
International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 6308-6322 April 2025 

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com ISSN 2582-7421 

 

 

Homotopy Perturbation vs Variational Iteration: Solving the 

“Boussinesq-Kortewege-de Vries (BKDV) Equation 

a Mr. Muhammad Rashid, b Dr. Muhammad Zafer Iqbal, c Muhammad Rashid Iqbal, d Mis. 

Muqaddas Naeem, e Muhammad Baqir Hussain 

a Department of Mathematics and Statistics University of Layyah ,Pakistan. 
b Department of Mathematics and Statistics University of Agriculture Faisalabad, Pakistan. 
c Institute of Southern Punjab, Multan ,Pakistan. 
d Department of Mathematics and Statistics University of Agriculture Faisalabad ,Pakistan. 
e Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan 

 

ABSTRACT 

In this abstract, two semi-empirical techniques, HPM and VIM stand for Homotopy Perturbation Method and Variational Iteration Method, respectively, in the 

solution of the Boussinesq-Korteweg-de Vries (B-KdV) nonlinear partial differential equation (PDE). Numerous ordinary and partial differential equations, both 

linear and nonlinear, can be solved using the flexible Homotopy Perturbation Method (HPM). It allows for the efficient handling of a variety of mathematical 

problems by building a series solution that becomes more accurate the more terms are added. However, the Variational Iteration Method (VIM) focuses on accurately 

solving nonlinear partial differential equations by iteratively addressing exact solutions using a correction functional. In this study, the approximate and exact 

solutions of the B-KdV equation are first derived using the Homotopy Perturbation Method (HPM), which holds.The results from both methods are meticulously 

compared and evaluated, focusing particularly on their computational efficiency and accuracy in simulating the behavior of the B-KdV equation across different 

boundary conditions. This comparative analysis offers valuable insights into the practical utility of HPM and VIM for tackling complex nonlinear PDEs within the 

field of mathematical physics. Furthermore, the study discusses the discrepancies between the numerical solutions derived from HPM and VIM and the exact 

solutions, underscoring the efficacy of these methods in real-world applications. By conducting comparisons under specific boundary conditions, the research 

assesses the discrepancies in errors and gauges the robustness of HPM and VIM in generating dependable approximations for nonlinear PDEs. 

Keywords: Partial differential equation; Tricomi equation; Nonlinear partial differential equation; Homotopy perturbation method, Homotopy analysis 

method, BKDVE, and variational iteration method. 

1 Introduction 

An equation known as a partial differential equation (PDE) explains how a quantity varies in relation to several factors, like time and space. It's an 

essential idea in physics, engineering, mathematics, and other disciplines. PDEs (partial differential equations) with nonlinear systems may have multiple 

alternative solutions. Midway through the 1940s, John von Neumann discovered that numerical methods could be a useful tool for solving PDEs. 

Nowadays, scientific computation is understood as the "greater whole." Numerical techniques for solving partial differential equations PDEs are at the 

heart of scientific computation, which over the past 60 years has shown to be the most efficient way to accomplish complex scientific calculations. Wall 

Street financial models to Main Street traffic models were all influenced by numerical solutions. Specifically, we focus on nonlinear PDEs and give an 

overview of the evolution of these numerical techniques. Examples and applications from real life are creating heat sink designs for electronic equipment. 

Estimating the behavior of tsunami waves. Simulating ocean circulation and weather patterns. Recognizing the progression and management of cancer. 

Modeling epidemiology and population dynamics. Financial derivatives pricing and management. Estimating the spread of pollution in cities. Modeling 

population growth.[1] Ion-acoustic wave nonlinear propagation and bifurcation analysis in a negative ion plasma with quartic nonlinearity present.[2] A 

fresh approach to liquid time-constant network-based nonlinear partial differential equation solution.[3] When employing Newton's Method to solve 

nonlinear time-dependent PDEs, a comparison is made between RBF and FDM.[4] A nonlinear stochastic PDE model of cancer progression with optimal 

control.[5] Current engineering and mathematical physics are investigating new analytical characteristics for certain nonlinear PDEs.[6] Nonlinear 

Schrödinger model in pure cubic form featuring optical multipeaks, homoclinic breathers, periodic-cross-kink, and M-shaped solitons.[7] An approach 

to computational PDEs in higher dimensions based on extreme learning machines.[8] Optical solitons, multiwave, breather and M-shaped solitons for a 

nonlinear Schrödinger equation in (2+ 1)-dimensions with cubic–quintic–septic law.[9] In the thermophoretic motion equation via graphene sheets: 

bifurcation solitons, Y-type, separate lumps, and generalized breather.[10] Time-dependent pdes: implicit brain spatial representations.[11] A neural 

network-based deep Fourier residual approach to PDE solutions.[12] Adaptive trajectory sampling using deep learning techniques to solve PDEs.[13] 

http://www.ijrpr.com/
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Motion using breathers, rogue waves, and rational solitons are examples of optical devices.[14]  An extremely accurate PDE solution technique based on 

neural networks.  

         The homotopy and perturbation techniques were integrated to develop the homotopy perturbation approach, suitable for addressing both initial and 

boundary value problems as well as nonlinear issues. Scientists have been using the homotopy perturbation approach to solve mathematical problems 

more and more in recent years. This method is esteemed for its capability to convert a straightforward, readily solvable problem into a more intricate one 

under investigation through continuous deformation. [15] Mathematical analysis on novel coronavirus model using HPM.[16] A least squares HPM 

critical analysis for nonlinear oscillations.[17] Dynamic nonlinear oscillators with an optimum and modified homotopy perturbation approach.[18] 

investigation of an autonomous conservative oscillator with an enhanced perturbation technique. [19] A remark regarding the use of homotopy 

perturbation in solving the nonlinear coagulation problem to enhance series solutions over extended periods. [20] Wave Propagation and Soliton Behaviors 

Using the Expansion Technique and Sub-ODE Method for the Strain Equation.[21] Heat transfer problems are studied with Python's homotopy 

perturbation approach. [22] Ordinary differential equations: the least square homotopy perturbation approach. [23] Optical soliton solution control for 

higher order applying bilinear form to the Boussinesq equation.[24] By using the polynomial law of nonlinearity and Chupin Liu's theorem, envelope 

solitons, multi-peak solitons, and breathers in optical fibers can be identified.[25] Investigation of lump solutions, rogue waves, and breathers for nonlinear 

atomic chains.In recent work in this area, the variational iteration method has become more significant. First introduced by the Chinese mathematician 

He as an adaptation of the generic Lagrange multiplier method, this approach has proven to be extremely effective in resolving a wide range of problems. 

It is useful for many equations, including Burger's and coupled Burger's equations, shallow water equations, delay differential equations, and coupled 

Schrodinger-KdV equations.[26] A novel analytical method for obtaining the single solutions of a fractionally-order nonlinear evolution equation.[27] 

Multiple solutions for an exponentially diminishing surface with non-linear radiative mixed convective hybrid nanofluid flow.[28] Dynamics study of 

the Korteweg-de Vries equation for (1+ 1)-dimensional time-fractional potential.[29] A macroscopic quasilinear approach to parametric analysis of heat 

flux inhibition in the solar wind.[30] Interactions between solitary wave solutions for the nonlinear Schrödinger-Poisson equation and dark, brilliant, 

parabolic optical solitons using the Hirota technique.[31] hints about the Homann-Agrawal hybrid nanofluid flow's thermodynamic efficiency.[32] The 

Fornberg Whitham equation has several solitary wave solutions, including the Weierstrass and Jacobi elliptic solutions, multiwave, homoclinic breather, 

kink-periodic-cross rational, and others.  

2 Homotopy Perturbation Method 

By examining the various kinds of pathways that can be drawn within a region, a geometric region can be categorized using homotopy. If a path may be 

continually deformed into another, maintaining its defined region and leaving the end points unaltered, then two paths with common endpoints are said 

to be homotopic. In mathematics, perturbation theory describes approximation techniques that start with the solution of a related problem and work their 

way toward a problem's approximate solution. To facilitate problem solving, this is accomplished by decomposing the problem into manageable or 

perturbative components. Resolving a large range of coupled linear and nonlinear equations successfully is possible with the homotopy perturbation 

method (HPM), a semi-analytical solution for linear and nonlinear differential equations [16]. We have investigated the HPM and VIM in this study in 

order to describe the many kinds of nonlinear partial differential equations. In order to present the fundamental concepts of the approach, [34] examined 

the subsequent nonlinear partial differential equation. 

                                             
( ) ( ) 0,A u f r r− = 

                                                            (2.1) 

                                              
( ) ( )A u f r=

                                                                                  (2.2) 

The term "analytic function" which is 
( )f r

 refers to the situation where the generic differential operator is A . 

                                               

( , ) 0,
u

B u r
n


= 

         (2.3) 

The boundary operator is denoted by B and the domain boundary by . r  Indicates that the domain cannot go above. 

                                                
( ) ( ) ( ) 0L u N u f r+ − =

        (2.4)             

 ( , ) : 0,1v r p R  →
 

From Eq. (2.4), we can conclude that 

                                                  
( ) ( ) ( )L u N u f r+ =

         (2.5) 

Let 

                                                  
( ) ( )f r A u=

         (2.6) 
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( ) ( ) ( )A u L u N u= +

         (2.7) 

                                                  
( ) ( ) ( )A u L u N u− =

        (2.8) 

By Homotopy Method   

 ( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0, 0,1 ,oH u p p L v L u p A v f r p r= − − + − =  
    (2.8*) 

or 

                         
( , ) ( ) ( ) ( ) ( ) [ ( ) ( )] 0o oH v p L v L u pL v pL u p A v f r= − − + + − =

   (2.9) 

                         
( , ) ( ) ( ) ( ) [ ( ) ( )] ( ) 0o oH v p L v L u pL u p A v f r pL v= − + + − − =

    (2.10) 

                        
( , ) ( ) ( ) ( ) [ ( ) ( ) ( )] 0o oH v p L v L u pL u p A v L v f r= − + + − − =

   (2.11) 

                        
( , ) ( ) ( ) ( ) [ ( ) ( )] 0o oH v p L v L u pL u p N v f r= − + + − =

       (2.12) 

Where 
 0,1p

 

                                                
( ,0) ( ) ( ) 0oH v L v L u= − =

       (2.13) 

                       
( ,1) ( ) ( ) ( ) [ ( ) ( )] 0o oH v L v L u L u N v f r= − + + − =

       (2.14) 

                                               
( ,1) ( ) [ ( ) ( )] 0H v L v N v f r= + − =

     (2.15) 

                                               
( ,1) ( ) [ ( ) ( )] 0H v L v N v f r= + − =

     (2.16) 

Assume 

                                               

2 3

1 2 3 ...ov v pv p v p v= + + + +
        (2.17) 

Setting 
1p =

 

                                               

( )1 2 3
1

lim ...o
p

u v v v v v
→

= = + + + +
       (2.18)  

2.1 Utilizing the Homotopy Perturbation Approach for the Boussinesq Korteweg de Vries: 

                                               
0,xt x xxx xxxxxu uu u u  − + − =

        (2.19) 

Subject to the following initial condition, 

                                                

( ,0)
( ,0) ( ), ( )

u x
u x f x g x

t


= =

        (2.20) 

                                                 

(0, )
(0, ) ( ), ( )

u t
u t f t g t

x


= =

       (2.21) 

To solve (2.19) with the initial condition (2.20): 

                              

22 2 3 5

2 2 3 5
(1 ) 0

uu u u u u
p p u

x x x t x x x

   
       

− − + − + − =   
            (2.22) 

Simplifying: 
2 22 2 2 3 5

2 2 2 2 3 5
0

u uu u u u u u
p p p p u p p

x x x x x t x x x

    
      

− − + + − + − =
            (2.23)   

2 22 2 2 3 5

2 2 2 2 3 5

u uu u u u u u
p p p p u p p

x x x x x t x x x

    
      

− = − − + − +
            (2.24) 

With initial approximation: 

                                                      
( , ) ( ) ( )ou x t f x g x t= + 

       (2.25) 

Let the solution of eq. (2.19) has the form: 
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2 3

1 2 3 ...ov v pv p v p v= + + + +
      (2.26) 

Put eq (2.26) in (2.24) 

2 2 2 2 22 2 2 2
2 3 2 33 31 2 1 2

2 2 2 2 2 2 2 2 2

2 2 22 2
2 3 2 33 31 2 1 2

1 2 32

3 3 3
21 2

3 3

[
u u u u uu u u u

p p p p p p
x x x x x x x x x

u u u u uu u u u
p p p u p u p u p u

x x t x t x t x t x x x x

u u u
p p

x x

  

  




   

  

       
+ + + − = + + + −

        

       
− − − − + + + + −

            

  
− −

  

3 5 55 5
3 2 33 31 2

3 3 5 5 5 5
]

u u uu u
p p p p

x x x x x x

    
   

− + + + +
      (2.27) 

                            

Comparing co-efficient of identical degrees of p: 

                                         

2 2

2 2
: 0

u u
p

x x

   
− =

           (2.28) 

                                          

2 3 52
1 1

2 3 5
:

u u u uu
p u

x x t x x x

   
  

   
= − + − +

          (2.29) 

                                          

2 2 2 3 5
2 2 1 1 1 1 1

12 2 3 5
:

u u u u u u
p u

x x x t x x x
  

     
= − + − +

           (2.30) 

                                          

2 52 2 3
3 3 32 2 2 2

22 2 3 5
:

u uu u u u
p u

x x x t x x x
  

    
= − + − +

           (2.31) 

And so on… 

For simplicity, we’ll take: 

                                                       
( ) ( )o ov u f x g x t= = + 

       (2.32) 

respectively, we have: 

2 3 5

1 3 50
0

( , ) ( , ) ( , ) ( , )
( , )

t
t

o o o o
o

u x u x u x u x
v u x d dt

x x x x

   
    



    
= − + − + 

     
 

   (2.33) 

2 2 3 5

1 1 1 1 1
2 12 3 50

0

( , ) ( , ) ( , ) ( , ) ( , )
( , )

t
t u x u x u x u x u x

v u x d dt
x x x x x

    
    



     
= − + − + 

      
 

  (2.34) 

2 2 3 5

2 2 2 2 2
3 22 3 50

0

( , ) ( , ) ( , ) ( , ) ( , )
( , )

t
t u x u x u x u x u x

v u x d dt
x x x x x

    
    



     
= − + − + 

      
 

 (2.35) 

Thus, one can derive the approximate solution of equation (2.19) by setting p=1, 

                                                1 2 3 ...ou v v v v= + + + +
         (2.36) 

Boussinesq Korteweg de Vries 5th Order Equation by Homotopy Perturbation method: 

Example 01: 

                                                   
3 5 2 0,xt x xxx xxxxxu uu u u− + − =

      (2.37) 

Connected to the subsequent initial state 

                                                   

( )
( )2

,0
,0 , 0

u x
u x x

t


= =

        (2.38) 

For the unique case where the partial derivative and u are not dependent on the equation (2.37), we have utilized homotopy perturbation. We build the 

following homotopy in accordance with the homotopy perturbation in order to solve equation (2.37) given initial conditions. 

                             

( )
22 2 3 5

0

2 2 3 5
1 3 5 2 0

uu u u u u
p p u

t t x t x x x

       
− − + − + − =   

             (2.39) 

or 

2 22 2 2 3 5

0 0

2 2 2 2 3 5
3 5 2 0

u uu u u u u u
p p p pu p p

t t t t x t x x x

      
− − + + − + − =

             (2.40) 

2 22 2 2 3 5

0 0

2 2 2 2 3 5
3 5 2 0

u uu u u u u u
p p p pu p p

t t t t x t x x x

      
− = − − + − + =

            (2.41) 

With initial approximation
( ) ( )0u f x g x t= +

, 
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2( , )ou x t x=
        (2.42) 

Suppose that the solution of (4.1) has of the form 

                                              

2 3 4

0 1 2 3 4 ...u u Pu P u P u P u= + + + + +
      (2.43) 

Put (2.43) in (2.41) we get comparisons coefficient of identical degree of 

For simplicity we take 

                                                       
( ) ( )0u f x g x t= +

.       (2.44) 

Accordingly we have 

2( , )ou x t x=
,

( , )
2ou x

x
x


=

  , 

2 ( , )
0ou x

x






=

  , 

2

2

( , )
2ou x

x


=

 , 

( )3

0

3

,
0

u x

x


=

 ,

( )4

0

4

,
0

u x

x


=

 ,

( )5

0

5

,
0

u x

x


=

            (2.45) 

By (2.45) putting these values in (2.33) then get first approximation 

                                             
( ) 3 2

1 , 3u x t x t=
         (2.46) 

Similarly use this process to find 2u
… 

                                           

3 2 2 3 5 6 4

2

27 15
( , ) 3 3

10 2
u x t x t x t x t t= + + −

       (2.47) 

 

3 2 5 6 4 4 4 6 7 10 3 8 6 11 9 14

3

2 8 9 4 12 8

27 3 9 162 27 1701 729
( , ) 3 15

5 2 5 15 28 1100 3640

1755 5 405 81

112 8 528 7

u x t x t x t t xt x t x t x t x t x t

x t xt x t t

= + − − + + + + +

− − − +
 (2.48) 

So the 3rd order approximation solution                                                                                                               

                                              
( ) 0 1 2 3, ( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t u x t= + + +

     (2.49) 

Put (2.42),(2.46),(2.47),(2.48) in equation (2.49) 

2 6 30 4 24 70 66 126

16 48 8

81 45 681430373 387 54 1701 229
( , ) 12

10 2 134217728 140 5 1100 3640

1755 135 81

112 176 7

u x t x xt xt t xt xt xt xt

xt xt t

= + + − − + + + +

− − +
 (2.50) 

This is an exact solution: 
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Figure 3.1: The 3D wave profile of u(x,t) with particular intervals. 

To determine 3D wave profile of u(x,t) with particular intervals we use equation (2.50) for the function u(x,t).Figure 3.1 above shown 3D wave profile 

of u(x,t) with particular intervals for -1 ≤ x,t ≥ 1 

 

Figure 3.2: The 3D wave profile of u(x,t) with particular intervals. 

To determine 3D wave profile of u(x,t) with particular intervals we use equation (2.50) for the function u(x,t).Figure 3.2 above shown 3D wave profile 

of u(x,t) with particular intervals for -2 ≤ x,t ≥ 2 

Boussinesq Korteweg de Vries 5th Order Equation by Homotopy Perturbation method: 

Example 02: 

                                                       

1
4 13 0

5
xt x xxx xxxxxu uu u u− + − =

     (2.51)  

With the initial 

                                                       

(0, )
(0, ) 1, 2

u t
u t t

x


= + =

        (2.52) 

For particular circumstances where the coefficients in (2.51) do not depend on the partial derivative and u, we have used the homotopy perturbation 

approach.  

Using the homotopy perturbation approach, we construct the following homotopy to solve equation (2.51) given the initial condition: 

2 22 2 2 3 5

2 2 2 2 3 5

1
4 13

5

u uu u u u u u
p p p pu p p

x x x x x t x x x

       
− = − − + − +

            (2.53) 

 With initial approximation 

                                               
( ) ( )0u f x g x t= +

        (2.54) 
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( , ) 1 2u x t t x = + +

        (2.55) 

Assume that the form of equation (4.5)'s solution 

                                               

0 1 2 3 4

0 1 2 3 4 ...u p u p u p u p u p u= + + + + +
      (2.56) 

For simplicity we take 

                                                            
( ) ( )0 .u f x g x t= +

         (2.57) 

Accordingly we have  

( , ) 1 2u x x  = + +
,

( , )
0 0 2

u x
x

x

 
= + +

 ,

( , )
2

u x

x

 
=

 ,

2 ( , )
0

u x

x t

 
=

  ,

2

2

( , )
0

u x

x

 
=

 , 

5

5

( , )
0

u x

x

 
=

 , 

3

3

( , )
0

u x

x

 
=

          (2.58) 

 

By using equation (2.58) and (2.33) the solution reads as 

2 3 5

1 3 5

0 0

( , ) ( , ) ( , ) ( , )1
4 ( , ) 13

5

t t
u x u x u x u x

u u x d dt
x t x x x

   


   
 

    
= − + − + 

     
 

 

                                                              

3
2

1

20
( , ) 4

3

x
u x t x= +

       (2.59) 

Similarly process used this to get 

                                                 

3 7 6 5

2

40 1600 860 128
( , )

3 21 9 5

x x x x
u x  = + + +

     (2.60) 

7 6 5 11 10 9
3

3

15 14 13 12 4

16000 800 4864 422392 3200 8192
( , ) 277360

21 9 15 3465 3 27

152000 8320000 13383680 56320 3119616

189 1323 2457 27 5

x x x x x x
u x t x

x x x x x

= + − − + + +

+ + + + +
 (2.61) 

So the 3rd approximation solution is 

                                                  1 2 3( , ) ( , ) ( , ) ( , ) ( , )ou x t u x t u x t u x t u x t= + + +
    (2.62) 

Put (2.55),(2.58),(2.59),(2.60) in equation (2.62) 

7 6 5 11 10
3 2

9 15 14 13 12 4

17600 20 896 422392 3200
( , ) 1 2 277380 4

21 3 3 3465 3

8192 152000 8320000 13383680 56320 3119616

27 189 1323 2475 27 5

x x x x x
u x t t x x x

x x x x x x

= + + + + + + − + +

+ + + + + +
 (2.63) 

This is an exact solution. 
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Figure 2.3: The 3D wave profile of u(x,t) with particular intervals. 

To determine 3D wave profile of u(x,t) with particular intervals we use equation (2.63) for the function u(x,t).Figure 2.3 above shown 3D wave profile 

of u(x,t) with particular intervals for -1 ≤ x,t ≥ 1 

 

Figure 2.4: The 3D wave profile of u(x,t) with particular intervals. 

To determine 3D wave profile of u(x,t) with particular intervals we use equation (2.63) for the function u(x,t).Figure 2.4 above shown 3D wave profile 

of u(x,t) with particular intervals for -10 ≤ x,t ≥ 10 

 

Figure 2.5: The 3D wave profile of u(x,t) with particular intervals. 

To determine 3D wave profile of u(x,t) with particular intervals we use equation (2.63) for the function u(x,t).Figure 2.5 above shown 3D wave profile 

of u(x,t) with particular intervals for -20 ≤ x,t ≥ 20 

3 Variational Iteration Method 

 He was a Chinese mathematician who developed the VIM, a computational technique that solves many linear and nonlinear problems with ease. It 

delivers analytical answers without discretization and requires little memory or processing capacity (Inc, 2008). 

The 2differential equation that follows should be considered. 

                                                         
( )Lu Fu g t+ =

        (3.1) 

In this case, the heterogeneous term is
( )g t

, the nonlinear operator is F, and the linear operator is L. 

Note: A heterogeneous phrase has different sorts and is made up of components with vastly disparate elements or constituents. 

The Variational Iteration Method states that a correction functional has the following form: 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 6308-6322 April 2025                                     6316 

 

 

                                              

( )1

0

( ) ( ) ( ) ( ) ( )

t

n n n nu t u t Lu Fu g d    + = + + −
    (3.2) 

Note:   is a general Lagrange multiplier and the variational theory allow for its optimal identification. The subscript n  represents an 
thn  

approximation and nu
 is regarded as a limited variant, i.e. 

0nu =
 

                                                             1 0ku + =%
       (3.3) 

From (3.3) we find out Lagrange Multiplier 

                                              

( ) ( ) ( ) ( ) ( )1

0

,

t

k k k ku u t Lu Fu g d        + = + + −  % % % %

 

                                              

( ) ( ) ( ) ( ) ( )1

0

,

t

k k k ku u t Lu Fu g d         + = + + −  % % % %

 

                                              

( ) ( ) ( )( ) ( )( ) ( )1

0

.

t

k k k ku u t L u F u g d         +
 = + + − % % % %

   (3.4) 

Equation (3.4) cleared that the value of , 

If m 1=    then   1 = −  

If m 2=    then    = −  

                                    

( )

( )
( )

1

!  

1

1

m

m
t

m
 

−−
= −

−
  for, 1m  .    (3.5) 

Putting the (3.5) into (3.4) then we can have 

                                     

( )
( )

( )
( ) ( ) ( ) ( )

1

1

0

1

1 !  

mt
m

k k k ku u t t Lu Fu g d
m

    
−

+

−
= + − + −  −% % % %

  (3.6) 

Now, if we define the operator 

                                      

( )
( )

( )
( ) ( ) ( ) ( )

0

1 1
.

1 !  

t
m

m
G u t Lu Fu g d

k km
    

− −  = − + −  −
% % %

            (3.7) 

Additionally, specify the elements
v
k

%
, K=0,1, 2,3… as 

                                              0 0v u=% %
          (3.8) 

                                              
( )1 0v G u=% %

         (3.9) 

                                              
( )1 0 1 2 ...k kv G u u u u+ = + + + +% % % % %

      (3.10) 

Consequently, the answer to (3.2) can be found as 

                                              

( ) ( ) ( )
0

, lim , ,k k

k

u x y u x y v x y
k



=

= =
→

% % %

      (3.11) 

The truncated series / The abbreviated sequence 
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( ) ( )
0

, ,k

k

u x y v x y


=

=% %

      (3.12) 

can be applied to roughly determine the precise solution of (3.2): 

The problem's initial guess (2.20) should be selected to satisfy the provided initial and boundary requirements. 

Boussinesq Korteweg de Vries 5th Order Equation by Variational Iteration Method: 

Example 03: 

                                                           
3 5 2 0xt x xxx xxxxxu uu u u− + − =

      (3.13) 

                                                           

2 ( ,0)
( ,0) , 0

u x
u x x

t


= =

       (3.14) 

Solution: Here we have 

                                                            

,
u

Lu
x


=


2Nu u= ,
( ) 0g t =

      (3.15) 

To determine the Lagrange multiplier, we insert these expressions and obtained 

2 3 5

1 3 5

0

( , ) ( , ) ( )[ ( , ) 3 ( , ) ( , ) 5 ( , ) 2 ( , )]

t

n n n n n n n

u u u u
u x t u x t u x u x u x u x u x d

x t x x x
       +

   
= + − + −

    
 (3.16) 

The Lagrangian multiplier can be identified by the formula: 

                                                            

( )
1( 1)

( )
( 1)!

n
n

t
n

  
−−

= −
−

       (3.17) 

As Boussinesq Korteweg de vries is an fifth order nonlinear partial differential equation, so put  𝑛 = 5 in above equation to get: 

                                                            

41
( ) ( )

24
t  

−
= −

        (3.18) 

From equation (5.28) and Put n=0 in equation (5.26) and we get 

 

2 3 5
4

1 3 5

0

( , ) ( , ) ( , ) ( , )1
( , ) ( , ) ( ) [ 3 ( , ) 5 2 ]

24

t

o o o o
o o

u x u x u x u x
u x t u x t t u x d

x t x x x

   
  

   − 
= + − − + − 

     


    (3.19) 

We have to choose a starting function,
( )0 ,u x t

: 

which satisfies the given initial condition: 

                                                                  

2( , )ou x t x=
       (3.20) 

we compute the following successive approximations: 

2 3 5
4

1 3 5

0

( , ) ( , ) ( , ) ( , )1
( , ) ( , ) ( ) [ 3 ( , ) 5 2 ]

24

t

o o o o
o o

u x u x u x u x
u x t u x t t u x d

x t x x x

   
  

   − 
= + − − + − 

     


(3.21) 

2 3 5 2
2

2 3 5

( , ) ( , ) ( , ) ( , ) ( , )
( , ) , 2 , 2, 0, 0, 0o o o o o

o

u x u x u x u x u x
u x t x x

x x x x x t

        
= = = = = =

        (3.22) 

Put (3.22) of all values in equation (3.21) we get 

                                                         

2 4 2

1

0

1
( , ) ( ) 3 (2 )

24

t

u x t x t x x d  = − − − 
     (3.23) 
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2 4 3

1

0

1
( , ) ( ) 6

24

t

u x t x t x d  = − − − 
     (3.24) 

                                                         

2 5 3

1

1
( , )

20
u x t x t x= +

       (3.25) 

Similarly 

2 3 5
4 1 1 1 1

2 1 1 3 5

0

( , ) ( , ) ( , ) ( , )1
( , ) ( , ) ( ) [ 3 ( , ) 5 2 ]

24

t
u x u x u x u x

u x t u x t t u x d
x t x x x

   
  

   
= − − − + −

    
 

2 5 3 4 4 2 2 5 3 5 2 5

2

0

1 1 15 1 3 6
( , ) ( ) [ 3 2 5 2(0)]

20 24 20 20 20 20

t

u x t x t x t t x x t x x t x t d 
    

= + − − − + + + −    
    



2 5 3 15 5 10 4 9 2

2

1 1 1 1
( , )

10 16016000 40320 20160
u x t x t x t x t x t x= + + + −

     (3.26) 

 

2 5 3 15 5 10 4 9 2 29 6

3

13 15 25 7 24 5

23 3 20

1 23 1 1 1
( , )

20 73382400 13440 6720 219108105216000000

1 1 76151 1

13440 40320 3087855074304000000 230329516032000

18 1 733

27351630288000 124156032000 25

u x t x t x t x t x t x t x

t x t x t x t x

t x t

= + + + − −

+ − + −

+ + + 20 6

20 2 19 4 14 3 10

35 9 30 8

540669440000

1 1 1 1

99324825600 17643225600 151351200 10080

1 1

666176693518336000000 409001796403200000

t x

t x t x t x t

t x t x

− − − −

+ +
    (3.27) 

Hence similarly: 

                                              1 2 3( , ) ( , ) ( , ) ( , ) ( , )ou x t u x t u x t u x t u x t= + + +
     (3.28) 

Put (3.20),( 3.25),( 3.26),( 3.27) in equation (3.28) 

2 15 75 40 18 1741 1517 29560957 1 1
( , ) 4

5 403603200 29560957 5040 219108105216000000

2591894727475201

1210062637248145317386165503396495113128862185127149568000000000000000

76151

3087855074304000

u x t x t x t x t x t x t x= + + + − −

+

+ 175 120 69

20 76 42 10

315 240

69286669 1

000 2417884094545920000 1519535016000

1 1 1 1

124156032000 17643225600 151351200 10080

1 1

666176693518336000000 409001796403200000

t x t x t x

t t x t x t

t x t x

− +

+ − − −

+ +
  (3.29) 

This an exact solution. 
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Figure 3.1: The 3D wave profile of u(x,t) with particular intervals. 

To determine 3D wave profile of u(x,t) with particular intervals we use equation (3.29) for the function u(x,t).Figure 3.1 above shown 3D wave profile 

of u(x,t) with particular intervals for -1 ≤ x,t ≥ 1 

4. Results and Discussion 

This chapter includes solved numerical examples of nonlinear fifth-order BKdVEPDEs with constant coefficients. The iterative methods employed are 

the variational iteration approach and the HPM. 

Rather than using discretization or linearization, these techniques produce the solution as an infinite series.These methods provide a series or iterative 

solution that can be refined to achieve the desired accuracy. carefully examined the iterative formulations of the aforementioned methods and confirmed 

that the resulting series of solutions converges. 

Both linear and nonlinear PDEs can be analytically solved using the HPM approach.By creating a progressive translation from a known linear operator 

to the target differential equation, the Homotopy Perturbation Method (HPM) produces a series solution for differential equations. It involves breaking 

down the problem into simpler parts and perturbing the solution iteratively. The method is based on the concept of homotopy, where a continuous 

transformation is applied to map the given problem to a simpler one for which a solution is known. HPM can accurately provide both approximate and 

exact solutions for a broad spectrum of linear and nonlinear PDEs, particularly demonstrating high precision in cases involving small perturbation 

parameters. HPM is particularly useful for handling weakly nonlinear problems, as it avoids linearization and provides accurate results. 

           A computer technique called VIM is used to solve a wide range of differential equations and PDEs, including both linear and nonlinear forms. It 

is based on the concept of variance iteration, which seeks an approximate solution by gradually refining an initial guess through an iterative process. VIM 

follows a Lagrange multiplier to impose boundary conditions, resulting in an accurate solution within a few iterations. VIM is versatile and widely able 

to solve various differential equations. In summary, HPM and VIM are analytical methods that construct approximate solutions through different 

approaches, while VIM is a numerical method that iteratively refines an initial guess to obtain an accurate solution. Each method has its advantages and 

is suitable for different types of differential equations and problem scenarios. They effectively produced approximate and correct solutions to several 

nonlinear problems from the literature without the use of any arbitrary functions. Ultimately, they solved the well-known nonlinear problem known as 

the PDE problem by applying every aforementioned iterative strategies. Comparative study has been done to determine the semi-analytical solution of 

the partial differential problem given beginning circumstances. An infinite series that quickly converges inside its designated domain is the partial 

differential equation's solution. In terms of propagation coordinates and time, this sort of solution provides an exact description of the beam's acoustic 

pressure. This kind of solution has been providing new insights into how the confined beam passes through the nonlinear material since it hasn't been 

found before. This study looked into a nonlinear partial differential problem using the HPM approach.  

               The HPM, in contrast to previous approaches, offers precise numerical solutions for nonlinear problems without requiring large amounts of 

computer memory or the discretization of variables t and x. The outcomes demonstrate how well the HPM approach works for resolving nonlinear PDE. 

Using Maple software, computational analyses were carried out results u3(x,t) and u(x,t) give negative answer on different values of x and t from table 

01.Similarly when we apply VIM and results u3(x,t) and u(x,t)  are positive answer same values(from table 03) of x and t already used in table 01 . 

Moreover, nonlinear PDE were solved using the VIM without the need for tiny parameters or linearization strategies. By using variational iteration theory, 

the solution process is quite straightforward, and a small number of iterations result in highly accurate solutions within a defined zone of convergence . 

The Variational Iteration method solution cannot be relied upon when the solution is required outside of the convergence zone. The use of the approach 

in this study results in a treatment that widens the zone of convergence. The HPM and VIM have proven highly useful for solving PDEs, yielding 

remarkable results in various applications, thereby suggesting their potential as valuable methods for diverse practical uses. All of the examples 

demonstrated the great agreement between the findings of the current approaches and the precise answers. In certain circumstances, it can reach the 

desired outcomes with the least iteration, or even only one. 
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Table 1.1: The solution of equation (2.48) and (2.50) for different value of x and t. 

𝒙 𝒕 Approximate Solution 𝒖𝟑 (𝒙, 𝒕) 

(HPM) 

Exact solution 

𝒖 (𝒙, 𝒕)(HPM) 

Error 

0.01 0.02 −5.077054315 −5.076955515 0.00009880 

0.001 0.002 −5.077051915 −5.077050915 0.00000100 

0.03 0.04 −5.077090313 −5.076209506 0.00088080 

0.003 0.004 −5.077051919 −5.077042921 0.00000899 

Table 1.2: The solution of equation (2.61) and (2.63) for different value of x and t. 

𝒙 𝒕 Approximate Solution 𝒖𝟑 (𝒙, 𝒕) 

(HPM) 

Exact solution 

𝒖 (𝒙, 𝒕)(HPM) 

Error 

0.009 0.008 1.2062889810 1.232627562 0.02633851 

0.20 0.10 3217.057698 3217.892982 0.835284 

0.23 0.12 5122.437196 5122.505353 0.068157 

0.22 0.11 4416.771812 4416.731892 0.03992 

 

Table 1.3:The solution of equation (3.25) and (3.27)  for different value of x and t. 

𝒙 𝒕 Approximate Solution 𝒖𝟑 (𝒙, 𝒕) 

(VIM) 

Exact solution 

𝒖 (𝒙, 𝒕)(VIM) 

Error 

0.01 0.02 0.0001 0.0004 0.0003 

0.001 0.002 0.000001 0.000004 0.000003 

0.03 0.04 0.0009 0.0036 0.0027 

0.003 0.004 0.000009 0.000036 0.000027 

5. Conclusions 

 In this work, we have achieved an approximation for solution of hyperbolic partial differential equation by applying homotopy perturbation and 

variational iteration method. VIM is a numerical method that iteratively refines an initial guess to reach an accurate answer, whereas HPM and VIM are 

analytical methods that generate approximate solutions using distinct methodologies. Every approach has benefits and works well with various kinds of 

differential equations and circumstances. They successfully created approximate and accurate solutions to several nonlinear problems from the literature, 

without the use of any arbitrary functions. In the end, they solved the well-known nonlinear problem known as the PDE problem by applying each of the 

aforementioned iterative strategies. 

The partial differential problem's semi-analytical solution under initial conditions is found by a comparative investigation to be an infinite series with 

quick convergence within the domain. This type of solution offers a more precise expression of the beam's acoustic pressure in terms of time and 

propagation coordinates. Since this type of solution has not been identified previously, it has been offering new insights into the way the confined beam 

flows through the nonlinear material. According to the results, the HPM yielded exceptionally high-quality results. This work developed the capacity to 

approximate a partial differential equation solution through the application of the homotopy perturbation technique. Because of its rapid convergence and 

low computational burden, the homotopy perturbation method emerges as a more reliable solution that greatly accelerates the PDE solution process.  

It is significant to remember that the results in Examples 1-3 are identical to those of the homotopy perturbation approach. In Chapter numerical results 

discusses many examples of nonlinear partial differential equation i.e., Boussinesq Korteweg de vries equation, using the HPM and the VIM to find the 

approximate and exact solution. Examples 1 to 02 have been solved by using the Homotopy perturbation method with some initial condition. Then HPM 

technique has been applied. To precede the solution, identical degrees of “p” has been compared and found out the equation for integration with the limit 

0 to t. the initial approximation have been used and replaced the variable “t” with "𝜏". After found out the relevant partial derivatives, integral has been 

solved for first iteration as 𝑢1(𝑥, 𝑡). Proceed the solution similarly for 𝑢2(𝑥, 𝑡) and 𝑢3(𝑥, 𝑡) where the approximate solution is 𝑢3(𝑥, 𝑡)  and  𝑢(𝑥, 𝑡)  is 

the exact solution. 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 6308-6322 April 2025                                     6321 

 

 

Similarly,example 03 have been solved by using the Variational Iteration method with some initial condition. Then HPM technique has been applied. To 

precede the solution, identical degrees of “p” has been compared and found out the equation for integration with the limit 0 to t. the initial approximation 

have been used and replaced the variable “t” with "𝜏". After found out the relevant partial derivatives, integral has been solved for first iteration as 𝑢1(𝑥, 𝑡). 

Proceed the solution similarly for 𝑢2(𝑥, 𝑡) and 𝑢3(𝑥, 𝑡) where the approximate solution is 𝑢3(𝑥, 𝑡)  and  𝑢(𝑥, 𝑡)  is the exact solution. 
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