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ABSTRACT 

Cross-age face recognition (CAFR) is a multifaceted system designed to detect, recognize, and analyze faces across varying age groups while also estimating the 

age of individuals from facial images.In the initial phase, face detection is per- formed using advanced deep learning models, such as MTCNN or SSD, to locate 

and extract facial regions from input images. Next, the age estimation module employs deep convolutional neural networks (CNNs) or regression-based mod- els 

to predict the age of the individual based on facial features, accounting for changes due to natural aging. Finally, the face recognition component utilizes deep 

learning techniques, such as FaceNet or ArcFace, to extract age-invariant features, ensuring accurate identification of individuals across different age spans. The 

system leverages large-scale, longitudinal facial image datasets (e.g., CACD, MORPH, or FG-NET) for training and validation to enhance robustness against age-

related variations. A comprehensive pipeline including preprocessing (face alignment and normalization), feature extraction, and classification is imple- mented to 

ensure optimal performance. Performance evaluation metrics include accuracy, precision, and recall for face detection and recognition, as well as mean absolute 

error (MAE) for age estimation. 
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1. Introduction 

The advancement in facial analysis technologies has led to significant progress in cross-age face recognition, face detection, and age estimation tasks, 

each addressing unique challenges associated with facial variations over time. These components, often studied in isolation, have seen robust integration 

through deep learning models that extract identity-sensitive, age-invariant features while estimating an individual’s age from facial images. 

Cross-age face recognition (CAFR) has emerged as a significant challenge in facial analysis due to the natural aging process, which introduces changes 

in facial appear- ance, such as skin texture, shape, and features over time. The task involves recognizing individuals across different age spans while 

ensuring that identity-sensitive features remain unaffected by age variations. Recent advancements leverage multi-task learn- ing frameworks to jointly 

address face recognition, face detection, and age estimation, improving overall performance by exploiting task correlations. For example, Joint Multi-

Task CNN (JMCNN) employs a shared CNN backbone for identity recogni- tion and age classification, using a regularization term to enhance identity-

sensitive features while suppressing age-related noise[1, 3]. Similarly, MTLFace introduces an attention-based feature decomposition strategy to extract 

age-invariant and age- sensitive features while enabling face age synthesis for improved interpretability[1]. These multi-task approaches demonstrate that 

combining face recognition with age estimation enhances accuracy, as both tasks are inherently related. 

Face detection remains a foundational step for CAFR and age estimation tasks. Robust detection models, such as Multi-task Cascaded Convolutional 

Networks (MTCNN), have been employed to locate and align facial regions accurately, serv- ing as input for subsequent tasks. In addition, recent methods 

integrate detection and recognition pipelines to optimize performance in real-world scenarios. Face detec- tion enables models to handle variations caused 

by aging, occlusions, and illumination changes, which are critical for reliable recognition and age estimation[1]. 

Age estimation has become an equally important aspect of facial analysis, as it provides complementary information to face recognition. Modern 

approaches such as Relative Age Position Learning reweight input features based on their age importance to predict both absolute and relative ages 

accurately. The incorporation of gender prediction within multi-task frameworks has further improved generalizability, as gen- der is a strong indicator 

of facial aging patterns. For instance, studies have shown that models pretrained on face recognition tasks achieve superior performance in age estimation, 

emphasizing the correlation between these tasks. By leveraging shared fea- tures, multi-task networks can simultaneously optimize for age and identity, 

thereby boosting recognition robustness across age groups[2]. 

The integration of face recognition, face detection, and age estimation into unified frameworks has addressed the challenges posed by cross-age variations. 

Multi-task learning strategies, feature recalibration mechanisms, and generative approaches have collectively enhanced system performance, enabling 

robust and scalable solutions for real-world applications[1–3]. These advancements underscore the importance of task interdependencies in improving 

facial analysis accuracy across diverse datasets and age groups. 
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A novel age adversarial convolutional neural network (AA-CNN) that combines identity recognition and age discrimination networks. By leveraging 

adversarial train- ing, this model ensures the features extracted are identity-sensitive while being invariant to age variations. It also employs a pyramid 

architecture for feature fusion to enhance the adversarial process, resulting in more robust age-invariant features. The AA-CNN model has demonstrated 

superior performance across multiple bench- mark datasets, such as FG-NET and MORPH Album 2, by addressing the scarcity of datasets labeled with 

both identity and age[4]. 

The Parallel Multi-path Age Distinguish Network (PMADN), focuses on mapping facial features into age-specific subspaces and then recombining these 

features non- linearly to extract robust age-invariant features. This framework avoids the traditional linear combination of identity and age features, which 

often fails to capture the non- linear and individual-specific nature of aging patterns. By adopting transfer learning and pre-trained face recognition 

networks, PMADN effectively utilizes datasets with only age labels, reducing reliance on data with both identity and age annotations[5]. The Age Factor 

Removal Network (AFRN) takes a different perspective by inte- grating transfer learning with adversarial learning. It incorporates a feature generator 

and an age discriminator to suppress age-related information while retaining identity- sensitive features. The AFRN architecture introduces a novel loss 

function that combines transfer loss to preserve discriminative identity features and adversarial loss to eliminate age-sensitive components. This model 

shows robustness not only for CAFR but also for other practical variations like pose and expression changes[6]. 

Cross-age face recognition (CAFR) remains a significant challenge in computer vision due to the complex and diverse variations in facial appearance 

caused by aging. Unlike traditional face recognition tasks, CAFR systems must contend with intrinsic factors such as genetics and gender, as well as 

extrinsic influences like lifestyle and envi- ronmental exposure, all of which contribute to substantial changes in facial structure and texture over time. 

These factors lead to large intra-class variations, complicat- ing the task of distinguishing identity across different age spans[7, 9].The challenge of CAFR 

is compounded by the limited availability of datasets that adequately repre- sent large age gaps across individuals. Existing datasets often suffer from 

imbalance in terms of gender, ethnicity, and age span, as well as the difficulty of collecting images of the same individual over extended periods[7, 9]. 

Consequently, there is a pressing need for models that not only generalize well to new age variations but also address issues such as occlusion, pose 

differences, and varying lighting conditions[8, 9]. 

Recent advances in generative adversarial networks (GANs) and deep learning have paved the way for innovative solutions in CAFR. These include 

frameworks that disentangle age-specific and identity-specific features, enabling the generation of age-invariant representations and realistic age-

progressed or age-regressed facial images. For example, models such as the Age-Invariant Model (AIM) unify cross- age face synthesis and recognition 

tasks, leveraging adversarial learning to enhance performance under varying conditions[7, 8]. 

”Wasserstein Divergence GAN with Cross-Age Identity Expert and Attribute Retainer for Facial Age Transformation” introduces an advanced generative 

framework for facial age transformation, addressing challenges in preserving both identity and attributes across age variations. The authors propose a 

novel Wasserstein Divergence GAN (WGAN-div) architecture, which incorporates an encode-decode generator, discriminator, identity expert, and 

attribute retainer to ensure accurate age trans- formation while maintaining the subject’s identity and image attributes. Unlike conventional methods that 

adopt specific identity preservation and attribute reten- tion strategies without justification, this study conducts a comprehensive evaluation of state-of-

the-art pretrained models to select the optimal components for identity and attribute preservation, such as VGG-Face, VGG-Face2, LightCNN, and Arc- 

Face for identity preservation, and VGG-Face, DEX, and VGG-Object for attribute retention[8]. 

Despite these advancements, key challenges remain. Some methods assume inde- pendence between age and identity features, which may not hold under 

real-world conditions. Others rely heavily on both age and identity labels for training, making them impractical given the scarcity of such labeled 

datasets.Moreover, achieving robust performance across diverse demographic groups remains an open problem, necessitat- ing further exploration of 

transfer learning, unsupervised approaches, and large-scale benchmark datasets[9]. 

 

Fig. 1: Pie Chart Representing Technologies Used in Cross-Age Face Recognition 

The pie chart in Figure 1 represents the distribution of technologies employed in cross-age face recognition systems. Adversarial learning constitutes the 

largest share, accounting for 20 percent, showcasing its importance in suppressing age-sensitive features while retaining identity information. Transfer 

learning follows closely at 22 percent highlighting its role in leveraging pretrained models to handle diverse and lim- ited datasets. Multi-task learning, 

with 18 percent, emphasizes the joint optimization of tasks like identity recognition and age synthesis. Feature mapping and recombina- tion (15percent) 

underline efforts to disentangle age and identity features. Deep neural networks (15percent) play a pivotal role in extracting robust features for complex 
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age variations, while correlation-based feature disentanglement (10percent) focuses on separating identity-sensitive and age-sensitive features. This 

distribution reflects the diverse methodologies used to address the challenges of cross-age face recognition effectively. 

The proposed model addresses the challenges of face recognition across different ages by simultaneously modeling both age progression (aging) and age 

regression (rejuvenation) processes. Unlike traditional methods that focus solely on age pro- gression, AgeGAN++ introduces a dual-GAN framework 

that enables bidirectional transformations, allowing faces to be aged or rejuvenated while maintaining their natural characteristics. The model uses two 

separate GANs, each specialized in one direction of transformation: one for aging and the other for rejuvenation. This dual approach improves the realism 

and quality of the generated images compared to previ- ous techniques that only performed single-direction transformations. The key feature of 

AgeGAN++ is its ability to control the aging process in a way that retains the subject’s identity across different ages, which is critical for applications 

like surveil- lance and cross-age face recognition. The model achieves this through a conditional latent space, where the input and output faces are 

conditioned on factors such as age, ensuring that both the global structure and local facial features (such as wrinkles, skin texture, and facial contours) 

evolve naturally[10]. 

The research on cross-age face recognition has led to various innovative methods aimed at addressing the challenges of age progression and recognition 

across different age groups. One approach focuses on a temporal non-volume preserving method, which enhances facial age progression and age-invariant 

recognition by modeling the temporal changes in facial features. This method improves the accuracy of recognizing faces across different ages by 

preserving the facial identity while simulating aging effects [11]. Another significant contribution is the use of deep reinforcement learning for automatic 

face aging in videos, where the model learns to generate realistic age progressed faces by considering the temporal nature of the input video, making it 

more adaptable to real-world applications[12]. 

In addition to these, there is the use of recurrent memory models with hierarchi- cal autoregressive memory, which captures long-term dependencies in 

age progression. These memory models allow for more consistent and realistic aging patterns over time, addressing the challenge of maintaining temporal 

consistency in aging face recogni- tion tasks[13]. A further advancement comes from the use of a pyramid architecture with generative adversarial 

networks (GANs) for modeling facial age progression. This architecture captures multi-scale variations in aging, resulting in more detailed and realistic 

aging effects, which is particularly important for applications requiring high levels of realism in the generated faces[14]. 

The introduction of generative adversarial networks (GANs) in age progression marked a breakthrough in face recognition by generating realistic face 

images. GANs have been widely applied to age progression tasks, as they learn the distribution of facial features across different ages and use that 

knowledge to generate age-appropriate faces. This method offers a flexible and powerful solution to model facial aging, improv- ing recognition 

performance across a broad age range[15]. Similarly, cycle-consistent adversarial networks (CycleGAN) have shown promise by enabling unpaired 

image-to- image translation. This approach is useful in age progression tasks where paired data is scarce or unavailable, allowing for the generation of 

age-progressed faces without needing a corresponding age-specific dataset[16]. 

Conditional GANs further advance the field by introducing age-conditioned face generation, where the model generates faces at specific ages based on 

input images. This allows for fine-grained control over the aging process, making it easier to create faces that adhere to particular age specifications, 

which is crucial for age-invariant face recognition tasks[17]. Additionally, graph-based models for age progression, such as the concatenational graph 

evolution model, model structural changes in facial features over time. These models offer a more nuanced understanding of how aging affects the shape 

and texture of faces, which is essential for improving the accuracy of age progression in recognition systems[18]. 

The research in cross-age face recognition extends across various methodologies that aim to address the complexities of facial aging and the challenges 

posed by recog- nizing faces at different ages. One significant contribution involves using auto-encoding variational Bayes to improve generative models 

for age progression. This approach aids in modeling face aging by learning a compact and continuous representation of facial features, which enhances 

the recognition of age-progressed faces[19, 20]. Additionally, CGR-GAN focuses on facial image regeneration for anti-forensics, using generative 

adversarial networks to simulate aging effects while maintaining the integrity of the face for security and forensic purposes [20, 21]. 

Anatomically-aware facial animation methods, such as those employed in Gani- mation, allow for the generation of age-progressed faces by considering 

facial muscle movements and anatomical constraints, thereby providing more realistic and dynamic facial aging. These techniques contribute significantly 

to both animation and age pro- gression in face recognition applications[23]. Furthermore, adaptive threshold-based multi-model fusion networks 

(ATMFN) have been proposed to handle face hallucina- tion in compressed images. This method, which is particularly effective for low-quality face 

images, aids in recognizing aging faces even in degraded or compressed formats, a critical issue in real-world surveillance and forensics[24]. 

The use of invertible conditional GANs allows for more controlled image editing, making it possible to alter specific attributes of a face, such as age, 

while preserving other aspects of the face. This technique improves the ability to generate realistic aging effects in faces for use in recognition systems 

and forensic applications[25]. Similarly, the DualGAN method utilizes unsupervised dual learning to perform image-to-image translation for age 

progression tasks. This approach ensures the generation of realistic aging effects without requiring paired datasets, making it valuable for applications 

where such data might be scarce or unavailable[26]. 

In the context of cross-domain face recognition, the discovery of cross-domain rela- tions via GANs offers a robust solution for handling faces from 

different age groups. By learning shared representations between domains, this method improves age- invariant face recognition by ensuring the 

consistency of face features across various age ranges[27]. StarGAN, another important method, unifies multiple image-to-image translation tasks into a 

single model. This multi-domain approach allows for more effective handling of age progression, as it enables the generation of faces across a wide range 

of ages and other facial attributes in a unified framework[28]. 
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Conditional image synthesis using auxiliary classifier GANs (AC-GAN) further enhances age progression modeling by conditioning the generated images 

on specific attributes, such as age. This allows for more accurate and diverse age-progressed face generation, improving age-invariant face recognition 

tasks by providing more control over the attributes of the generated faces[29]. Additionally, semi-supervised learning using deep generative models, as 

proposed by Kingma et al., helps overcome the lim- itations of labeled datasets by using both labeled and unlabeled data to train models for age progression 

tasks. This improves the model’s ability to generalize and perform well on unseen face data from different age groups[30]. 

InfoGAN, a method that maximizes mutual information between latent variables, is used to disentangle age-related variations in faces. By learning 

interpretable repre- sentations of facial features, this method improves the ability to separate the aging process from other face characteristics, such as 

expression or pose, leading to better age progression and recognition[31]. Furthermore, disentangled representations in diverse image-to-image translation 

have been shown to improve age-invariant face recogni- tion by isolating the aging factor while keeping other factors unchanged. This method ensures 

that the age progression is more accurate and consistent, even when the face undergoes other transformations[32]. 

Unified feature disentanglers, as proposed by Liu et al., provide a way to man- age multiple attributes of faces, including age. These models allow for 

multi-domain image translation, which is essential for cross-age face recognition as it helps in han- dling faces with diverse attributes and aging 

patterns[33]. Dual learning techniques, as explored in machine translation tasks, are also applicable to face recognition. By using bidirectional learning 

processes, these models improve the alignment of facial features across different ages, enhancing recognition performance in cross-age scenarios[34]. 

The earlier work on simulating aging effects on face images, like that of Lanitis et al., laid the foundation for age progression techniques. By using a 

combination of machine learning methods and facial feature modeling, this work contributed to the development of realistic face aging simulations, which 

are now essential for building robust age-invariant face recognition systems[35]. Cross-age reference coding, intro- duced by Chen et al., provides a 

method for coding and aligning faces across ages for recognition and retrieval. This technique improves face recognition performance by ensuring that 

faces, regardless of age, are represented in a way that allows for consistent comparison[36]. Finally, the Morph database, introduced by Ricanek and 

Tesafaye, is a significant resource for training and testing face recognition systems. This longitudinal database of face images helps researchers model 

the gradual changes in faces over time, making it a valuable tool for age progression research and for testing age-invariant face recognition algorithms[37]. 

This method aims to improve the accuracy of age estimation models by focusing on the most relevant facial regions while dynamically adjusting the 

fusion of image patches during the estimation process. The key innovation in this paper is the use of an attention mechanism that selectively emphasizes 

important facial features, such as wrinkles, skin texture, and other age-related characteristics, which are crucial for estimating age accurately. The model 

processes the facial image by dividing it into smaller patches and applying an attention mechanism that learns to dynamically select and fuse these patches 

based on their relevance to age-related features. This adaptive fusion of patches allows the model to better capture fine-grained age-related details that 

are often lost in traditional methods, which treat all facial regions equally. By focusing on the most informative regions, the model is able to make more 

precise age predictions, especially in cases where age-related features are subtle or less prominent. The approach is evaluated through extensive 

experiments, demonstrating its superi- ority over existing age estimation methods in terms of accuracy and robustness. This attention-based dynamic 

patch fusion framework not only enhances the performance of age estimation systems but also offers a more interpretable model by highlighting which 

facial regions contribute most to the age prediction. This paper contributes to the ongoing efforts in the field of facial age estimation, providing a more 

effective and nuanced way to analyze facial features for age-related changes, with potential applications in security, healthcare, and personalized digital 

experiences[38]. 

 

Fig. 2: key limitations ideentified in CAFR papers 

The pie chart in Figure 2 illustrates the key limitations faced by cross-age face recognition systems. Dependency on labeled datasets accounts for 20 

percent, signifying the reliance on large, annotated datasets, which are often scarce. High com- putational cost follows at 18 percent, highlighting the 

resource-intensive nature of complex models and algorithms. Challenges in adversarial training stability represent 22 percent, showcasing the difficulty 

in balancing identity and age losses during model optimization. Generalization issues across diverse demographics (15 percent) point to the challenge of 

ensuring fairness and accuracy across varied populations. Task inter- ference in multi-task models (15 percent) signifies conflicts between different tasks 

like identity recognition and age synthesis. Scalability to large datasets (10 percent) underscores the need for efficient algorithms capable of handling 

extensive and high- dimensional data. These limitations highlight areas for improvement to make cross-age face recognition systems more robust, scalable, 

and equitable. 

Additionally, a compositional and dynamic model for face aging was introduced, which combines both spatial and temporal changes in the facial structure 

to simulate how faces age. This approach enhances the understanding of the complex aging process and its effect on facial recognition[39].Facial aging 
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simulators have also been developed, which consider both geometric changes and texture variations to create more realistic aging effects. These simulators 

use patch-tiled textures and geometric adjustments to replicate the natural progression of aging, providing a more accurate representation of how facial 

features change over time [40]. Another method that combines hidden factor analysis with sparse representation has been proposed for face aging 

simulation. This technique captures the underlying factors that govern aging and uses them to create realistic age progression by analyzing sparse 

representations of facial features[41]. 

Illumination-aware age progression models have also gained attention, as they account for lighting conditions while simulating aging effects. This method 

improves the realism of age progression by considering how lighting influences facial features and aging, ensuring that generated faces look natural under 

various lighting conditions. The concept of prototyping and transforming facial textures has also been explored, focusing on the perception of aging in 

faces. By manipulating facial textures, this method enhances the ability to simulate aging effects, making the results more suitable for perception and 

cognitive studies[42, 43]. 

Recurrent models have been developed to address the challenge of generating long- term age progression. These models use recurrent neural networks 

(RNNs) to capture temporal dependencies in face aging, improving the consistency of aging effects over extended periods. This approach ensures that 

aging faces generated by the model maintain continuity and appear realistic[44]. Another contribution is the use of contex- tual generative adversarial 

networks (GANs) for face aging. These networks consider contextual information, such as surrounding facial features, to generate more coherent and 

realistic aging effects that maintain identity consistency across ages[45]. 

Global and local consistency in age generation has also been tackled using GANs. This method ensures that both global facial structure and local features, 

such as wrinkles or skin texture, are preserved and updated in a consistent manner as the face ages. It improves the accuracy of generated faces by ensuring 

that both macro and micro-level details align properly across different age stages [46]. Conditional GANs have been widely used for face aging, where 

the model conditions the age generation on specific factors like gender or ethnicity. This allows for more personalized and accurate age progression 

models, providing more control over the age-related transformations of faces[47]. 

The use of conditional adversarial autoencoders (CAAE) for age progression has also been explored. This model generates age-progressed faces by 

encoding the face into a latent space and then decoding it at different ages, while ensuring that the generated faces maintain the identity of the original 

face. This approach enhances the realism of the aging process by retaining important identity features during age transformations[48]. Improvements to 

the CAAE model, such as CAAE++, further refine the age progression and regression process. These enhancements lead to better performance in 

generating faces at different ages while maintaining higher fidelity and consistency[49]. 

Finally, identity-preserved conditional GANs have been introduced to improve face aging while retaining the original identity. This method focuses on 

ensuring that the face’s identity remains intact as it ages, addressing the challenge of preserving recognition accuracy even as the facial features change 

over time. [50]. 

1.1 Problem Statement 

Cross-age face recognition (CAFR) addresses the critical challenge of identifying or verifying individuals across significant age gaps, a task complicated 

by the natural aging process that causes substantial variations in facial appearance. Age progression introduces changes in skin texture, facial structure, 

and feature prominence, which can significantly degrade the performance of traditional face recognition systems. Further- more, the lack of large-scale, 

longitudinal datasets and the need for models that can generalize across diverse demographics exacerbate the difficulty of achieving robust CAFR. 

Additionally, current systems often fail to balance the dual objectives of extracting age-invariant features for accurate recognition and retaining age-

related attributes for auxiliary tasks like age estimation and synthesis. While generative approaches for face aging/rejuvenation help simulate age-related 

changes, they can introduce artifacts or identity distortions. Discriminative methods, on the other hand, struggle with inter- pretability and lack visual 

results that are essential for practical applications, such as tracing missing persons or identifying individuals over long time spans.This sur- vey explores 

existing methodologies, focusing on the integration of multi-task learning frameworks, advanced feature decomposition techniques, and generative 

models to address these issues. By systematically analyzing state-of-the-art approaches, the sur- vey aims to identify gaps and propose directions for 

developing robust, scalable, and interpretable CAFR systems capable of handling real-world challenges effectively. 

1.2 Motivation 

The motivation for addressing cross-age face recognition (CAFR) stems from its crit- ical role in numerous real-world applications, such as law 

enforcement, surveillance, border security, and finding missing individuals. As facial recognition systems gain widespread adoption, their effectiveness 

in recognizing individuals across varying age spans becomes increasingly essential. However, the aging process introduces significant challenges, as 

facial features evolve naturally over time due to changes in skin tex- ture, bone structure, and other biological factors. These variations can severely 

impair the performance of traditional face recognition systems, which are often optimized for short-term or minimal changes in appearance. 

Current limitations in existing systems, including their inability to accurately disentangle identity-sensitive features from age-related features and the lack 

of inter- pretability in recognition results, further emphasize the need for advanced CAFR methods. Additionally, the lack of robust datasets with 

longitudinal face data spanning diverse age groups and demographic variations hinders the development and evalu- ation of effective solutions. This gap 
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presents a compelling opportunity to explore innovative techniques that integrate age-invariant recognition, age estimation, and age synthesis within 

unified frameworks. 

The drive to create more accurate and robust CAFR systems is also fueled by advancements in deep learning and multi-task learning, which provide 

powerful tools to simultaneously address multiple challenges in facial analysis. These frameworks offer the potential to improve recognition accuracy, 

enhance interpretability through face synthesis, and generalize across age groups and demographics. Ultimately, the moti- vation lies in bridging the gap 

between the theoretical capabilities of facial recognition systems and their practical applicability in real-world scenarios, ensuring reliability, scalability, 

and inclusivity in their deployment. 

2. Related Works 

Cross-age face recognition (CAFR) presents significant challenges due to the impact of aging on facial features, which can drastically alter appearance 

over time. To address this, one study proposed a multi-task learning framework that integrates age-invariant face recognition and face age synthesis. By 

employing an attention-based feature decomposition method, this approach separates age-sensitive and identity-sensitive components, enabling robust 

performance in both tasks. Additionally, an identity- conditional module ensures identity consistency while generating photorealistic faces, aiding 

interpretability and practical applications like tracking missing individuals[1]. A joint multi-task convolutional neural network (CNN) framework that 

combines face recognition and age classification within a shared architecture. This method employs a regularization mechanism to refine identity-sensitive 

features while sup- pressing age-related noise. By leveraging the synergy between these tasks, the model enhances its ability to manage cross-age 

variations, demonstrating the importance of task interdependencies for improving recognition accuracy[3]. 

A advancing age estimation techniques through a novel age-based reweighting mod- ule. This method recalibrates input features based on age relevance, 

improving age prediction accuracy. The inclusion of gender prediction as an auxiliary task further strengthens the model’s generalizability. This approach 

aligns with multi-task learn- ing principles, demonstrating how shared features across related tasks can enhance overall system performance[2]. 

All these highlight the critical role of disentangling age-sensitive features from identity-sensitive ones to address the challenges posed by aging. 

Generative models and feature recalibration mechanisms are employed to ensure accurate synthesis and esti- mation, while regularization strategies 

manage feature conflicts effectively. Together, these approaches illustrate how multi-task frameworks and deep learning techniques can deliver robust 

and scalable solutions for cross-age recognition, age estimation, and synthesis across diverse scenarios[1–3]. 

Cross-age face recognition (CAFR) presents a significant challenge due to the sub- stantial variations in facial features caused by the aging process. Aging 

affects skin texture, facial structure, and feature prominence, making it difficult for traditional face recognition models to maintain accuracy over time. 

To address these challenges, one approach employs the Age Adversarial Convolutional Neural Network (AA-CNN), which combines adversarial training 

with a pyramid feature fusion architecture. This model integrates an Identity Recognition Network and an Age Discrimination Net- work, ensuring that 

the extracted features remain sensitive to identity while being invariant to age-related variations. By leveraging datasets labeled exclusively by either age 

or identity, AA-CNN addresses the problem of insufficient samples with dual labels. Additionally, its pyramid feature fusion mechanism enhances the 

extraction of age-invariant features by incorporating information from multiple scales, resulting in improved robustness to aging effects. The AA-CNN 

model has demonstrated its effi- cacy on datasets such as FG-NET and MORPH Album 2, outperforming previous methods and setting a benchmark for 

CAFR models[4]. 

In another approach, the Parallel Multi-path Age Distinguish Network (PMADN) introduces a novel framework for handling the complexities of aging. 

Unlike traditional linear decomposition methods that treat age and identity features as independent components, PMADN employs a multi-path structure 

to map facial features into age- specific subspaces, followed by a non-linear recombination process. This architecture captures the intricate, individual-

specific patterns of aging, which are often over- looked by simpler models. PMADN utilizes transfer learning, leveraging pre-trained face recognition 

networks to maximize the utility of datasets with only age labels, thus overcoming the scarcity of fully labeled cross-age datasets. Extensive experiments 

on benchmark datasets, including CACD-VS and Cross-Age LFW, demonstrate the model’s capability to produce robust age-invariant features while 

maintaining high identity discriminability, showcasing its superiority over conventional methods[5]. 

The Age Factor Removal Network (AFRN) further refines the CAFR task by integrating transfer learning and adversarial learning to suppress age-

sensitive infor- mation. This model introduces an innovative loss function that combines transfer loss to preserve identity-discriminative power and 

adversarial loss to remove age-related features. AFRN employs a feature generator and an age discriminator, wherein the discriminator guides the 

generator to extract features devoid of age-sensitive infor- mation. Unlike traditional models that require datasets with both identity and age labels, AFRN 

utilizes age-labeled datasets to fine-tune pre-trained face recognition networks. This approach not only addresses the limitations of dataset availability 

but also enhances the model’s adaptability to variations in pose and expression. AFRN’s versatility is evident from its strong performance across diverse 

datasets, including MORPH Album 2 and CMU Multi-PIE, where it achieves robust results despite large age gaps or other influential factors[6]. 

The significant advancements in CAFR by leveraging adversarial learning, transfer learning, and innovative feature manipulation techniques. By 

effectively addressing the challenges of dataset limitations, non-linear aging patterns, and the disentanglement of age and identity features, these methods 

provide a solid foundation for developing robust and scalable solutions in cross-age face recognition. The integration of multi- task frameworks and the 

ability to handle individual-specific aging variations highlight their potential for real-world applications, ranging from security to long-term identity 

verification[4–6]. 
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The importance of developing robust models for cross-age face recognition (CAFR), as existing techniques often struggle with significant intra-class 

variations caused by aging. Conventional methods have attempted to address these challenges using either handcrafted features or deep learning-based 

approaches, focusing on learn- ing age-invariant facial representations. For instance, methods like Hidden Factor Analysis (HFA) decompose facial 

features into identity-specific and age-specific com- ponents, while other frameworks leverage generative adversarial networks (GANs) for cross-age 

face synthesis. However, these approaches often fail to achieve both photorealistic synthesis and strong identity preservation. Zhao et al. propose the 

Age- Invariant Model (AIM), a unified framework that integrates cross-age face synthesis and recognition into a single pipeline. By using disentangled 

representation learn- ing and attention-based face rejuvenation/aging, AIM achieves remarkable results on benchmark datasets such as MORPH and 

CACD. The paper also introduces a new large-scale CAFR dataset to push the boundaries of the field and emphasizes the advantages of combining 

generative models with age-invariant feature learning[7]. 

The use of GAN-based frameworks for age transformation tasks while preserving critical identity and attribute information. Traditional methods for age 

transformation often utilize GANs with pixel-based or perceptual losses to achieve age progression or regression. However, these approaches frequently 

overlook the need for carefully selected pretrained models to ensure robust identity preservation and attribute reten- tion. Hsu et al. address this gap by 

introducing a Wasserstein Divergence GAN (WGAN-div) that integrates an identity expert and an attribute retainer, both deter- mined through 

comprehensive evaluations of state-of-the-art pretrained models like ArcFace, VGG-Face, and LightCNN. This model enhances training stability and 

pro- duces realistic, identity-consistent facial transformations. Moreover, the authors utilize cross-age retraining and 3DMM data augmentation to improve 

the framework’s abil- ity to generalize across diverse age distributions. The approach outperforms existing methods on benchmark datasets, highlighting 

its potential for real-world applications and offering new insights into the interplay between identity preservation and attribute retention in facial age 

transformation tasks[8]. 

Unlike traditional models that rely heavily on both age and identity labels for training, this study proposes a Cycle Age-Adversarial Model (CAAM) that 

requires only age labels, making it more practical given the scarcity of datasets with compre- hensive labels. Drawing inspiration from generative 

adversarial networks (GANs), the authors develop a dual-branch framework comprising an Age-Robust Feature Extract- ing Model (AFEM) and an 

Identity Preserving Network (IPN). AFEM uses adversarial learning to extract age-invariant features by pitting a feature generator against an age 

discriminator, while IPN preserves identity-specific features through transfer learning and unsupervised identity loss. The two branches are cyclically 

optimized using a novel Feature Consistency Loss, enabling the model to fuse age invariance with identity discriminative power. This approach not only 

circumvents the limitations of existing CAFR methods but also demonstrates superior performance on benchmark datasets like MORPH, CACD-VS, and 

Cross-Age LFW. The integration of transfer learn- ing and adversarial optimization in CAAM provides a robust alternative to existing models, addressing 

the complexities of identity and age interplay in face recognition tasks[9]. 

Table 1: Literature Survey on Cross-Age Face Recognition 

S.No Title Author(s) Journal & 

Year 

Methodologies Key Findings Gaps 

1 Age Zhizhong IEEE, Adversarial Achieved Adversarial 

 Adver- Huang,Junpi n2g021 learning with robust age- loss tuning 

 sarial Zhang  Identity Recog- invariant is challeng- 

 Convo-   nition  Network features and ing;  model 

 lutional   (IRN) and Age improved struggles 

 Neural   Discrimina- accuracy  on with gen- 

 Net-   tion Network benchmark eralization 

 work for   (ADN), pyra- datasets, across 

 Cross-   mid feature surpassing diverse 

 Age Face   fusion. traditional datasets. 

 Recogni-    methods.  

 tion      

2 Parallel Ji-Hyeong IEEE, Multi-path Enhanced High  com- 

 Multi- Han 2020 age subspace feature dis- putational 

 path Age   mapping and entanglement cost; scala- 

 Distin-   nonlinear and cross-age bility issues 
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 sis      

5 Joint Yongbo IEEE, Shared CNN Achieved Task  inter- 

 Multi- Wu, Ling- 2020 backbone  with balanced ference 

 task shuang  correlation loss performance during 

 CNN for Du  to disentangle in age clas- joint opti- 

 Age and   age  and  iden- sification mization; 
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 Age Face Song, 2018 residual net- significant with sub- 
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 Using   verification verification requires 

 Deep   with data accuracy high com- 

 Residual   augmentation on diverse putational 

 Net-   techniques. datasets. resources 

 works     for training. 

 

S.No Title Author(s) Journal & 

Year 

Methodologies Key Find- 

ings 

Gaps 

8 GAN- 

Based 
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9 Age- Invariant 

Face Recog- 

nition Using 

Capsule Net- 

works 

Gee-Sern Hsu IEEE, 2021 Employs cap- sule 

networks to capture 

spatial hierarchies and 

age-invariant features 

in facial images. 

Improved 

robustness 

to 

 aging 

variations and

 better 

feature 

 

 rep- 

resentation. 

Computating 

complex- 

ity limits 

real-time applica- 

tions. 

10 Lightweigh 

CNN for 

Cross- 

Age Face 

Recogni- tion 

t Jian Zhao, 

Shuicheng Yan 

IEEE, 2022 Proposes  

 a 

lightweight CNN

 architec- 

ture for efficient cross-

age face 

recognition 

 on edge 

devices. 

Provides 

competitive 

accuracy with 

reduced compu- 

tational overhead. 

Limited perfor- 

mance on 

datasets with 

extreme age 

variations. 

3. Methodologies 

The methodology Age Adversarial Convolutional Neural Network (AA-CNN), designed to extract age-invariant features while retaining identity-sensitive 

characteristics. The model consists of two networks: the Identity Recognition Network (IRN) and the Age Discrimina- tion Network (ADN), which work 

in tandem to achieve this goal. Adversarial training plays a central role, where the IRN aims to maximize identity recognition accuracy while the ADN 

works to detect age-specific information. Through adversarial learning, the generator is guided to suppress age-related features while retaining 

discriminative identity-specific features. To further enhance the robustness of extracted features, a pyramid feature fusion mechanism is employed. This 

approach integrates multi-scale feature information, allowing the model to better handle variations in facial structure and texture caused by aging. Unlike 

traditional models that require datasets with both age and identity labels, AA-CNN is trained on sep- arate datasets labeled with either age or identity, 

addressing the issue of limited availability of dual-labeled datasets. This flexibility enables the model to utilize a wider range of data while achieving 

superior performance on benchmark datasets such as FG-NET and MORPH Album 2. By combining adversarial learning with an innovative feature 

fusion strategy, AA- CNN represents a significant advancement in handling the complexities of cross-age face recognition. 

The AA-CNN is trained on large-scale datasets with diverse age distributions, enabling it to generalize well to unseen faces across a wide range of ages. 

The methodology demonstrates significant improvements over traditional face recognition methods, particularly in scenarios where age progression or 

regression poses a challenge. By focusing on both feature disen- tanglement and adversarial learning, the AA-CNN establishes itself as a powerful 

approach for age-invariant face recognition, suitable for applications in security, forensics, and social media platforms. Despite its effectiveness, the 

methodology may face challenges in datasets with extreme age gaps or limited labeled data, emphasizing the need for further research and 

enhancements[1]. 
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Fig. 3: Flowchart for AA-CNN 

The Figure 3 presents methodology that employs an adversarial approach to learn age- invariant facial features. The input data is preprocessed through 

alignment and normalization. A deep convolutional neural network (CNN) extracts features, while an adversarial network uses these features to minimize 

age-specific information. Two loss functions, age discrimina- tor loss and identity verification loss, are optimized to achieve a balance between removing 

age-related features and preserving identity-related ones. This results in age-invariant repre- sentations that improve cross-age recognition accuracy. The 

model also undergoes fine-tuning to optimize its hyperparameters during the training phase, ensuring high generalization capability. 
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The AA-CNN pseudocode defines a function to train a feature generator using adversarial learning. Step 1 initializes the training variables. Step 2 trains 

the Identity Recognition Net- work (IRN) using identity-labeled data to minimize identity classification loss. Step 3 trains the Age Discrimination Network 

(ADN) using age-labeled data to detect age-specific features. Step 4 updates the generator to suppress age-related features while retaining identity-

sensitive information by combining IRN and ADN losses in an adversarial manner. The generator con- tinues training for a specified number of iterations 

until it can produce robust, age-invariant features suitable for cross-age face recognition. 

The Parallel Multi-path Age Distinguish Network (PMADN), which employs a unique approach to extract robust age-invariant features. The model is 

divided into two main components: the Age Distinguish Mapping Network (ADMN) and the Cross-Age Feature Recombination Network (CFRN). 

ADMN maps facial features into separate age subspaces using parallel fully connected layers, each designed to capture identity-specific features within 

narrow age spans. These subspaces allow the model to isolate features influenced by minor age-related changes, ensuring that identity-specific features 

are retained. In the second stage, CFRN recombines the mapped features non-linearly using convolutional operations, produc- ing robust age-invariant 

features. This methodology addresses the shortcomings of linear decomposition approaches, which often fail to account for the non-linear and individual- 

specific nature of aging. Furthermore, PMADN incorporates transfer learning by utilizing pre-trained face recognition networks and age-labeled datasets. 

This approach minimizes reliance on datasets requiring both age and identity labels, making the model scalable and adaptable to real-world scenarios. 

Extensive testing on datasets such as CACD-VS and Cross- Age LFW demonstrates the model’s effectiveness in achieving high recognition accuracy 

and robust performance across diverse age groups[2]. 
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# Input: 
#  generator:  Feature generator model 
# irn : Identity Recognition Network 
# adn : Age Discrimination Network 
#  identity_data : Dataset with identity labels 
# age_data : Dataset with age labels 
# lambda_factor : Weight for adversarial loss 
# max_iters: Maximum number of training iterations 
# 
# Output: 
# Trained  generator  model 

 
def train_aa_cnn ( generator , irn , adn , identity_data , age_data , 

lambda_factor , max_iters):  
# Step 1: Initialize variables 
iter_count = 0 

 
while iter_count < max_iters:  

# Step 2: Train IRN with identity - labeled data 
batch_x , batch_y = identity_data . sample_batch () 
f_x = generator( batch_x ) 
loss_irn = irn . train ( f_x , batch_y ) 

 
# Step 3: Train ADN with age - labeled data 
batch_x_age , batch_z = age_data . sample_batch () 
f_z = generator( batch_x_age ) 
loss_adn = adn . train ( f_z , batch_z ) 

 
# Step 4: Update Generator adversarially 
generator_loss = loss_irn - lambda_factor * loss_adn 
generator. update ( generator_loss ) 

iter_count += 1 

return generator 
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The PMADN pseudocode describes the training process of the Parallel Multi-path Age Distinguish Network (PMADN). Step 1 initializes the training 

variables and models. In Step 2, data with identity and age labels is sampled. Features are mapped into K age subspaces using ADMN in Step 3. Step 4 

recombines these features non-linearly using CFRN to create robust age-invariant representations. Losses for identity and age classification are calculated 

in Step 5, and the models are updated in Step 6. The iterative process continues until the models are trained to perform identity recognition and age group 

classification robustly across age variations. 

The Age Factor Removal Network (AFRN) introduces a novel combination of transfer learning and adversarial learning to address the challenges of 

CAFR. The model is com- posed of a feature generator network and an age discriminator network. The discriminator is trained to detect age-sensitive 

information from the features generated, while the generator learns to suppress this information through adversarial feedback. This iterative learning pro- 

cess ensures that the extracted features are both age-invariant and identity-discriminative. A key innovation in this model is the use of a transfer loss 

function, which preserves the discriminative power of features learned from pre-trained face recognition models. By fine- tuning the generator using age-

labeled datasets, AFRN eliminates the need for datasets with both identity and age labels, addressing a common limitation in CAFR research. The model 

further enhances its utility by being adaptable to variations in pose and expression, as evi- denced by its robust performance on datasets like MORPH 

Album 2 and CMU Multi-PIE. AFRN’s ability to simultaneously suppress age-related variations and retain identity-specific information makes it a 

versatile solution for practical facial recognition tasks[3]. 

narrow age spans. These subspaces allow the model to isolate features influenced by minor 
age-related changes, ensuring that identity-specific features are retained. In the second stage, 
CFRN recombines the mapped features non-linearly using convolutional operations, produc- 
ing robust age-invariant features. This methodology addresses the shortcomings of linear 
decomposition approaches, which often fail to account for the non-linear and individual- 
specific nature of aging. Furthermore, PMADN incorporates transfer learning by utilizing pre-
trained face recognition networks and age-labeled datasets. This approach minimizes reliance 
on datasets requiring both age and identity labels, making the model scalable and adaptable to 
real-world scenarios. Extensive testing on datasets such as CACD-VS and Cross- Age LFW 
demonstrates the model’s effectiveness in achieving high recognition accuracy and robust 
performance across diverse age groups[2]. 
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# Input: 
# admn : Age Distinguish Mapping Network 
# cfrn : Cross - Age Feature Recombination Network 
# data : Dataset with identity and age labels 
#  max_iters: Maximum number of training iterations 
# alpha : Weight for age classification loss 
# 
# Output: 
# Trained ADMN and CFRN models 

 
def train_pmadn ( admn , cfrn , data , max_iters , alpha ): 

# Step 1: Initialize variables 
iter_count  =  0 

 
while iter_count < max_iters: 

# Step 2: Sample data 
batch_x , batch_y , batch_z = data . sample_batch () 

 
# Step 3: Map features into age subspaces 
features = [ admn ( batch_x , age_group =i) for i in range ( 

admn . num_age_groups )] 

 
# Step 4: Recombine features non - linearly 
final_features = cfrn ( features) 

 
# Step 5: Compute losses 
loss_id = cfrn . compute_identity_loss  ( final_features , 

batch_y ) 
loss_age = sum ( admn . compute_age_loss ( features[ i], batch_z 

[ i]) for i in range ( len ( features))) 

 
# Step 6: Update networks 
total_loss  =  loss_id  +  alpha  *  loss_age 

 

 
return admn , cfrn 
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The AFRN framework uses transfer learning and adversarial learning to remove age- specific information while preserving identity-sensitive features. 

Step 1 initializes the pre- trained generator and discriminator models. Step 2 samples age-labeled data, which is passed through the generator to extract 

features in Step 3. The discriminator is trained in Step 4 to classify the age-related features, providing adversarial feedback. In Step 5, the generator is 

updated to minimize both the transfer loss (preserving identity features) and adversar- ial loss (removing age-related information). This iterative process 

ensures that the generator produces robust, age-invariant features suitable for cross-age recognition tasks. 

A multi-task learning framework that combines age-invariant face recognition with face age synthesis. The model employs an attention-based feature 

decomposition approach to sep- arate age-sensitive and identity-sensitive components, enhancing the performance of both tasks. The synthesis component 

allows the model to generate photorealistic faces correspond- ing to different age groups, augmenting the dataset and improving the recognition system’s 

robustness. By leveraging shared learning tasks, the framework ensures that identity-sensitive features are preserved during the synthesis process while 

minimizing the impact of age- specific changes. This approach also integrates a novel loss function to optimize both tasks jointly, demonstrating improved 

performance on large-scale datasets. The model’s ability to perform age synthesis and recognition in tandem highlights its versatility and potential for 

applications such as tracking missing individuals over time[4]. 
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This multi-task framework jointly trains a shared CNN backbone for identity recognition and face synthesis tasks. In Step 1, the models and variables are 

initialized. Step 2 samples labeled data for identity and age. The CNN backbone extracts shared features from the input in Step 3. Task-specific losses 

for recognition and synthesis are computed in Step 4. Step 5 combines these losses for joint optimization, allowing the backbone to leverage shared 

representations to improve performance on both tasks. 

The joint multi-task CNN framework proposed in this study focuses on simultaneous learning of age classification and identity recognition tasks. A key 

feature of this model is its regularization mechanism, which enforces a negative correlation between age-sensitive and identity-sensitive features, ensuring 

their disentanglement. By sharing a common CNN backbone, the model optimizes feature extraction for both tasks, allowing them to reinforce each other. 

This approach addresses the challenge of disentangling identity features from age-related variations, which is crucial for achieving robust CAFR. The 

model has been tested extensively on datasets such as CACD and MORPH Album 2, where it demonstrates significant improvements over traditional 

single-task approaches. The integration of multi- task learning into a shared architecture represents an innovative solution to the inherent challenges of 

CAFR[5]. 
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This Joint Multi-task CNN trains a shared backbone for age classification and identity recognition simultaneously. In Step 1, the models are initialized. 

Step 2 samples data with labels. Features are extracted in Step 3 using the shared backbone. Task-specific losses are computed in Step 4 for age and 

identity classification. Step 5 adds a regularization term to ensure disentanglement between age and identity features. The models are updated in Step 6 

using a joint loss function. 

This methodology focuses on synthesizing age-invariant features through a non-linear recombination framework. The model first maps facial features 

into age-specific subspaces using a multi-path architecture and then recombines them through deep convolutional net- works. This two-stage process 

captures individual-specific aging patterns while removing age-sensitive variations. Unlike linear decomposition methods that assume independence 

between age and identity, this framework leverages non-linear transformations to cre- ate robust age-invariant representations. By addressing the 

shortcomings of traditional approaches, the model achieves high recognition accuracy on diverse datasets. The integra- tion of linear decomposition and 

non-linear recombination enables the framework to handle complex aging effects, making it a robust solution for CAFR[6]. 
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This framework maps input features into multiple age subspaces and recombines them non-linearly for robust feature representations. In Step 1, the 

mapping and recombination modules are initialized. Age-labeled data is sampled in Step 2. Features are mapped into K age subspaces in Step 3. In Step 

4, these subspace features are recombined using the recom- bination module. Loss is computed in Step 5, and both modules are updated in Step 6. This 

training process ensures that the framework captures non-linear aging patterns effectively. 

A unified deep learning framework that jointly performs cross-age face synthesis and recognition to enhance performance under challenging age 

variations. AIM employs a dis- entangled representation learning approach to separate identity-specific and age-specific features, ensuring that the identity 

features remain invariant to aging. The architecture inte- grates a Representation Learning sub-Net (RLN) and a Face Synthesis sub-Net (FSN). RLN 

uses an encoder and discriminator to learn age-invariant features through cross-age domain adversarial training and cross-entropy regularization, ensuring 

the encoded features are robust against age shifts. FSN, on the other hand, synthesizes photorealistic rejuvenated or aged faces by employing a GAN-

based decoder and a local-patch discriminator to enhance visual realism. The model also incorporates attention mechanisms to focus on salient facial 

regions while preserving the integrity of non-age-related features like accessories and background. To address the scarcity of comprehensive datasets, the 

authors introduce the Cross-Age Face Recognition (CAFR) dataset, containing over 1.4 million images across diverse demographic categories, which 

aids in end-to-end training and evaluation. This methodology achieves state- of-the-art performance on multiple CAFR benchmarks, demonstrating the 

effectiveness of unifying face synthesis and recognition taks[7]. 

A Wasserstein Divergence GAN (WGAN-div) to stabilize training and improve the real- ism of generated images. The framework consists of four 

components: an encode-decode generator, a discriminator, an identity expert, and an attribute retainer. The generator cre- ates age-transformed images 

conditioned on the input face and a target age label, while the discriminator employs a WGAN-div loss function to ensure the generated images conform 

to the target age distribution. The identity expert, constructed from pretrained face recognition models such as ArcFace or LightCNN, extracts robust 
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identity features to minimize identity loss during transformation. Meanwhile, the attribute retainer ensures consistency in non-age- related attributes like 

pose, lighting, and background by utilizing perceptual and pixel-level loss functions. To enhance generalization, the authors incorporate cross-age 

retraining and data augmentation using 3D morphable models (3DMM). This holistic approach not only generates visually realistic results but also ensures 

that identity and attributes are preserved across age transformations. Comprehensive experiments on benchmark datasets validate the framework’s 

superiority over existing methods[8]. 

A Cycle Age-Adversarial Model (CAAM), designed to overcome the limitations of reliance on both age and identity labels. The CAAM framework 

consists of two branches: the Age- Robust Feature Extracting Model (AFEM) and the Identity Preserving Network (IPN). AFEM uses adversarial learning 

between a feature generator and an age discriminator to extract features insensitive to age variations. The feature generator is optimized to produce 

representations that prevent the age discriminator from accurately predicting age, effectively suppressing age-specific information. The IPN, on the other 

hand, focuses on maintaining identity features by leveraging transfer learning from pretrained general face recognition models like FaceNet and DeepFace. 

This branch introduces Unsupervised Identity Loss to enhance identity preservation by minimizing intra-class distance while maximizing inter-class 

separability. The two branches are cyclically optimized through a novel Feature Consistency Loss, which encourages the networks to produce unified 

features that balance age invariance with identity discriminability. By relying only on age labels, this methodology reduces depen- dency on fully labeled 

datasets and achieves superior results on widely used cross-age face recognition benchmarks[9]. 

4. Implementation Details 

The Age Adversarial Convolutional Neural Network (AA-CNN) implements a three- component architecture: a feature generator, an Identity Recognition 

Network (IRN), and an Age Discrimination Network (ADN). The IRN is trained to maximize identity recognition accuracy, while the ADN is trained to 

classify age-sensitive features. The generator serves as the backbone, extracting features that are adversarially refined to suppress age-related information 

while retaining identity-discriminative properties. Training begins by separately optimizing the IRN and ADN using identity-labeled and age-labeled 

datasets, respectively. The generator is then updated adversarially using a joint loss function that combines iden- tity and age classification losses. A 

pyramid feature fusion mechanism further strengthens the generator’s robustness by integrating multi-scale feature maps. This iterative process ensures 

the generator produces robust, age-invariant features even when the datasets are not dual-labeled[1]. 

The Parallel Multi-path Age Distinguish Network (PMADN) introduces an innovative strategy to disentangle age and identity features. The Age 

Distinguish Mapping Network (ADMN) maps facial features into multiple age-specific subspaces, each corresponding to a narrow age range. These 

features are then recombined non-linearly using the Cross-Age Feature Recombination Network (CFRN) to create a final representation that is robust 

across age groups. Transfer learning plays a crucial role in PMADN’s implementation, where pre- trained face recognition networks are fine-tuned with 

large-scale datasets labeled with either age or identity. The model optimizes separate loss functions for identity recognition and age classification, with 

the combined loss used to update the ADMN and CFRN jointly. 

This design effectively captures the non-linear and individual-specific aging patterns while maintaining identity consistency[2]. 

The Age Factor Removal Network (AFRN) employs a transfer learning approach com- bined with adversarial learning. A pretrained feature generator 

serves as the base model, and an Age Discriminator Network is introduced to detect age-sensitive features. The generator is fine-tuned to minimize a 

transfer loss, which ensures the preservation of identity- discriminative features, while adversarial training suppresses age-related variations. The 

discriminator is trained to maximize its ability to classify age features, while the generator is trained to fool the discriminator by producing age-invariant 

representations. This adversar- ial framework enables the AFRN to operate effectively even with limited age-labeled data, making it a versatile solution 

for CAFR[3]. 

The multi-task learning framework integrates face recognition and face synthesis tasks into a single shared architecture. A CNN backbone extracts features 

that are simultaneously optimized for identity recognition and face synthesis. The identity recognition head classifies the features into identity categories, 

while the synthesis module reconstructs facial images corresponding to different age groups. This framework employs a joint optimization strat- egy 

where the losses for both tasks are combined, encouraging the shared backbone to learn features useful for both recognition and synthesis. The synthesis 

component enhances the sys- tem’s interpretability by generating photorealistic face images at various age stages, enabling practical applications like 

aging simulation and long-term identification[4]. 

The Joint Multi-task CNN framework takes a different approach by focusing on age classification and identity recognition. It uses a shared CNN backbone 

and introduces a regu- larization mechanism to disentangle identity-sensitive and age-sensitive features. The training involves computing separate loss 

functions for age and identity classification, combined with a regularization term that enforces negative correlation between the two feature sets. This 

strategy ensures that the features learned for age classification do not interfere with those required for identity recognition. By leveraging the 

interdependencies between the tasks and optimizing them jointly, the model achieves superior performance on diverse datasets[5]. 

The Feature Recombination Framework addresses the complexity of non-linear aging patterns by decomposing features into multiple age subspaces and 

recombining them into robust representations. The Mapping Module extracts features corresponding to specific age subspaces, while the Recombination 

Module combines these subspace features non-linearly. This recombination process allows the model to capture intricate aging patterns and pro- duce 

age-invariant representations. The model is trained using a loss function that ensures identity retention while minimizing age-related variations. By 

mapping age-specific changes and recombining them intelligently, this framework achieves high accuracy in cross-age face recognition[6]. 
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A unified framework integrating cross-age face synthesis and recognition using two key components: the Representation Learning sub-Net (RLN) and 

the Face Synthesis sub-Net (FSN). RLN uses a deep encoder-decoder architecture to extract disentangled facial repre- sentations, ensuring that identity-

specific features remain invariant to age variations while discarding age-specific details. This is achieved through adversarial domain adaptation, where 

an age discriminator encourages the RLN to produce features indistinguishable across age domains. Additionally, cross-entropy regularization with label 

smoothing is applied to refine the separability of learned features. FSN is built on a Generative Adversarial Network (GAN) architecture and incorporates 

a decoder and local-patch discriminator to synthesize realis- tic cross-age facial images. The synthesis process is guided by an attention mechanism that 

focuses on salient facial features while preserving non-age-related attributes, such as acces- sories and backgrounds. The entire framework is trained in 

an end-to-end manner, enabling the mutual enhancement of RLN and FSN. Training is conducted on the proposed large- scale Cross-Age Face 

Recognition (CAFR) dataset, which provides over 1.4 million images with diverse demographic annotations, ensuring robust performance on challenging 

real-world datasets like MORPH, CACD, and FG-NET[7]. 

Integrates several advanced components to ensure realistic and identity-preserving facial transformations across ages. The encode-decode generator, 

paired with a discriminator employing the Wasserstein divergence loss, forms the backbone of the GAN framework. This design stabilizes training and 

enhances the realism of generated images by minimizing the Wasserstein divergence between real and generated distributions. The identity expert is con- 

structed from pretrained state-of-the-art face recognition networks, such as ArcFace and LightCNN, to extract robust identity representations, which are 

used to compute identity loss and enforce consistency across age-transformed images. Similarly, the attribute retainer module ensures that non-age-related 

features, such as pose, lighting, and expression, remain unchanged by leveraging perceptual and pixel-level losses. To further improve the perfor- mance 

of the identity expert, cross-age retraining is conducted using a curated dataset, while 3D morphable models (3DMM) are employed to augment the 

training data with real- istic variations. Training is performed iteratively, where the generator learns to produce age-transformed images, and the 

discriminator evaluates their realism and age-consistency. This implementation achieves state-of-the-art results on benchmark datasets and effectively 

balances realism, identity preservation, and attribute consistency[8]. 

A dual-branch architecture designed to extract age-invariant features and maintain iden- tity information. The Age-Robust Feature Extracting Model 

(AFEM) is based on adversarial learning and consists of a feature generator and an age discriminator. The feature generator produces identity-preserving 

representations, while the age discriminator attempts to clas- sify age information, thereby encouraging the generator to suppress age-specific features. 

The Identity Preserving Network (IPN) enhances identity representation through Unsupervised Identity Loss, which minimizes intra-class variance while 

maximizing inter-class separabil- ity. A novel Feature Consistency Loss is introduced to cyclically optimize the two branches, unifying their outputs into 

a single feature representation that is both age-invariant and identity-discriminative. Transfer learning is leveraged to initialize the feature generator using 

a pretrained face recognition model, such as FaceNet or DeepFace, ensuring robust identity preservation without requiring identity labels during training. 

The system is trained on age- labeled datasets, such as MORPH and CACD-VS, and evaluated using cross-age benchmarks like Cross-Age LFW. This 

implementation eliminates the need for extensive identity-labeled datasets, making it more practical for real-world applications[9]. 

5. Results and Discussions 

This highlights significant advancements in cross-age face recognition (CAFR), showcasing the efficacy of their proposed methodologies. The AA-CNN 

demonstrated state-of-the-art performance on datasets like FG-NET and MORPH Album 2, achieving robust age-invariant features through adversarial 

training and multi-scale fusion. PMADN excelled in disen- tangling age and identity features, with notable improvements in accuracy on CACD-VS and 

Cross-Age LFW due to its innovative subspace mapping and recombination strategy. AFRN showed strong adaptability to dataset limitations, achieving 

high identity recognition rates while effectively suppressing age-related features on MORPH Album 2. The multi-task learning framework outperformed 

single-task models by jointly optimizing recognition and synthesis, offering enhanced generalization and interpretability, particularly in generating 

realistic aging effects. The Joint Multi-task CNN showcased superior accuracy in simultane- ous age classification and identity recognition tasks by 

effectively disentangling task-specific features, yielding competitive results on CACD and AgeDB datasets. Finally, the Fea- ture Recombination 

Framework achieved robust age-invariant feature extraction on diverse datasets by capturing complex aging patterns, reinforcing its utility in handling 

non-linear age variations. Collectively, these methodologies significantly advance CAFR by improving accuracy, robustness, and scalability while 

addressing challenges such as aging variations and dataset constraints. 

5.1 Evaluation Metrics 

The AA-CNN employs a combination of classification metrics, including accuracy, precision, recall, and F1-score, to measure identity recognition 

performance on benchmark datasets like FG-NET and MORPH Album 2. The adversarial loss between the generator and the Age Discrimination Network 

(ADN) quantifies the generator’s ability to suppress age-related fea- tures while retaining identity-sensitive ones. The pyramid feature fusion module is 

evaluated for its contribution to multi-scale feature extraction, demonstrated through ablation stud- ies that compare recognition accuracy with and without 

fusion. Results show a significant improvement in the generator’s robustness when multi-scale features are integrated[1]. 
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Fig. 4: Accuracy Comparison for research papers 

The accuracy comparison bar chart Figure 4 illustratesthe percentage accuracy achieved by each of the six methodologies for cross-age face recognition. 

Accuracy, being a measure of overall correctness, highlights how well each approach correctly identifies or verifies individu- als across varying age 

groups. The Age Adversarial Convolutional Neural Network (AA-CNN) achieved the highest accuracy at 92 percent, showcasing its strong ability to 

suppress age- related features while preserving identity-sensitive ones. Following closely are Multi-task Learning (91 percent) and Parallel Multi-path 

Age Distinguish Network (PMADN, 89 per- cent), which demonstrate robust feature extraction and age-invariant representation. On the lower end, the 

Feature Recombination Framework (86 percent) and Joint Multi-task CNN (88 percent) exhibit slightly reduced accuracy, potentially due to challenges 

in task interference and non-linear feature recombination. This chart emphasizes the effectiveness of adversarial and multi-task learning techniques in 

improving accuracy for cross-age face recognition. 

PMADN evaluates its performance across two tasks: identity recognition and age classi- fication. For identity recognition, metrics such as accuracy and 

verification rate at fixed false acceptance rates (FAR) are used. Age classification is measured using mean absolute error (MAE), which quantifies the 

deviation between predicted and true age groups. To assess feature disentanglement, the framework performs ablation studies comparing results with and 

without age subspace mapping and non-linear recombination. The method demonstrates superior accuracy on CACD-VS and Cross-Age LFW datasets, 

showing its ability to handle age-related variations effectively while maintaining high identity recognition performance[2]. AFRN uses identity 

verification metrics, including the true positive rate (TPR) at fixed false positive rates (FPR), to evaluate recognition accuracy. Additionally, the age 

discrim- inator’s classification accuracy measures the generator’s ability to suppress age-sensitive features. The generator’s transfer learning effectiveness 

is quantified using the transfer loss function, which balances preserving identity-discriminative features and suppressing age-related variations. 

Experimental results on MORPH Album 2 and FG-NET datasets demonstrate that AFRN maintains high identity recognition rates while effectively 

removing age-related information, showcasing its robust performance even under limited dual-labeled data scenarios[3]. 

The multi-task learning framework is evaluated for both identity recognition and face synthesis tasks. Recognition performance is measured using 

classification metrics like accu- racy and F1-score. Synthesis quality is assessed through image-level metrics such as mean squared error (MSE) and 

structural similarity index measure (SSIM), which evaluate the visual fidelity of generated faces. The effectiveness of joint optimization is demonstrated 

by comparing models trained with single-task and multi-task learning setups, with multi-task frameworks consistently outperforming their counterparts 

in recognition accuracy and syn- thesis quality. These results highlight the framework’s ability to learn shared representations that benefit both tasks[1, 

3]. 

 

Fig. 5: Precision Comparison for research papers 
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The precision comparison chart Figure 5 highlights the percentage precision values for the six methodologies, focusing on the ability of the models to 

correctly predict positive cases without being affected by false positives. The AA-CNN (93 percent) again leads, reflecting its strong capability to 

accurately recognize identities with minimal false positives. The Multi- task Learning Framework (92 percent) and PMADN (90 percent) also perform 

well, owing to their robust feature mapping and disentanglement mechanisms. The Feature Recombination Framework (87 percent) and Joint Multi-task 

CNN (89 percent) lag slightly, indicating pos- sible limitations in handling complex aging patterns and task-specific feature interference. 

This comparison underscores the importance of fine-tuned models and well-defined feature spaces for achieving high precision in cross-age face 

recognition. 

The Joint Multi-task CNN employs classification metrics, such as accuracy, precision, and recall, to evaluate its performance on age classification and 

identity recognition tasks. A novel correlation loss term measures the disentanglement of age-sensitive and identity- sensitive features, ensuring that the 

features learned for one task do not interfere with the other. Results on CACD and AgeDB datasets show that the joint CNN framework achieves 

competitive accuracy for both tasks, outperforming single-task baselines and validating the importance of shared feature learning[2, 3]. 

This uses the Equal Error Rate (EER) as a primary metric for evaluating the cross- age face recognition system. EER is widely used in face verification 

tasks to determine the threshold where the false acceptance rate equals the false rejection rate. On datasets like CALFW and CACD, the proposed model 

demonstrated superior performance, achieving lower EER values compared to existing state-of-the-art methods, including LF-CNNs and AFJT-CNN. 

These results highlight the model’s ability to suppress age-related information while retaining robust identity features.This paper employs classification 

accuracy as a key metric for face verification tasks, specifically for the CACD-VS dataset. The accuracy is calculated based on the ratio of correctly 

identified pairs to the total number of test samples. The paper also emphasizes the effectiveness of nonlinear feature recombination strategies, achieving 

accuracy levels comparable to or surpassing methods like ArcFace and AFJT-CNN. These results validate the recombination model’s ability to address 

cross-age face recognition challenges effectively[4]. 

The evaluation metrics used focuses on assessing the accuracy and robustness of the proposed framework for cross-age face recognition tasks. 

Classification accuracy is the pri- mary metric, calculated as the ratio of correctly identified face pairs to the total number of test samples, specifically on 

the CACD-VS dataset. This metric is crucial for determining the framework’s capability to generalize across varying age groups. The paper highlights 

the effectiveness of its nonlinear feature recombination strategy, which enhances the robustness of identity-sensitive features while suppressing age-

specific variations. Comparative experi- ments demonstrate that the framework achieves accuracy levels comparable to or surpassing existing state-of-

the-art methods such as ArcFace and AFJT-CNN. These results validate the proposed framework’s ability to handle age-related variations effectively, 

ensuring high accuracy in cross-age recognition tasks[5]. 

This framework using both rank-1 identification rates and Equal Error Rate (EER) metrics across datasets such as MORPH Album 2, CACD-VS, and 

CALFW. The rank-1 identification rate measures the percentage of correct matches in a face identification setting, where the proposed AFRN model 

outperformed classical methods like FaceNet and LF-CNNs, achieving a rank-1 rate of over 98 percent. The EER metric further corroborates the model’s 

robustness, with a significantly reduced error rate when combined with the age-attention metric. These metrics collectively demonstrate the AFRN’s 

effectiveness in achieving robust cross-age face recognition[6]. 

Several standard metrics to measure the effectiveness of the Age-Invariant Model (AIM) in addressing cross-age face recognition challenges. Verification 

accuracy is calculated on widely used benchmarks such as MORPH, CACD, and FG-NET datasets, which contain diverse age ranges and demographic 

variations. AIM’s performance is also validated on unconstrained datasets like YouTube Faces (YTF) and IJB-C to assess its generalization ability under 

real- world conditions. The Equal Error Rate (EER) and Receiver Operating Characteristic (ROC) curves are used to evaluate the discriminative power 

of the learned features. Additionally, AIM’s ability to synthesize photorealistic rejuvenated and aged faces is measured using met- rics like the Fr´echet 

Inception Distance (FID) and identity preservation scores. These metrics quantify the visual realism and identity consistency of the synthesized images, 

demonstrating AIM’s superiority in jointly learning cross-age face recognition and synthesis tasks[7]. 

Quantitatively, the identity preservation capability is measured using face verification accuracy on datasets like LFW and YTF, where the transformed 

images are compared against their original counterparts. The Fr´echet Inception Distance (FID) is used to assess the realism of the generated images by 

comparing their distribution to that of real images. Attribute retention is evaluated by measuring the perceptual similarity between input and transformed 

images using perceptual loss and pixel-wise reconstruction error. Qualitatively, the method is evaluated based on the visual quality of age-transformed 

faces, judged by human raters for identity consistency and age realism[8]. 

Verification accuracy is computed on benchmark datasets like MORPH Album 2, CACD- VS, and Cross-Age LFW, where the model’s ability to match 

identities across age gaps is tested. The True Positive Rate (TPR) at different False Accept Rates (FARs) is used to assess the robustness of the extracted 

features under varying thresholds. The model’s iden- tity preservation capability is further analyzed using the proposed Feature Consistency Loss (FCL), 

which quantifies the alignment of features extracted by the two network branches[9]. 
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Fig. 6: F1 score Comparison for research papers 

The F1-Score comparison chart Figure 5 provides an overview of the harmonic mean of precision and recall for each methodology, making it a balanced 

metric to evaluate perfor- mance. The AA-CNN (91 percent) maintains its leading position, indicating that it balances precision and recall effectively, 

making it suitable for handling both false positives and false negatives. The Multi-task Learning Framework (90 percent) and PMADN (89 percent) show 

strong F1-Scores, demonstrating their ability to generalize across diverse age groups while retaining identity features. On the other hand, the Feature 

Recombination Framework (85 percent) and Joint Multi-task CNN (87 percent) achieve lower F1-Scores, possibly due to challenges in feature 

recombination and task interference. This chart highlights the overall robustness of methodologies that employ adversarial learning and multi-task 

optimization. 

5.2 Performance Analysis 

This effectively disentangles identity-sensitive features from age-related variations. Its pyramid-based multi-scale fusion further improves performance, 

as evident from evaluations on FG-NET and MORPH Album 2 datasets. The results show reduced Equal Error Rates (EER) and improved cross-age 

recognition accuracy compared to baseline methods. The adversarial loss is instrumental in suppressing age-specific features while maintaining robust 

identity featuresond paper introduces a Parallel Multi-Adversarial Disentanglement Net- work (PMADN) to address the limitations of traditional 

approaches. By disentangling age and identity features into separate subspaces, the model enhances recognition performance on CACD-VS and Cross-

Age LFW datasets. The subspace mapping and nonlinear feature recombination methods significantly improve classification accuracy and reduce age-

related errors. Comparative studies highlight its superiority over existing methods, achieving better identity verification rates and age classification 

performance[1]. 

The performance analysis of this highlights the effectiveness of the proposed framework in addressing age estimation and identity recognition challenges. 

The model integrates a back- bone network with innovative modules such as Expected Value Refinement (EVR), Relative Age Position Learning (RAPL), 

and Gender Prediction (GP). These components work in synergy to refine feature representations, enabling the model to achieve superior performance 

compared to other state-of-the-art methods. The EVR module enhances the model’s ability to regress accurate age predictions, while the RAPL module 

improves the learning of relative age positions, allowing for better generalization across age groups. The GP module further strengthens the framework 

by leveraging auxiliary information to boost overall performance. The model consistently delivers reliable results across various benchmarks, showcasing 

its capacity to generalize effectively to cross-age face recognition challenges. The overall imple- mentation validates the approach as a strong contender 

for solving complex age-related variations in facial analysis[2]. 

The Age Factor Removal Network (AFRN), which leverages adversarial learning and transfer loss to suppress age-related information. It achieves 

remarkable results on MORPH Album 2 and FG-NET datasets, with high true positive rates (TPR) and low false posi- tive rates (FPR). The model’s 

ability to preserve identity-sensitive features while removing age-related variations demonstrates its robustness, even under limited dual-labeled data sce- 

narios. AFRN’s performance is further validated through ablation studies, showcasing the importance of its adversarial loss mechanism[3]. 

The multi-task learning framework that jointly optimizes identity recognition and face synthesis. By integrating shared feature learning and task-specific 

branches, the model achieves superior generalization capabilities across diverse datasets like CACD and AgeDB. The synthesis quality, measured through 

structural similarity index measure (SSIM) and mean squared error (MSE), highlights the framework’s ability to generate realistic age- progressed faces 

while retaining identity features. Multi-task optimization proves more effective than single-task models, boosting recognition accuracy and 

interpretability[4]. 

The convolutional Neural Network (CNN) that simultaneously performs age classification and identity recognition. By introducing a correlation loss 

term, the framework disentangles task-specific features, reducing interference between age-related and identity-related tasks. Performance evaluations 

on CACD and AgeDB datasets demonstrate competitive results, with high classification accuracy for both tasks. The joint learning approach outperforms 

baseline methods, emphasizing the value of shared feature extraction for CAFR[5]. 

The Feature Recombination mapping and recombining age-specific and identity-sensitive subspaces. Through nonlinear recombination strategies, the 

framework effectively handles complex aging patterns, achieving robust recognition on FG-NET and Cross-Age LFW datasets. Metrics such as mean 

absolute error (MAE) and identity classification accuracy validate the model’s effectiveness in disentangling and recombining features. The results 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 4381-4407 April 2025                                     4403 

 

 

demonstrate significant improvements over traditional linear recombination approaches, showcasing the framework’s adaptability to diverse age 

variations[6]. 

The Age-Invariant Model (AIM) significantly outperforms existing methods in both cross- age face recognition and age synthesis tasks. On widely used 

benchmarks like MORPH, CACD, and FG-NET, AIM achieves superior verification accuracy, reducing errors caused by significant age variations. Its 

capability to synthesize photorealistic age-progressed and age-regressed faces is validated through a low Fr´echet Inception Distance (FID), indicat- ing 

high visual realism and identity preservation. Additionally, the model generalizes well to unconstrained conditions, as evidenced by its competitive 

performance on datasets like YouTube Faces (YTF) and IJB-C. The unified framework of AIM, which jointly optimizes face recognition and synthesis 

tasks, results in a noticeable improvement in handling diverse demographic variations, including gender, ethnicity, and age span. These results highlight 

AIM’s robustness and practicality for real-world applications[7]. 

Wasserstein Divergence GAN with Cross-Age Identity Expert and Attribute Retainer for Facial Age Transformation is validated through its ability to 

generate highly realistic and identity-preserving age transformations.On benchmark datasets such as LFW and YTF, the model achieves high face 

verification accuracy, demonstrating its effectiveness in maintaining identity consistency across transformed images. The model’s low FID scores further 

validate the realism of the generated images, while perceptual loss metrics confirm its ability to retain non-age-related attributes like pose and expression. 

Qualitative evaluations by human raters corroborate these findings, showcasing natural and believable age transitions. The integra- tion of cross-age 

retraining and 3D morphable model (3DMM) augmentation enhances the model’s ability to handle diverse age distributions, leading to improved 

generalization. Over- all, this framework achieves a balanced performance across realism, identity preservation, and attribute retention, positioning it as 

a competitive solution for age transformation tasks[8]. 

The inclusion of Feature Consistency Loss (FCL) enhances the alignment of features from its dual-branch architecture, resulting in a unified representation 

that is both age-invariant and identity-discriminative. The model also exhibits strong robustness under different False Accept Rates (FARs), indicating 

its reliability across varying operating conditions. Qualita- tive assessments further affirm its ability to generate visually consistent features, even for 

individuals with significant age variations. These results validate the proposed model’s prac- ticality and highlight its improvements over traditional 

methods that rely on identity labels or assume independence between age and identity.On MORPH Album 2, CACD-VS, and Cross-Age LFW, the model 

achieves high verification accuracy, demonstrating its capacity to handle large age gaps effectively[9]. 

The performance of AgeGAN++ is evaluated on multiple benchmark datasets, demon- strating its superiority over traditional face aging methods. 

Quantitatively, the method achieves higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) scores, indicating better 

preservation of identity and image quality. Qualitatively, the model generates visually plausible and seamless age transformations across a wide range of 

age groups, outperforming single-path GAN-based methods in terms of realism and con- sistency. Additionally, the authors address overfitting and 

convergence issues commonly associated with GANs by incorporating a dual discriminator setup, improving stability during training[10]. 

Table 2: Performance Analysis of Cross-Age Face Recognition Papers 

S. No Title Quantitative Analysis Qualitative Anal- ysis Comparison with 

Alternatives 

1 Age Adverserial 

Convolutional Neural 

Network for Cross-

Age Face Recognition 

Achieved higher 

accuracy in cross-age 

face recognition tasks 

when  compared to 

conventional methods. 

Performance metrics such 

as age invariant feature 

extraction and accuracy 

on benchmark datasets 

like CACD are strong. 

The model effectively 

distinguishes age-related 

features using  adversarial 

learning. However, the 

adversarial loss is sensitive 

to hyperparameter 

adjustments. 

Compared to traditional 

CNN methods, this model 

performs better at age- 

independent identity 

recognition and han- dles 

aging variation more 

effectively. However, it 

requires careful fine-tuning. 

2 Parallel Multi- path 

Age Distinguish 

Network for Robust 

Face Recognition 

High accuracy rates on 

age- specific subspace 

mapping tasks and feature 

dis- entanglement. The 

use of trans- fer learning 

has helped reduce the 

training time. 

The model lever- ages 

multi-path age subspace 

mapping, offering robust- 

ness under aging variations. 

Compu- tationally 

expensive but beneficial in 

handling aging 

transformations effectively. 

Outperforms simpler age 

recognition net- works by 

providing a more detailed 

view of age-related changes, 

though the computa- tional 

cost limits its application in 

real- time systems. 
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3 Age Fac- 

tor Removal Network 

for Identity Recog- 

nition Across Ages 

Demonstrates efficient 

identity  verification by 

suppressing age-specific 

features while 

maintaining identity 

robustness. High 

performance on large-

scale datasets with age 

and identityfeature 

separation. 

The approach focuses on 

sup- pressing unwanted age 

features with- out 

compromising identity 

nformation. Works well in 

synthetic aging 

environments but struggles 

in real-world noisy 

datasets. 

Outperforms meth- ods that 

do not explicitly address age-

invariant feature extraction. 

However, it is still vulnera- 

ble to subtle aging effects 

that are hard to model. 

 

S.No Title Quantitative Analysis Qualitative Analysis Comparison with 

Alternatives 

4 Multi-task Learning 

Framework for Age-

Invariant Face 

Recognition and 

Synthesis 

Achieved balanced 

performance in both age-

invariant face recognition 

and image synthesis tasks. 

Improved generalization 

capability over several 

datasets. 

The shared CNN backbone 

allows multi-task learning to 

handle aging and identity 

recognition simultaneously. 

Optimization issues arise in 

joint task training. 

Provides improve- ments over 

single-task learning models. 

However, the multi-task 

learning framework faces 

performance degradation when 

the datasets are imbalanced. 

5 Joint Multi- task CNN 

for Age and Identity 

Feature 

Disentanglement 

Improved accuracy on both 

age classification and 

identity verification tasks. 

Effective feature 

disentanglement achieved 

through joint optimization. 

The model demon- strates 

strong performance for both 

tasks; how- ever, it faces 

minor interference due to 

joint optimization. Requires   

careful balance between 

tasks. 

Compares favorably to 

traditional mod- els where 

age-related and identity-

related features are jointly 

optimized. However, task 

interference can limit its 

application in certain real-

world scenarios. 

6 Feature Recombination 

Framework 

for Non-linear Aging 

Patterns 

High recognition accuracy 

even under non-linear 

aging patterns. Achieves 

better feature    

representation and 

Recognition on datasets 

with aging variations. 

The feature recom- bination 

framework enables the 

model to handle complex 

aging scenarios. Still,  it is 

computationally expensive. 

Performs better than 

traditional methods in 

scenarios where aging is non-

linear, but it struggles with 

complex, highly vari- able 

datasets. 

5.3 Challenges and Limitations 

While the Age Adversarial Convolutional Neural Network (AA-CNN) demonstrates strong performance in suppressing age-sensitive features, its reliance 

on adversarial training requires careful balancing of identity and age losses. This balancing can be difficult to tune and may lead to suboptimal 

convergence, especially in datasets with imbalanced age or identity distributionsally, the model heavily depends on the quality of the adversarial feedback, 

which might not generalize well to highly diverse datasets[1]. 

The Parallel Multi-path Age Distinguish Network (PMADN) faces challenges related to its subspace mapping and recombination approach. While the 

method effectively captures age-specific and identity-sensitive features, it requires high computational resources due to the mapping of features into 

multiple subspaces. Moreover, the non-linear recombination process can introduce complexity in optimizing the network, potentially limiting its 

scalability to larger datasets. The reliance on transfer learning also raises concerns about the adaptability of the model to unseen data[2]. 

The Age Removal Network (AFRN) excels in balancing transfer learning and adversarial learning but is limited by its dependence on age-labeled datasets. 

This dependency poses a challenge when such datasets are scarce or biased toward specific demographics. Furthermore, while the discriminator 

effectively detects age-related features, it may struggle with subtle aging variations, leading to residual age-sensitive information in the generator’s output. 

The adversarial training process can also lead to instability, particularly when the discriminator overpowers the generator during training[3]. 

The multi-task Framework combines recognition and synthesis tasks to enhance gener- alization. However, the synthesis module’s reliance on generating 

photorealistic faces can increase computational complexity and lead to overfitting on certain age groups or identities. The shared CNN backbone, while 
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effective for joint optimization, may introduce conflicts between the tasks, particularly when the synthesis task dominates the optimization process. This 

imbalance can result in subpar identity recognition performance in scenarios with high age diversity[4]. 

The Joint Multi-task CNN regularization mechanism to disentangle age-sensitive and identity-sensitive features. However, its reliance on task-specific 

losses and correlation regu- larization may not fully resolve feature interference, especially in datasets with overlapping age and identity variations. The 

shared backbone architecture, though efficient, can lead to feature redundancy and limit the scalability of the model to more complex datasets. Addition- 

ally, the model’s performance might degrade when dealing with highly imbalanced datasets where one task outperforms the other[5]. 

The Feature Recombination Framework demonstraling non-linear aging patterns but is computationally intensive due to the mapping of features into 

multiple subspaces and their subsequent recombination. This complexity may hinder real-time applications and scalability to large datasets. The 

framework’s reliance on accurately capturing age-specific subspaces can lead to errors if the mapping module fails to account for subtle variations in 

aging. Moreover, the recombination process, while effective, may introduce noise or artifacts, particularly when applied to diverse demographic groups[6]. 

6. Conclusions and Future Scope 

Cross-age face recognition (CAFR) is a critical and challenging task in the domain of facial analysis, as it involves identifying or verifying individuals 

across significant age variations. The advancements made in this field, as demonstrated by various methodologies such as adversarial learning, multi-task 

optimization, feature decomposition, and non-linear recom- bination, have shown promising results in disentangling identity-sensitive and age-sensitive 

features. However, the inherent complexities introduced by aging, including changes in facial structure, texture, and expressions, continue to pose 

challenges for achieving robust and scal- able solutions. Current methods have made significant progress in leveraging deep learning techniques, transfer 

learning, and generative models to enhance recognition accuracy and generalization across age groups. Despite these advancements, the performance of 

CAFR sys- tems remains highly dependent on the quality and diversity of the datasets, as well as the ability of the models to adapt to unseen age variations 

and demographic shifts. 

The future scope of CAFR lies in addressing the limitations of existing methods and expanding their applicability to real-world scenarios. One promising 

direction is the devel- opment of more comprehensive and balanced datasets that include diverse age ranges, ethnicities, and environmental conditions, 

ensuring that models can generalize effectively across different populations. Another critical area for future research is the integration of explainable AI 

techniques to enhance the interpretability and transparency of CAFR sys- tems, which is particularly important for sensitive applications such as law 

enforcement and surveillance. Additionally, improving the computational efficiency of CAFR models will be essential for enabling real-time deployment 

in applications such as border control, mobile authentication, and video surveillance. Exploring hybrid approaches that combine generative and 

discriminative models, as well as incorporating multi-modal data such as voice and con- textual information, could further enhance recognition 

performance. Lastly, addressing biases in training data and model predictions remains a key challenge to ensure fairness and inclu- sivity in CAFR 

systems. By tackling these challenges, the field of cross-age face recognition has the potential to achieve significant breakthroughs and establish itself as 

a cornerstone technology in biometric authentication and facial analysis. 
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