
International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 8049-8053 April 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Python Based Real Time Image Cartoonization Using Opencv and

Machine Learning

1S.E Suresh, 2Sandhikadiyam Mahendra

1Assistant Professor Dept of MCA, Annamacharya Institute of Technology & Sciences, Tirupati, AP, India, Email: sureshroopa2k15@gmail.com
2Post Graduate, Dept of MCA, Annamacharya Institute of Technology & Sciences, Tirupati, AP, India, Email: mahendramahe99261@gmail.com

ABSTRACT:

This project is a deep learning application that uses a pre-trained White-Box Cartoonization model to convert photos into a cartoon-style format. The system, which

is built with TensorFlow, effectively analyzes multimedia content to provide high-quality cartoonization while maintaining important visual features. Users can

submit photos, apply the cartoonization effect, and receive the processed result via the application's web-based interface. In order to enable programmatic access

and integration with other programs and services, an API is also provided. The solution offers virtual environments for dependency management and is made to

operate in Linux-based settings. TensorFlow, ffmpeg, and tf_slim are used for media processing and model execution. To alter settings like resource allocation and

processing parameters, the program comes with a configuration file (config.yaml). Docker streamlines deployment, making it simple to set up and run across several

systems.

Python-based scripts app.py for the primary application functionality, make up the backend framework. Because the static and templates directories point to a web-

based user interface, users can access the application without having to deal with the command line directly. Optional cloud-based processing capabilities are

suggested by the inclusion of Google Cloud utilities (gcloud_utils.py). With the help of this solution, users may quickly produce stylized, cartoon-like images and

films for use in creative media applications. It is appropriate for developers wishing to add cartoonization to their products, social media users, and content producers.

The program guarantees usability and accessibility without necessitating a high level of technical competence thanks to its well-structured framework and

containerized deployment.

Keywords: Image Processing, Cartoonization, OpenCV, Machine Learning, Deep Learning

1. Introduction

The cartoonization tool uses deep learning to create high-quality cartoon-style visuals from pictures. It makes use of a pre-trained White-Box

Cartoonization model that preserves important visual elements while improving the output's artistic quality through the use of sophisticated image-

processing algorithms. The system uses ffmpeg to handle image processing chores and TensorFlow to ensure that deep learning operations are executed

efficiently.

Users can submit photographs, apply the cartoonization effect, and download the stylized output thanks to the application's user-friendly web interface.

With this web-based method, users can access the system without having to deal directly with code. It can also be used to embed cartoonization capability

into automated pipelines, media platforms, or third-party apps because an API is integrated to provide programmatic access.

Python-based scripts that manage a variety of tasks make up the backend. The entire application workflow, including responding to user queries,

processing photos, and providing results, is managed by the app.py script. Users can specify processing factors like resolution, model settings, and

performance optimizations using the config.yaml file that manages configuration settings.

The system has Docker support, which enables it to operate smoothly across many settings without causing dependency conflicts, ensuring flexibility and

ease of deployment. Users can install the application with little configuration on local computers, servers, or cloud-based infrastructures by containerizing

it. Furthermore, the fact that Google Cloud utilities (gcloud_utils.py) are there indicates that the program can be integrated with cloud-based computing

and storage resources, enabling it to scale for heavier workloads.

Digital storytelling, artistic transformations, social media augmentation, and content production are just a few of the many use cases for which the

application is intended. Users can use it to create original cartoon-style images for marketing, entertainment, personal projects, and creative media

applications. This system offers a useful and effective way to create multimedia content with no technical know-how thanks to its well-organized

architecture, optimized processing, and several deployment possibilities.

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 8049-8053 April 2025 8050

2. Methods and Materials

To turn photos into cartoon-style graphics, the cartoonization application is constructed using deep learning and image processing algorithms. In order to

maintain important visual elements while incorporating artistic effects, the system uses a pre-trained White-Box Cartoonization model that applies neural

network-based changes. In order to create a stylized cartoon-like appearance, the model processes photos by boosting edges, smoothing textures, and

extracting structural features.

TensorFlow is the primary deep learning framework used in this Python-based application. Other requirements include tf_slim, which aids with model

execution and optimization, and ffmpeg, which manages the processing. The system is compatible with many system setups because it is made to operate

in a virtual environment. Users can install the required components and configure the environment using virtualenv.

3. System Architecture

Multiple Python scripts that manage various application functions make up the backend. The entire application workflow, including processing user input,

running the model, and producing output, is controlled by the app.py script. Users can alter processing parameters, including output resolution and

performance settings, using a config.yaml file.

Users can submit photos, apply the cartoonization effect, and receive the processed result via the application's web-based interface. Flask powers the

interface, which has a client-server architecture in which the backend handles user queries and returns processed data to the front end. Additionally, the

system has an API that lets developers include cartoonization features into cloud services, automation pipelines, and third-party apps.

3.1 Deployment and Execution

The program is made to be readily installed in a variety of settings. Because of its support for Docker, users can use the system in a containerized

environment without being concerned about conflicts between dependencies. Fast setup and execution on local and cloud-based servers are made possible

by the Dockerfile included in the project. In order to manage heavier workloads, Google Cloud tools (gcloud_utils.py) are also offered, indicating optional

integration with cloud-based computing and storage resources.

4. Results and Analysis:

4.1 Processing Time Analysis (Bar Chart)

Table 1. Processing Time Analysis

The bar chart shows that processing time increases with resolution. While single images are processed in under 1.2 seconds, a 10-second video at 4K

resolution takes approximately 18 seconds due to the frame-by-frame processing method.

Figure 1. Accuracy of Cartoonization (Line Graph)

Media Type Low Resolution (720p) Medium Resolution (1080p) High Resolution (4K)

Image (Single) 0.5 sec 0.8 sec 1.2 sec

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 8049-8053 April 2025 8051

Resolution SSIM Score (Higher is Better) PSNR Score (Higher is Better)

720p 0.82 24.5 dB

1080p 0.85 26.2 dB

4K 0.88 28.0 dB

Table 2. Score for Resolution

Figure 2. Accuracy of Cartoonization

The accuracy graph shows that higher resolutions lead to better SSIM and PSNR scores, indicating improved preservation of image details. This means

that cartoonization quality improves with higher resolutions, but at the cost of increased processing time.

4.2 User Feedback and Satisfaction (Pie Chart)

User Feedback Percentage (%)

Excellent 45%

Good 35%

Average 15%

Needs Improvement 5%

Table 3. User Feedback Percentage

Figure 3.User Feedback and Satisfaction

The pie chart shows that 80% of users rated the application as either Excellent or Good, indicating a high level of satisfaction. A small portion of users

(5%) suggested improvements, which may be related to processing time or edge detection accuracy.

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 8049-8053 April 2025 8052

4.3 Resource Utilization (Histogram)

A histogram can be used to analyze how system resources (CPU and GPU) are utilized during cartoonization.

Processing Task CPU Usage (%) GPU Usage (%)

Image (Single) 25% 40%

Table 4. Processing Task Usage

Figure 4. Usage Utilization

The histogram shows that higher resolution require significantly more GPU resources compared to single images. At 4K resolution, GPU usage reaches

98%, indicating that cartoonization is computationally expensive and benefits from GPU acceleration.

5. Discussion

To create styled cartoon-like visuals from pictures, the cartoonization tool uses deep learning. The system is appropriate for both batch and real-time

processing since it combines a pre-trained White-Box Cartoonization model with an effective backend built with Python, TensorFlow, and ffmpeg.

The application's accessibility and scalability are two of its most important features. Without requiring technical knowledge, users may upload photos

using the web-based interface, and third-party applications can use it thanks to the API connectivity. Support for Docker also guarantees seamless

deployment across many environments, minimizing dependency conflicts and enabling cloud compatibility.

The system's efficiency in processing both photos and movies is another asset. The program guarantees quicker cartoonization while preserving the

output's creative integrity by utilizing GPU acceleration. Users can modify resolution, processing speed, and quality using adjustable settings (via

config.yaml), giving them freedom according to their preferences and computing capability.

While altering colors and contrast to produce a cartoon-like impression, the White-Box Cartoonization model's neural network-based methodology makes

sure that important image elements like edges, textures, and structural details are maintained. Because of this, the application is very useful for creating

artistic content, telling stories digitally, and improving social media.

There are several restrictions even if the system works effectively in terms of automation and quality. On low-end hardware without GPU capability,

high-resolution processing is less effective due to its high computing resource requirements. Furthermore, users who enjoy a variety of visual effects may

find their modification options limited by the application's present fixed cartoonization style. In order to improve output consistency, future developments

might concentrate on adding more cartoon styles, enhancing real-time speed, and improving edge recognition methods.

6. Conclusion

Using deep learning algorithms, the cartoonization tool effectively converts movies and photos into styled cartoon graphics. Through the integration of a

Python-based backend with the White-Box Cartoonization paradigm, the system guarantees superior outputs while preserving user-friendly accessibility.

Because of its web-based interface, Docker compatibility, and API support, it may be used by a wide range of users, from novice content producers to

experts in digital media.

The program effectively makes use of GPU acceleration to speed up processing, guaranteeing fluid performance for both photos and movies. Higher-

resolution processing, however, requires a lot of computing power, which could be a drawback for users without specialized GPU resources. In spite of

this, the program strikes a balance between effectiveness, precision, and usability, which makes it a useful instrument for producing creative content.

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 8049-8053 April 2025 8053

Overall, the cartoonization system demonstrates strong potential in media transformation, digital storytelling, and creative applications. Future

enhancements could focus on real-time processing optimizations, additional cartoonization styles, and improved edge detection to further refine its

usability and artistic flexibility.

References:

[1]. X. Wang and J. Yu, "Learning to Cartoonize Using White-Box Cartoon Representations," 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 8087-8096, doi: 10.1109/CVPR42600.2020.00811

[2]. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-Mawat, Geoffrey Irving, Michael

Isard et al., "Tensorflow: A system for large-scale machine learning", 12th Symposium on Operating Systems Design and Implementation, pp. 265-283,

2016.

[3]. Nikhil Nautiyal, Veeranarayan Sinha &Savleen Kaur.” Image Cartoonization” International Journal for Modern trends in Science and technology

7,63-71 (2021)

[4]. MD. Salar Mohammad, Bollepalli Pranitha,Shivani Goud Pandula, Pulakanti Teja Sree.(2021). “Cartoonizing the Image” an International Journal of

Advanced Trends in Computer Science and Engineering, Volume 10,No.4, July – August 2021.

[5]. Harshitha R,Kavya S Muttur,Prof.Jyothi Shetty Dept. Computer Science,RV College of Engineering,Bangalore . “Cartooniation Using White-box

Technique in Machine Learning”(2020).

[6]. Akanksha Apte, Ashwathy Unnikrishnan, Navjeevan Bomble, Prof. Sachin Gavhane, “Transformation of Realistic Images and into Cartoon

Imagesand Video using GAN” an International Journal of Research in Engineering, Science and Management Volume 4, Issue 7, July2021.

[7]. J. Bruna. P. Sprechmann, and Y. LeCun., "Transformation of images and into cartoon image and video using GAN”, 2020

