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Abstract— 

Text-to-SQL systems aim to bridge the gap between non-technical natural language (NL) queries and complex SQL formulations. While recent approaches based 

on in-context learning (ICL) and large language models (LLMs) have achieved promising results on curated benchmarks such as Spider and BIRD, real-world 

scenarios pose additional challenges such as ambiguous queries, large schemas, and efficiency concerns. In this paper, we propose an Adaptive Demonstration 

Selection (ADS) framework that leverages both structure-based and graph-based selection methods for few-shot examples, enhanced with an in-context 

reinforcement learning (RL)–inspired error correction module. Our pipeline, built upon insights from MageSQL [5] and integrating aspects from other methods 

([1]–[4], [6], [7]), improves schema linking and SQL generation accuracy while reducing inference costs. Extensive experiments on Spider and BIRD benchmarks 

show that our method achieves up to a 3–4% improvement in execution accuracy over state-of-the-art ICL and supervised fine-tuning approaches. This work 

contributes a unique, robust, and cost-effective solution for real-world Text-to-SQL applications. 
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Introduction 

The conversion of natural language queries into SQL statements (Text-to-SQL) is a critical problem in database accessibility, enabling non-technical 

users to interact with complex relational databases. Despite notable advancements with large language models (LLMs) and in-context learning (ICL) 

approaches ([1], [2]), challenges remain in handling ambiguous queries, large and heterogeneous schemas, and cost-effective deployment in real-world 

systems. 

Recent studies such as MageSQL [5] have highlighted the importance of high-quality demonstration examples for few-shot learning. Other works ([3], 

[4], [6], [7]) contribute insights into reinforcement learning (RL) for error correction, retrieval-augmented generation, and schema linking. However, no 

existing work has combined structure- and graph-based demonstration selection with an RL-inspired feedback mechanism for dynamically adapting 

prompts. In this paper, we propose the Adaptive Demonstration Selection (ADS) framework that addresses these gaps by:  

 Selecting demonstrations using both tree edit distance and graph embedding similarity to capture structural and semantic correspondences.  

 Employing an RL-inspired error correction module that iteratively refines generated SQL by learning from execution feedback. 

 Integrating dynamic few-shot retrieval to update the demonstration pool based on user query context. 

 

Our contributions are three-fold:  

 We introduce a novel adaptive framework that combines multiple demonstration selection strategies. 

 We integrate a reinforcement signal for error correction to dynamically guide SQL generation. 

 We provide comprehensive experimental results on standard benchmarks, demonstrating significant improvements over existing methods. 

Related work 

The Text-to-SQL problem has been approached from various angles over the past decade. Early works employed rule-based and sequence-to-sequence 

models ([7], [9]), while more recent studies use large LLMs with in-context learning and fine-tuning ([1], [2]). MageSQL [5] demonstrated the 

effectiveness of structured demonstration selection using tree-based similarity measures, whereas retrieval-augmented methods ([3], [6]) integrate external 

knowledge for improved schema linking. BASE-SQL [7] and similar pipeline-based methods also emphasize efficiency and cost-effectiveness for 

real-world applications. 

http://www.ijrpr.com/
mailto:Sameekshthakur1457@gmail.com
mailto:Saurabhchandra1244@gmail.com
mailto:Shekharsahu1020@gmail.com
mailto:Pusprajsharma314@gmail.com
mailto:Manoj5682@gmail.com


International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025) Page – 13198-13202                        13199 

 

 Despite these advances, challenges remain in dynamically adapting to ambiguous queries and large schemas. Our work builds on these ideas by 

combining structural and graph-based techniques with an RL-inspired mechanism, which is, to our knowledge, a novel contribution. 

Proposed System 

The core idea behind the proposed approach is to create a more intelligent and adaptive few-shot prompting system for Text-to-SQL tasks, capable of 

selecting the most relevant examples dynamically and refining outputs based on execution feedback. Unlike static prompt templates or fixed 

demonstration sets, our model leverages a dual strategy involving both structural and semantic similarity to improve the contextual quality of 

LLM-generated SQL queries. This concept builds on the insights from [1]–[7], while integrating additional ideas inspired by [8]–[27]. We believe that 

better examples result in better predictions—and that prompt refinement guided by actual SQL execution outcomes can further enhance accuracy. 

To accomplish this, we introduce the Adaptive Demonstration Selection (ADS) framework. It incorporates two novel modules: a hybrid example 

selection method that uses both AST-based (structure-based) and graph-based (semantic-aware) similarity measures, and a reinforcement-style prompt 

refinement mechanism based on SQL execution feedback. The following subsections detail each component of the framework.  

A. Dataset Preprocessing and Encoding 

 We use the Spider dataset as the primary benchmark ([1], [7]). Natural language queries are first tokenized and normalized for consistency. 

Each query is paired with its corresponding SQL and the associated database schema that contains table names, column types, and relationships, ensuring 

that relational structures are well captured. This preprocessing phase is essential for building a synthetic dataset that our framework leverages to retrieve 

relevant demonstrations ([4], [6]). Graph representations of SQL queries are also constructed to encode execution semantics. In this process, each SQL 

statement is translated into a graph where nodes represent SQL clauses, operators, and table columns, and edges represent relationships such as joins or 

filter dependencies. These graphs are embedded using a Graph Neural Network (GNN) following the techniques described in [8] and [9]. Such 

representations not only preserve structural details via the Abstract Syntax Tree (AST) but also incorporate semantic nuances as advocated in [10]–[12]. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overview of the ADS Framework 

B. Adaptive Demonstration Selection (ADS) 

 The ADS component enhances prompting by selecting the most relevant examples from a large candidate pool. We determine relevance using 

a hybrid scoring method. Initially, we compute the AST tree-edit distance (with pq-gram approximations as in [13]–[14]) between the input SQL and 

candidate examples to measure structural similarity. In parallel, semantic similarity is computed via cosine distance between graph embeddings, which 

capture richer relational information in the SQL queries ([15]–[17]).  

 The final selection score is a weighted combination of these two metrics, enabling the prompt to adapt to both syntax and semantics. This dual 

strategy is inspired by MageSQL’s approach ([5]) but extends its idea by integrating additional graph-contrastive learning principles ([18]–[21]). The 

selected demonstrations are then incorporated into the prompt that is passed to the language model, ensuring that the examples are closely aligned with 

the input query’s context. 

TABLE I. 

COMPARISON OF DEMONSTRATION SELECTION STRATEGIES ON A SAMPLE SUBSET 
 

Strategy Execution Strategy 

(%) 

Improvement (%) 

Random Selection 75.4 Baseline 

Structure-based 78.9 +3.5 

Graph-based 80.1 +4.7 

Adaptive 

(Combined) 
83.2 +7.8 
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C. Reinforcement Learning–Inspired Error Correction 

After the initial SQL is generated using the selected demonstrations, it is executed against the target database in a controlled runtime environment. The 

execution outcomes are compared against expected results using metrics such as Execution Accuracy. Drawing inspiration from reinforcement learning 

techniques ([22], [23]) as well as methods used for prompt refinement ([24]), we compute a reward function: 

 

𝑅 =   𝛼 ×  {𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦}  −   𝛽 ×  {𝐶𝑜𝑠𝑡} 

 

where 𝛼 and β are parameters balancing accuracy and efficiency. If the reward “R” does not exceed a certain threshold, the error correction module is 

activated. This module uses both rule-based and prompt-based strategies to generate corrective feedback (as inspired by [25]–[27]). The corrective 

feedback is then incorporated into a refined prompt, and the query is re-generated. This iterative refinement, or feedback loop, continues until the execution 

result meets the required accuracy threshold—all while minimizing additional LLM calls. 

Experiment And Results 

To validate the ADS framework, we conducted a series of experiments comparing our approach with several baseline methods. Our  experiments were 

executed on two widely used benchmarks: the Spider dataset ([1]) and the BIRD dataset ([7]). We employ evaluation metrics such as Exact Match 

Accuracy (EMA) and Execution Accuracy (ExecAcc) to determine both the syntactic and functional correctness of the generated SQL queries. In addition, 

computational efficiency is measured by tracking the average number of LLM calls and total prompt length. 

We focus on the model’s ability to handle long and nested queries—challenges that have been highlighted by prior studies ([1], [5]). Baseline models, 

such as those described in [3] and [6], typically struggle with queries involving complex join conditions or nested sub-queries. Our ADS framework, by 

contrast, integrates the dual demonstration selection method and the reinforcement-inspired error correction loop. As a result, our framework produced 

higher-quality SQL outputs with significantly fewer iterations. For example, our experiments show that on the Spider dataset, the ADS framework 

improved Execution Accuracy from a baseline of 85.3% ([1]) to 88.6%, while reducing the average number of LLM calls from 2.3 to 1.6. Similar 

improvements were observed on the BIRD dataset, with an average gain of approximately 3.6% in Execution Accuracy.       

A. Evaluation Metrics 

We evaluate our system using both Exact Match Accuracy (EMA) and Execution Accuracy (ExecAcc). While EMA measures how well the generated 

SQL matches the gold standard query in terms of syntax, ExecAcc assesses whether executing the generated SQL yields the correct results. Both metrics 

are calculated following protocols described in [8] and [9]. Additionally, prompt length and LLM call counts are monitored as a measure of efficiency as 

highlighted in [10]–[12]. 

B. Comparative Results 

Our ADS framework consistently outperforms baseline systems. On the Spider dataset, the ADS framework achieves an Execution Accuracy of 88.6%, 

representing a 3.3% absolute improvement over the baseline models such as those by [1] and [3]. On the BIRD dataset, our method achieves 85.7% 

Execution Accuracy, compared to the baseline’s 82.1%. These results demonstrate that our approach of dynamic demonstration selection combined with 

execution feedback significantly enhances the generation quality of SQL queries ([13]–[15]). In addition, our method reduces LLM prompting costs by 

minimizing the number of required iterations, a factor that translates directly into practical cost savings ([6], [7]). 

TABLE II. 

Performance Comparison on Spider and BIRD Benchmarks 

 

  

 

 

 

   C.    Ablation Studies 

We performed ablation experiments on both benchmarks to assess the impact of the individual components of our framework. Removing the AST-based 

similarity module (i.e., relying solely on graph-based selection) resulted in a decrease in Exact Match Accuracy by 4%, whereas relying solely on AST-

based selection decreased accuracy by 3.5%. Moreover, eliminating the reinforcement-inspired feedback loop resulted in a decrease of 1-1.5% in 

Execution Accuracy. These ablation results confirm that the combination of structural and semantic demonstration selection, together with iterative error 

correction, is critical to achieving the best performance ([16]–[18]). 

 

 

 

 

 

 

Dataset Baseline EX (%) ADS EX (%) Improvement 

Spider 85.3 88.6 +3.3 

BIRD 82.1 85.7 +3.6 
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TABLE III. 

ABLATION STUDY ON ADS COMPONENTS (SPIDER DATASET) 

 

 

   

 

 

 

 

 

   D.   Efficiency Analysis 

 In addition to accuracy improvements, our method is designed to reduce the overall cost of LLM usage. Our ADS framework averages 

approximately 4-5 LLM calls per query, significantly reducing computational overhead compared to chain-of-thought-based methods ([19]–[21]). This 

efficiency makes our approach more scalable and practical for real-world deployment where latency and cost are vital considerations. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Error Correction Flow Diagram 

 

Conclusion   

In this paper, we presented an Adaptive Demonstration Selection (ADS) framework that enhances in-context learning for Text-to-SQL systems. 

Building on the foundation laid by MageSQL [5] and incorporating insights from related works ([1]–[4], [6], [7]), our approach leverages both 

structure-based and graph-based demonstration selection methods and integrates a reinforcement learning–inspired error correction loop. Experimental 

results on the Spider and BIRD datasets show significant improvements in execution accuracy and efficiency. 

Our framework is a step toward more robust and cost-effective Text-to-SQL solutions for real-world applications, particularly for ambiguous queries and 

large schemas. Future work will explore further integration of user-interaction for query disambiguation and the extension of our framework to 

multilingual databases. 
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