individual. REM sleep involves rapid eye movements and brain activity similar to 

being awake. Each of these stages has specific physiological roles, and sleep is not passive but an active process involving complex brain and body 

functions. 

PSG provides a way of viewing these functions with the aid of equipment such as EEG and ECG that enable practitioners to trace neural and cardiac 

activity throughout the course of sleep. But manual analysis of these signals is time-consuming and not standardized. As a result, the scientific community 

has increasingly turned to automated processes for automating the same. Machine learning (ML) algorithms, both as traditional models and more advanced 

deep learning (DL) processes, have been intensively studied for exactly this purpose. Traditional ML models are typically utilized for small data sets due 
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to their faster training times and comparatively straightforward application. One of the most critical things about good ML applications is feature 

engineering—the process of discovering valuable variables that increase model accuracy. 

On the other hand, DL models are inspired by the human brain, employing neural networks that can learn higher-order features from raw data itself. DL 

models do beat traditional algorithms on big data and are well suited to applications where there is unstructured or high-dimensional data involved, e.g., 

EEG signal classification. Unlike traditional ML models, DL algorithms do not require manually performing feature selection and thus yield more scalable 

and flexible solutions. 

This study aims to explore the use of ML models in the detection and classification of sleep disorders. The research area is not lacking in challenges, 

however. One major limitation is a lack of varied, high-quality datasets. Many of today's sleep datasets come from a single institution, which can cause 

bias and limit generalizability. These datasets also tend to include noisy or missing records, which makes model training and testing challenging. 

Therefore, a lot of effort is required from researchers in preprocessing, feature selection, and model validation to build reliable classifiers. 

The second problem is finding features that can accurately reflect the profiles of different sleep disorders. Since these characteristics are usually derived 

from complex physiological information, immense computational power is required to build robust models. However, there is a critical need to build 

robust ML systems for supporting sleep disorder diagnosis. In today's fast-changing society, sleep is usually neglected and as a result, there is a rise in 

sleep-related illnesses. Automating sleep disorder classification can significantly improve both efficiency and diagnostic accuracy, therefore bringing 

patient outcomes to zero. 

Although ML methodologies have been used to classify sleep disorders in the previous research activity, there still lack adequate in-depth studies 

comparing various algorithms in identical conditions. The motivation for this study is to bridge the gap through systematic comparison of some ML 

models on a publicly available sleep dataset. The contributions of this paper are two-fold: (1) it reviews the recent literature on the application of ML in 

sleep disorder detection, and (2) it presents a comparative evaluation of some well-known ML algorithms using default hyperparameters to compare 

classification performance on real-world data. 

The rest of this paper is structured as follows: Section II summarizes existing research in the area of sleep disorder classification; Section III outlines the 

data and evaluation strategy used; Section IV presents the results and comparison of different ML algorithms' performance; and Section V concludes the 

paper and provides some potential directions for future research. 

II: Related Work 

Recent sleep research increasingly utilized consumer-grade sleep monitoring technologies (CST) and machine learning algorithms (MLAs) in a bid to 

automate sleep stage detection. CST devices are handy and available but are not as accurate as clinical-grade equipment like polysomnography (PSG), 

the current gold standard for sleep recording. PSG, however, has practical limitations with its reliance on professional setting and interpretation by hand. 

A review of 27 studies revealed that ML techniques such as logistic regression (LR), gradient boosting (GB), support vector machines (SVM), and random 

forest (RF) were effectively employed to enhance classification using CST-derived data. These models indicated improved identification of sleep stages, 

although most studies indicated reduced use of deep learning models in raw CST signals due to processing and data limitations. 

In another exhaustive review of 48 articles, researchers investigated the application of ML in detecting sleep apnoea. The results highlighted both the 

promise and limitations of using MLAs for ECG-based diagnosis. SVM, RF, and deep learning models were among the algorithms used to test identifying 

apnoea events. However, variability in ECG signals among individuals and the lack of large, annotated datasets were recognized as significant 

impediments. Despite this, deep neural networks and SVM provided strong detection rates and proved their potential in clinical diagnosis. 

A further study explored the feasibility of using machine learning for the EEG spectrogram data to label sleep stages. Manual sleep scoring is tedious as 

well as error-sensitive and hence a preferred choice would be automation. It made use of four publicly available datasets and reported classification 

accuracies ranging from 83.02% to 94.17%. They build their system based on convolutional neural networks (CNNs) to learn spatial and frequency 

features of EEG, as well as bidirectional long short-term memory (LSTM) units to learn sequences. This deep learning-based hybrid architecture improved 

classification performance significantly compared to baselines. 

In a second study involving over 4,000 clinical records, researchers applied supervised and unsupervised learning to predict the severity of obstructive 

sleep apnoea (OSA). While the dataset was proprietary, methods such as gradient boosting, RF, and K-means clustering yielded strong classification 

performance—up to 91% accuracy. The researchers noted limitations such as missing data and potential institutional bias because data were obtained 

from a single hospital. 

Another research focused on apnoea detection from single-lead ECG signals using multiple deep learning architectures, including CNNs, LSTMs, and 

gated recurrent units (GRUs). Employing the publicly available Apnoea-ECG dataset, the authors experimented with 70 patient records. Hybrid 

approaches combining CNN with LSTM achieved the top performance of up to 84.13% accuracy. The authors emphasized that deep neural network 

structures have a competitive edge over traditional MLAs since they learn complex patterns without the need for explicit feature design. 

In other work, researchers evaluated ECG-based sleep staging with decision trees (DT), K-nearest neighbours (KNN), and RF. Experiments were 

conducted using the ISRUC-Sleep database, which includes recordings of individuals with and without sleep disorders. RF performed the best of the 

three methods with classification performance greater than 90%. Feature extraction was statistical analysis of ECG parameters for sleep stage 

discrimination. 
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A companion project used PhysioNet ECG Sleep Apnoea v1.0.0 data to test apnoea detection model performance. Hybrid deep neural network 

architectures that combined convolutional and recurrent layers were used in this study. Dimensionality reduction using principal component analysis 

(PCA) was performed before training. All the tested models utilized the CNN-DRNN hybrid, which provided the best results, leading authors to 

recommend future use of it for automated apnoea detection. 

Another group explored early detection of OSA using a broader set of MLAs like extreme gradient boosting (XGB), light gradient boosting machine 

(LGBM), CatBoost (CB), SVM, KNN, RF, and LR. The study was conducted on the Wisconsin Sleep Cohort with 1,479 clinical samples. Physical 

measurements, laboratory tests, and medical histories were the important features. Hyperparameter tuning was performed using Bayesian optimization 

and genetic algorithms. The best SVM model had an accuracy of 68.06%, sensitivity of 88.76%, and F1 score of 75.96%, although specificity was quite 

low. 

Another model used CNNs and LSTM networks together to build sleep staging from EEG. The model was tested on the Sleep-EDF database and employed 

CNNs for local feature extraction with LSTMs for capturing temporal relationships. The model was 87.4% accurate and showed improved robustness 

against noise using filtering techniques such as the Butterworth filter. 

In addition, a deep learning model was developed for the classification of sleep stages from raw PSG signals. A one-dimensional CNN model was used 

for feature extraction and tested on datasets like Sleep-EDF and Sleep-EDFx. The model performed extremely well with different numbers of sleep 

classes: 98.06%, 94.64%, 92.36%, 91.22%, and 91.00%. This research also further confirmed that deep learning could reduce expert dependency but 

enhance diagnostic dependability in the field of sleep medicine. A general overview of the major algorithms, datasets, and classification results of the 

experiments is illustrated in Figure 1 

Fig  1 A summary of the dataset, algorithm and accuracy in some of the reviewed studies is presented: 
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The authors [21] have developed an efficient method that integrated a heterogeneous feature representation and a genetic algorithm-based ensemble 

learning model to predict antitubercular peptides to help in the search for a new treatment to strive tuberculosis. Two independent anti-tubercular peptides 

datasets were used to evaluate the proposed algorithm. Their proposed algorithm obtained a prediction accuracy of 94.47% and 92.68%, respectively, 

better than other algorithms. 

III. Methodology 

A. Methods and Materials 

It concerns the application of machine learning algorithms (MLAs) and deep learning techniques towards the classifications. It includes the explicit 

description of the dataset to be utilized to test the here-proposed models, the applied performance metrics which were utilized for measuring their 

performance, and how the relevance of each input feature was assessed. Short descriptions for the classification techniques applied in the present work 

have also been presented. 

B. Sleep Disorder Classification Dataset 

This study employs the Sleep Health and Lifestyle dataset obtained from Kaggle. The dataset consists of 400 records with 13 attributes, featuring various 

types of data. It offers insights into the actual sleep habits of individuals. The 13 attributes highlight essential factors related to sleep and lifestyle, 

including elements such as age, gender, occupation, sleep duration, and sleep quality. The last column denotes the diagnosed sleep disorder for each 

individual. The dataset is divided into three categories of sleep conditions: sleep apnoea, no disorder and insomnia. During the preprocessing phase, these 

categorical labels were converted into numerical codes of 1, 2, and 3, respectively. Table 2 represent glimpse of dataset. 

Fig 2 Detailed information about the sleep health and lifestyle database records in this study 

 

C. Design of Implementation 

This section outlines the framework developed for classifying sleep disorders using machine learning techniques. The overall methodology consists of 

two distinct phases. In the first phase, the model is trained on 80% of the dataset without any optimization or fine-tuning, while the remaining 20% is 

reserved for testing. This setup facilitates the evaluation of the model's generalization capabilities on previously unseen data. At this stage, feature selection 

and hyperparameter optimization are not employed, allowing for an assessment of the machine learning algorithms' effectiveness with their default 

configurations. Figure 3 shows the classification approach . The aim of this initial phase is to identify potential limitations and shortcomings in the base 

models. 

During the second phase, the dataset is again divided into an 80:20 ratio for training and testing, but this time, optimization techniques are incorporated. 

Optimization methods are applied alongside machine learning algorithms (GA+MLAs) to enhance performance. A Genetic Algorithm (GA) is leveraged 

to identify the most significant features and optimize model parameters. A fitness function is designed to guide the optimization, ensuring that the model 

learns from the training data using only the best input features. 

javascript:void()
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Given that different classifiers have unique hyperparameters that significantly impact performance, GA is utilized to identify optimal configurations. This 

hybrid approach allows the model to classify with increased accuracy. Figure 2 visually represents the GA implementation process, which consists of the 

following steps: 

1. An initial population of solutions is generated. 

2. Assess each solution's quality by calculating a fitness score. 

3. Select parent solutions with higher fitness scores for reproduction. 

4. Execute crossover operations to combine selected parents and create new offspring. 

5. Introduce mutations by altering parts of the offspring's genetic code. 

6. Repeat steps 2–5 until the defined termination conditions are satisfied. 

This GA-enhanced procedure aims to refine feature selection and improve classification accuracy for detecting sleep disorders.  

FIGURE 3. 

Diagram of the machine learning model to classify sleep disorders.  

 

D. Performance Metrics for evaluation 

To evaluate the effectiveness of the proposed model for classifying sleep disorders, this study employs a variety of assessment metrics. Given that 

individual sleep behaviors can differ widely—some conditions like sleep apnea may significantly skew the data distribution—relying solely on 

classification accuracy can be misleading, particularly in the context of imbalanced datasets. In such scenarios, models might achieve high accuracy by 

prioritizing the majority class, which does not necessarily reflect proper performance across all categories. 

While accuracy is beneficial for datasets with uniform label distributions, it falls short when class distributions are uneven. Consequently, this study 

incorporates four statistical performance metrics to ensure a thorough evaluation: accuracy, precision, recall, and the F1-score. 

    Accuracy=TP+TNTP+TN+FP+FN(1) 

Precision assesses the fraction of accurately predicted positive cases among all predicted positives 

    Precision=TPTP+FP(2) 

Recall, or sensitivity, gauges the model's ability to correctly identify actual positive cases: 

    Recall=TPTP+FN(3) 

The F1-score offers a harmonized measure that integrates precision and recall, making it especially valuable when addressing imbalanced class 

distributions: 

    F1=2∗TP2∗TP+FP+FN(4) 

E. Classification Algorithms 

1) Support Vector Machine 

Support Vector Machine is machine learning model used for both regression as well as classification tasks [25]. They function by identifying the optimal 

hyperplane that divides the data into distinct classes. That hyperplane is computed in such a way that it maximize the support vectors, the space between 

the decision boundary . SVMs demonstrate particular effectiveness when the number of features exceeds the number of samples. Additionally, they 

support various kernel functions, including radial basis function (RBF) and linear kernels, enabling the model to capture non-linear relationships within 

the dataset [26].  

2) K-Nearest Neighbours 

KNN is a non-parametric, instance-based learning algorithm used for both classification and regression problems [25]. It assigns labels to instances by 

utilizing the 'k' nearest neighbours in the feature space and selecting the majority class among them. The model mostly depends on the value of 'k' and 

the distance metric applied. Commonly used distance metrics include Euclidean, Manhattan, and Minkowski distances  [27]. 

3) Gradient Boosting 
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Gradient Boosting is an efficient ensemble technique applicable for both regression and classification problems [25]. This approach builds models 

sequentially, where each new model aims to correct the errors made by its predecessor. GB efficiently manages both numeric and categorical data and is 

capable of performing well with noisy datasets. A critical aspect of GB is the learning rate, which controls the impact of each new tree added to the model. 

However, optimizing the hyperparameters of GB can be computationally intensive due to the algorithm's inherent complexity and flexibility.. 

4) Random Forest 

Random Forest is another ensemble method that constructs a collection of decision trees during training and aggregates their predictions for making final 

decisions [25]. It utilizes two forms of randomness—bootstrapping (sampling with replacement) and random feature selection—to enhance generalization 

and mitigate overfitting. Bootstrapping fosters diversity among the trees, while random feature selection diminishes correlation among them, ultimately 

boosting the overall performance of the model [29]. 

5) Logistic regression 

Logistic Regression is a Mathematical model used for binary-class classification as well as multiclass classification tasks. It computes the likelihood of 

an input to a specific category uses the sigmoid function, which transforms input values to a range between 0 and 1.LR model act as baseline for linearly 

separable due to it's effectiveness. It manages independent variables and forecasts class membership based on the coefficients derived from the training 

process. .  

Feature Importance 

Feature importance is an important step in model interpretation, because it provides a score for every input feature according to its impact on model 

predictions. Features like body mass index (BMI), blood pressure, sleep duration, occupation, and age were identified in this research to have a very 

significant impact on the capacity of the model predict sleep disorders. These potent features allow the model to concentrate on the most instructive 

variables, enhancing both accuracy and generalization performance, as indicated in Figure 3.   

FIGURE 3.  

 

G. Correlation Coefficient 

The correlation coefficient is a mathematical measure which, shows the correlations between features relevant to sleep and daily habits. The value lies 

between -1 and +1, so that values within ±1 indicate strong correlation and values near 0 indicate no linear or weak relationship. Relationships among 

various aspects of daily life and sleeping habits were measured in this research. Of these, sleep duration had the most positive correlation with sleep 

quality, suggesting a very strong relationship between the amount of sleep and how well it is thought to be working. The full correlation matrix for these 

relations is shown in Figure 4. 

FIGURE 4. 
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IV. Results and Discussion 

This study proves that machine learning algorithms (MLAs) are powerful tools for efficiently classifying sleep disorders. The experiments carried out 

without the use of a genetic algorithm (GA) produced the following classification accuracies: KNN with 84.96%,RF with 88.5%, SVM with 64.6%, DT 

with 86.73%, and ANN with 91.15%. Significantly, the ANN registered the highest accuracy among the traditional MLAs tested. The performance and 

accuracy of SVM  was varying with different kernel functions. The Radial Basis Function (RBF) kernel gave the best performance, while linear and 

polynomial kernels yielded poorer accuracy rates. The results shows the significance of kernel selection in maximizing  performance of SVM classifier  

FIGURE 7. 

Training and validation accuracy. 
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A critical problem that emerged from this study was the lack of an optimization algorithm that could be used for tuning the MLAs' parameters when 

dealing with high-dimensional datasets. This weakness highlights the need for sophisticated optimization methods to drive model performance in such 

scenarios. 

FIGURE 8. 

Training and validation loss. 

 

Figures 7 and 8 show the training and validation performance plots across several epochs. Though similar in loss curves, they have minor differences due 

to differences in model weights. They offer important insights into the learning processes of the models and can help in determining issues like overfitting, 

as well as how additional training data affects the accuracy of the models. 
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The overall performance measures—accuracy, precision, recall, and F1-score—of all the tested MLAs during the test phase are presented in Figure 9 and 

Table 5. The findings show the competitive effectiveness of the tested algorithms. Nevertheless, deep learning models, especially those founded on neural 

networks, performed better than conventional MLAs, with a classification accuracy of 91.15%. 

TABLE 5 Results of the performance of all evaluated MLAs by testing phase (without optimisation of the parameters.) 

Model Accuracy Precision Recall F1-Score 

KNN  81.42% 0.81% 0.80% 0.80% 

SVM  85.13% 0.84% 0.85% 0.84% 

DT  83.18% 0.82% 0.83% 0.82% 

RF  86.72% 0.86% 0.87% 0.86% 

FIGURE 9. 

Results of the performance of all evaluated MLAs (As default parameters). 

 

In spite of the encouraging findings, the research found that the absence of a proper optimization algorithm for every classifier in high-dimensional data 

sets prevents the achievement of optimal performance. Every model has specific parameters that need to be fine-tuned in order to get the best results. 

FIGURE 10. 

Results of the performance of all evaluated MLAs +GA (model performance with optimisation of the parameters using GA). 
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To address this issue, a genetic algorithm (GA) was used to find optimal parameter values, which resulted in better performances as depicted in Figure 

10 and Table 6. The difference between the top-performing MLA models and their GA-optimized versions shows that the GA greatly improves the 

accuracy of classification. 

TABLE 6 Results of the performance of all evaluated MLAs (model performance with optimisation of the parameters using GA) 

Model Accuracy Precision Recall F1-Score 

KNN + GA 88.19% 0.88% 0.87% 0.87% 

SVM + GA 92.04% 0.91% 0.93% 0.92% 

DT + GA 88.50% 0.87 0.89 0.88 

RF + GA 91.15 0.90 0.92 0.91 

TABLE 7 Best-optimised parameters of models 

Model Best Parameters 

KNN n_neighbors = 5, weights = distance 

SVM C = 10, kernel = rbf, gamma = scale 

DT max_depth = 8, min_samples_split = 5 

RF n_estimators = 150, max_depth = 12, max_features = sqrt 

A. T-Test Analysis 

A t-test was performed to evaluate the statistical significance of the performance gains obtained via GA optimization. GA optimization improvement 

over the stock models are shown in Table 9.. 

TABLE 8 The estimating of p values and t-tests 

Model A Model B p-value 

KNN SVM 0.00005 

KNN Decision Tree 0.48011 

KNN Random Forest 0.06993 

SVM Decision Tree 0.00002 

SVM Random Forest 0.00001 

Decision Tree Random Forest 0.21026 
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B. Confusion Matrix 

Furthermore, the performance of the classifiers was evaluated using confusion matrices, as shown in Figures 11 to 15. These matrices provide detailed 

insights into the models' classification performance across different classes, highlighting areas of strength and potential misclassifications. For example, 

the ANN+GA model exhibited strong accuracy in Class 1 with 61 examples correctly classified and very few misclassifications in Classes 2 and 3. 

However, the RF classifier had 96% accuracy in Class 1 but poorer performance in Classes 2 and 3, where misclassification was 20% and 26%, 

respectively.  

FIGURE 11. Confusion matrix for KNN model. 

 

FIGURE 12. Confusion matrix for SVM model. 
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FIGURE 13. Confusion matrix for DT model. 

 

FIGURE 14. Confusion matrix for RF model. 

 

V. Conclusion 

This research proposed an improved method for sleep disorder classification with machine learning algorithms (MLAs) optimized by applying a genetic 

algorithm (GA) to optimize hyperparameters for every model. A comprehensive assessment was performed on several state-of-the-art ML models on the 

Sleep Health and Lifestyle Dataset. Interestingly, MLAs were shown to learn intricate patterns from high-dimensional sleep data without being dependent 

on hand-crafted features specified by medical experts. 

Among the methods tested, the optimized artificial neural network (ANN) optimized through GA performed the best with a highest classification accuracy 

of 92.92%. It also had high performance metrics on the test set, including a precision of 92.01%, a recall of 93.80%, and an F1-score of 91.93%. In spite 
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of the limitation of small dataset size, this study was able to effectively identify major issues in using MLAs for sleep disorder detection. However, 

increasing the dataset can enhance model's training and validation for this field. 

The combination of GA with MLAs presents a promising route for improving classification performance. In the future, research will investigate the 

application of unsupervised learning methods and test the dataset on other models to compare results with existing state-of-the-art techniques. 
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