International Journal of Research Publication and Reviews, Vol (6), Issue (4), April (2025), Page — 9590-9593

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

WWW.IJRPR.COM

“ A Review Article on Artificial Intelligence in Drug Discovery *

LAditi Tiwari , 2Dr. Amit kumar , 3Mr. Pankaj Chasta , “Md. Zulphakar Ali

1 Student of B. Pharmacy at Mewar University

2 Dean of College of Pharmacy, Mewar University

34 Associate Professor and Assistant Professor at Mewar University
Artificial Intelligence in Drug Discovery: A Comprehensive Review

ABSTRACT :

The integration of Artificial Intelligence (Al) into drug discovery is revolutionizing pharmaceutical research and development. By leveraging machine learning
algorithms, deep learning models, and other Al technologies, researchers are significantly reducing the time and cost associated with discovering new drugs. This
review explores the current applications, advantages, limitations, and future directions of Al in drug discovery. It also highlights key case studies and provides a
detailed account of how Al is being utilized across various stages of the drug development pipeline.

1. Introduction

Drug discovery is a complex, time-consuming, and costly process. Traditional methods often take over a decade and billions of dollars to bring a new
drug to market. The high attrition rate of drug candidates during clinical trials further exacerbates these challenges. Al technologies offer promising
solutions by automating and optimizing different stages of the drug discovery pipeline, including target identification, drug screening, lead optimization,
and clinical trials [1, 4, 23]. The convergence of computational power, big data, and sophisticated algorithms has paved the way for Al to become a
transformative force in drug discovery. This review delves into the various Al technologies, their applications, key success stories, challenges, and the
future potential of Al in pharmaceutical innovation.

2. Al Technologies in Drug Discovery

2.1 Machine Learning (ML)

Machine Learning encompasses a variety of algorithms that learn patterns from data. In drug discovery, ML models are used to predict bioactivity, drug-
likeness, and toxicity [1, 4, 23]. Algorithms such as Random Forests, Support Vector Machines (SVMs), and Gradient Boosting Machines are applied to
build predictive models based on molecular descriptors and biological assay data [4, 15]. ML models also support feature selection, dimensionality
reduction, and clustering for exploratory data analysis.

2.2 Deep Learning (DL)

Deep Learning utilizes artificial neural networks with multiple hidden layers to model intricate relationships within large datasets. CNNs are extensively
used in image-based drug screening, such as cell-based assay imaging [1, 6, 13]. RNNs and LSTM networks are useful for analyzing sequential biological
data such as protein sequences, SMILES strings, and clinical time-series data. DL methods have enabled development of powerful models like DeepChem,
AtomNet, and AlphaFold [2, 10, 17].

2.3 Natural Language Processing (NLP)

NLP techniques enable the analysis of vast amounts of unstructured data from scientific literature, patents, and clinical trial reports [8]. Transformer-
based models like BioBERT, PubMedBERT, and SciBERT have achieved state-of-the-art performance in extracting biomedical knowledge [8, 7].

2.4 Generative Models

Generative models, including GANs and VAEs, are used to design novel molecular structures with desired biological properties [3, 5, 12]. These models
play a vital role in de novo drug design, enabling scaffold hopping and diversification of chemical libraries.
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2.5 Reinforcement Learning (RL)

Reinforcement Learning algorithms navigate chemical space by treating molecular design as a goal-directed task [11]. Applications of RL include multi-
step retrosynthetic planning and adaptive lead optimization [3, 22].

3. Applications of Al in Drug Discovery
3.1 Target Identification and Validation

Al models analyze multi-omics datasets to identify and prioritize drug targets [1, 16, 23]. Tools such as DeepTarget and NetBio aid in identifying genes
or proteins causally associated with diseases.

3.2 Compound Screening

Al-driven virtual screening models predict the binding affinity of large compound libraries to a specific target protein [3, 10, 13]. Hybrid approaches that
combine DL predictions with docking scores outperform traditional structure-based methods [17].

3.3 Drug Repurposing

Al accelerates drug repurposing by analyzing drug-target-disease interactions [19, 20, 24]. During the COVID-19 pandemic, Al systems rapidly
prioritized candidates like baricitinib and remdesivir for clinical testing [20].

3.4 Lead Optimization

Al facilitates lead optimization by predicting SARs and optimizing molecular properties [11, 14, 21]. Multi-objective algorithms and Bayesian
optimization are commonly employed here.

3.5 Preclinical Testing

Al models simulate drug metabolism, distribution, and toxicity in silico [6, 14, 16]. Systems like DeepTox, admetSAR, and pkCSM provide accurate
forecasts of ADMET profiles [6].

3.6 Clinical Trial Design and Optimization

Al tools analyze EHRs, omics data, and real-world evidence to improve clinical trial designs [18, 19]. Al-driven platforms optimize trial protocols and
monitor trial progress in real time [24].

4. Case Studies
4.1 Atomwise

Atomwise developed AtomNet, the first DL neural network for structure-based drug design [10]. AtomNet screens millions of small molecules using 3D
CNNs to predict binding affinity.

4.2 BenevolentAl

BenevolentAl leverages a comprehensive knowledge graph to suggest novel drug hypotheses [20]. Their identification of baricitinib for COVID-19
exemplifies Al’s agility.

4.3 Insilico Medicine

Insilico’s Pharma.Al platform incorporates generative chemistry, target identification, and clinical prediction [3]. The development of INS018_055 in
under 18 months showcases Al's efficiency.

4.4 Deep Genomics

Deep Genomics designs antisense oligonucleotides for RNA splicing modulation using sequence-based models [25]. Their pipeline includes candidates
for rare genetic disorders.
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4.5 Exscientia

Exscientia’s Al platform produced the first Al-generated drug to enter clinical trials, DSP-1181 [18].

5. Challenges and Limitations
5.1 Data Availability and Quality

Data fragmentation and inconsistent annotations hinder model training and reproducibility [6, 23]. Open initiatives like LINCS and CMap aim to mitigate
these issues [14].

5.2 Model Interpretability

Black-box models hinder clinical and regulatory acceptance [18]. Techniques like SHAP and attention visualization improve transparency [23].
5.3 Integration with Existing Workflows

Successful Al integration depends on multidisciplinary collaboration and scalable infrastructure [18, 19].

5.4 Regulatory and Ethical Issues

Al in drug discovery raises regulatory and ethical concerns, including data privacy and algorithmic bias [19]. Agencies like the FDA and EMA are
developing evaluation frameworks [18].

6. Future Perspectives

Future trends include explainable Al, federated learning, integration of digital health data, quantum machine learning, and personalized medicine [6, 7,
19, 23]. Initiatives like MELLODDY and ATOM highlight the importance of collaboration [24].

7. Conclusion
Al is poised to revolutionize drug discovery by enabling faster, more efficient, and data-driven decision-making [1, 4, 6]. With applications from
molecular design to clinical trials, Al promises reduced timelines and improved outcomes. Emphasis on ethical governance, regulatory compliance, and

interdisciplinary collaboration will be crucial [18, 19, 23].
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