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ABSTRACT : 

Pneumonia continues to be a leading cause of mortality, especially in children under five and the elderly population. Its diagnosis typically relies on the visual 

inspection of chest radiographs (CXRs) by experienced radiologists, which is time-consuming, subjective, and often inconsistent due to overlapping visual indicators 

with other thoracic conditions such as pulmonary edema, atelectasis, and lung malignancies. In this capstone project, we explore the application of deep learning 

techniques for the automated detection and localization of lung opacities in chest X-ray images, which are one of the primary visual cues of pneumonia. 

The project utilizes a two-fold approach. First, image classification models based on transfer learning were developed using pre-trained architectures—VGG16 and 

ResNet50—to classify CXR images into three categories: Normal, No Lung Opacity/Not Normal, and Lung Opacity. The models were trained using enhanced 

images processed through histogram equalization to improve contrast. Extensive exploratory data analysis (EDA) revealed class imbalance and multiple bounding 

box annotations for single patients, which were carefully addressed during preprocessing. 

Second, Faster Region-based Convolutional Neural Network (Faster R-CNN) was implemented for object detection to accurately localize lung opacity regions 

within the radiographs. This model employed ResNet50 as its backbone and was trained exclusively on images labeled with lung opacities (Target=1), due to 

annotation limitations in the other categories. Performance metrics such as classification accuracy, Intersection over Union (IoU), and mean Average Precision 

(mAP) were used to evaluate the effectiveness of the models. The ResNet50-based Faster R-CNN achieved a classification accuracy of approximately 86.57% and 

a mAP of 0.383, indicating promising results in opacity localization. 

Despite the performance, limitations such as computational constraints, model overfitting, and lack of generalizability to diverse demographics were encountered. 

The report also discusses the ethical, practical, and regulatory implications of deploying AI in medical diagnostics and highlights the need for further validation 

with clinical data and multi-institutional datasets. 

This study demonstrates the feasibility of using deep learning to support radiologists in detecting pneumonia by automating the identification of lung opacities. It 

lays the groundwork for future integration of AI in real-world clinical workflows, aiming to enhance diagnostic speed, accuracy, and accessibility in resource-

limited settings. 

Introduction 

Pneumonia is a potentially life-threatening infection that affects the lungs, leading to the inflammation of the air sacs known as alveoli. These air sacs 

may fill with fluid or pus, causing symptoms such as cough with phlegm or pus, fever, chills, and difficulty breathing. It can be caused by a variety of 

organisms including bacteria, viruses, and fungi. Globally, pneumonia remains one of the leading causes of death in children under the age of five, 

accounting for over 15% of all deaths in this age group. In 2017 alone, an estimated 920,000 children died from pneumonia worldwide. Despite being a 

preventable and treatable disease, the burden remains high due to delayed or incorrect diagnoses, especially in low-resource settings. 

A reliable diagnosis of pneumonia typically involves a combination of clinical examination, laboratory tests, and radiographic imaging—most commonly, 

a chest X-ray (CXR). However, interpreting CXRs requires specialized radiological expertise, and the manual process is prone to inter-observer 

variability, fatigue, and human error. Furthermore, several lung conditions, such as atelectasis, pulmonary edema, lung malignancies, and pleural 

effusions, can mimic pneumonia on radiographs by presenting similar patterns like increased lung opacity. This overlap often complicates accurate 

diagnosis, making it both time-sensitive and skill-intensive. 

The growing availability of digital medical images and advances in deep learning techniques have opened new avenues in medical diagnostics. 

Particularly, convolutional neural networks (CNNs) have demonstrated remarkable success in image recognition tasks across various domains, including 
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healthcare. Their ability to automatically extract and learn hierarchical image features makes them highly suitable for analyzing complex medical images 

such as CXRs. 

This capstone project aims to leverage the power of deep learning to assist in the diagnosis of pneumonia through two primary objectives: 

1. Classification Task: To develop a robust deep learning model that can classify chest X-ray images into categories based on the presence or 

absence of lung opacity—an essential radiographic indicator of pneumonia. 

2. Localization Task: To design an object detection system capable of accurately identifying and drawing bounding boxes around lung opacity 

regions, thereby pinpointing areas of concern on the CXR images. 

The study employs pre-trained CNN models, specifically VGG16 and ResNet50, for classification tasks, and integrates the Faster R-CNN object detection 

framework for spatial localization of lung opacity. Extensive preprocessing, including histogram equalization, was conducted to enhance image contrast, 

improving the performance of learning algorithms. Additionally, comprehensive exploratory data analysis (EDA) was performed on the metadata and 

image datasets to understand underlying patterns, class distributions, and potential biases. 

Through this research, we not only seek to improve the speed and accuracy of pneumonia detection but also aim to demonstrate how artificial intelligence 

(AI) can support healthcare professionals in making more informed clinical decisions. The integration of such models has the potential to significantly 

reduce diagnostic delays, especially in resource-constrained environments where access to expert radiologists is limited. 

Ultimately, this work contributes to the ongoing efforts in medical AI to bridge the gap between radiological expertise and scalable diagnostic tools by 

creating a model that can function as a second opinion, triage assistant, or even an autonomous diagnostic system in the future. 

Related Work 

In recent years, the application of deep learning in the medical imaging domain has witnessed exponential growth, particularly in radiology. Several 

studies have demonstrated the efficacy of convolutional neural networks (CNNs) in detecting anomalies in chest radiographs, such as pneumonia, 

tuberculosis, lung cancer, and other pulmonary diseases. 

One of the earliest and most cited works is CheXNet by Rajpurkar et al. (2017), where a 121-layer DenseNet was trained on the ChestX-ray14 dataset to 

detect pneumonia. The model not only outperformed traditional machine learning classifiers but also showed performance comparable to expert 

radiologists. CheXNet set a foundation for deep learning-based diagnosis and was a benchmark for several subsequent studies. 

Another notable study is by Stephen Oakden-Rayner et al. (2019), which explored the generalizability issues of CNN-based models across different 

hospital systems. Their research highlighted the challenge of dataset bias — models trained on one hospital’s data often performed poorly on data from 

another due to demographic and equipment variations. This finding emphasizes the need for robust and diverse datasets in clinical AI research. 

The RSNA Pneumonia Detection Challenge on Kaggle (2018) spurred significant research activity. Participants attempted to identify and localize 

pneumonia in chest X-rays using DICOM images and corresponding bounding box annotations. Many top-performing models used ensemble methods 

combining architectures like ResNet, VGG, and DenseNet with region-based detection algorithms like Faster R-CNN, YOLO, and RetinaNet. 

In the object detection space, Ren et al. (2015) introduced Faster R-CNN, which replaced the traditional selective search with a Region Proposal Network 

(RPN). This drastically improved the speed and accuracy of object detection, making it highly suitable for medical imaging tasks where real-time and 

precise localization is critical. 

Further improvements were seen in RetinaNet (Lin et al., 2017), which introduced Focal Loss to handle the extreme class imbalance problem in object 

detection — a common scenario in medical datasets. RetinaNet’s one-stage detector architecture provided a balance between speed and accuracy, making 

it a preferred choice for many healthcare AI solutions. 

From a real-world clinical integration standpoint, Google Health’s AI for lung cancer detection (Ardila et al., 2019) and NYU’s breast cancer detection 

system (McKinney et al., 2020) showed that deep learning models could achieve or exceed radiologist-level accuracy in specialized tasks. However, 

these models also highlighted critical issues like lack of interpretability, generalizability, and regulatory barriers. 

Recent advancements have also focused on explainable AI (XAI) in radiology, to improve clinician trust. Techniques such as Grad-CAM and integrated 

gradients are being used to visualize the decision-making process of CNNs. 

Model Design and Implementation Overview 

The system pipeline is designed to handle both classification and object detection tasks on chest X-ray images for pneumonia detection. The workflow 

begins with preprocessing steps, where DICOM-format images are converted to PNG format, followed by histogram equalization to enhance contrast. 

The images are uniformly resized to 300×300 pixels and normalized for input to deep learning models. 

For the classification task, transfer learning was utilized with two pretrained CNN models: VGG16 and ResNet50. These models were modified by 

replacing the top layers with custom fully connected layers suitable for binary (Target = 0/1) and multiclass classification (Normal, No Opacity, Lung 

Opacity). The initial layers of the models were kept frozen during early training to retain low-level visual features from the original ImageNet training, 

while the deeper layers were fine-tuned using the chest X-ray dataset. To improve generalization and address overfitting, the dataset was augmented using 

horizontal and vertical flips, random rotations, and zoom transformations via ImageDataGenerator. 

In the second stage, object detection was performed using the Faster R-CNN architecture with ResNet50 as the backbone. Only images with labeled 

lung opacities (Target = 1) were used for this phase, as they included bounding box annotations. The Region Proposal Network (RPN) was configured 

with anchor boxes of different scales and aspect ratios to capture varying opacity sizes. RoI pooling was applied to standardize region sizes, followed by 

classification and bounding box regression heads to refine predictions. 

The model was trained for 40 epochs with the Adam optimizer and a learning rate of 1e-5. Evaluation metrics included accuracy, IoU, mAP, and loss 

values. The system demonstrated robust performance in localizing lung opacities, with good alignment between predicted and ground truth boxes. 
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Training Strategy and Evaluation Metrics 

The training process was carried out in two phases: image classification and object detection. For classification, both VGG16 and ResNet50 were 

initialized with pretrained ImageNet weights. The top fully connected layers were replaced with task-specific dense layers including ReLU activations 

and dropout regularization to prevent overfitting. During training, the lower layers were initially frozen, and only the custom classifier layers were trained. 

In the later epochs, selective unfreezing of deeper convolutional blocks was performed for fine-tuning. 

The models were compiled using the categorical cross-entropy loss function for multiclass classification and binary cross-entropy for the binary target 

prediction. Two optimizers—Adam and RMSprop—were tested across learning rates ranging from 0.0001 to 2e-5. Batch size was kept relatively low 

(16 or 32) due to hardware limitations on Google Colab. 

To ensure robust evaluation, the dataset was split into 70% training and 30% validation sets. Class imbalance (Target = 0 dominating Target = 1) was 

mitigated using class weights and data augmentation strategies including random horizontal/vertical flips, zooming, and rotations. 

For object detection, Faster R-CNN was trained using only the images labeled with Target = 1. The loss function for the detection model was a multi-

task loss, combining: 

• RPN classification loss (object vs background), 

• RPN regression loss (bounding box adjustment), 

• ROI classification loss (classifying proposal region), 

• ROI regression loss (refining box coordinates). 

The following evaluation metrics were used to quantify model performance: 

• Accuracy: Percentage of correctly predicted classes. 

• Precision and Recall: To assess relevance and completeness of classification, especially in imbalanced classes. 

• F1-Score: Harmonic mean of precision and recall. 

• Intersection over Union (IoU): Measures the overlap between predicted and ground-truth bounding boxes. 

• Mean Average Precision (mAP): Primary metric for object detection tasks, summarizing detection precision across multiple thresholds. 

• Loss Curves: Monitored across epochs to track convergence and detect overfitting. 

During object detection training, the model achieved steady improvements in mAP and IoU over 40 epochs, validating its capability to accurately localize 

pneumonia-affected regions. 

Objectives 

The objective of this project is to develop an AI-based diagnostic system for the automated detection and localization of pneumonia in chest X-ray images 

by identifying regions of lung opacity. The study aims to build a robust image classification model using convolutional neural networks (CNNs), 

specifically VGG16 and ResNet50, to distinguish between normal cases, no lung opacity/not normal cases, and cases with evident lung opacity. 

Additionally, an object detection model based on the Faster R-CNN architecture is implemented to accurately identify and localize affected regions using 

bounding boxes. To ensure consistent image quality and model performance, the project incorporates preprocessing techniques such as histogram 

equalization and image resizing. 

The research further involves extensive exploratory data analysis (EDA) of the metadata and image attributes to understand class distribution, patient 

demographics (age and sex), and view positions. Transfer learning is applied by fine-tuning pretrained models originally trained on large-scale datasets 

like ImageNet, allowing the reuse of low-level visual features for medical image analysis. The models are evaluated using standard performance metrics 

including accuracy, precision, recall, F1-score, intersection over union (IoU), and mean average precision (mAP). The project also addresses common 

challenges such as data imbalance, model overfitting, and limited computational resources by applying augmentation strategies and hyperparameter 

optimization. 

Finally, the study reflects on the ethical and practical implications of deploying AI in clinical environments, especially in radiology. It emphasizes the 

importance of generalizability across different patient populations and imaging conditions, and proposes strategies to bridge the gap between academic 

research and real-world clinical adoption through better data collection, validation, and regulatory alignment. 

Methodology 

This study adopts a hybrid methodology combining image classification and object detection to identify and localize pneumonia-related lung opacities in 

chest X-ray images. The approach is structured in multiple stages: data preprocessing, exploratory data analysis, image enhancement, model training for 

classification, and object detection using deep learning architectures. 

Initially, the dataset comprising over 26,000 chest radiograph images in DICOM (.dcm) format was obtained from the RSNA Pneumonia Detection 

Challenge on Kaggle. The images were supplemented by two CSV files containing metadata and bounding box annotations. Data preprocessing began 

with converting DICOM files to a suitable image format (PNG), followed by histogram equalization to enhance image contrast. All images were then 

resized uniformly to 300x300 pixels to standardize input dimensions for the deep learning models. 

Exploratory Data Analysis (EDA) was performed on both image metadata and class labels to understand the distribution of data across various parameters 

including patient age, gender, view position, and class imbalance. It was observed that a significant portion of the dataset was skewed towards non-

opacity classes, necessitating balancing techniques during model training. 

For the classification task, pre-trained convolutional neural networks—VGG16 and ResNet50—were employed using a transfer learning approach. The 

final classification layers were replaced with custom dense layers to adapt the networks for binary (Target: 0/1) and multiclass (Normal, No Opacity, 
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Lung Opacity) classification. Two training methodologies were evaluated: the first involved direct training on enhanced images, and the second 

incorporated data augmentation using the Keras ImageDataGenerator to improve model generalization. Loss functions used included categorical cross-

entropy, and optimizers like Adam and RMSprop were tested with various learning rates. Despite high training accuracy, models exhibited overfitting 

due to class imbalance and limited augmentation. 

For object detection, the Faster R-CNN architecture with ResNet50 as the backbone was implemented to localize lung opacities through bounding boxes. 

Since only images labeled with lung opacity (Target = 1) had annotation data, the object detection model was trained exclusively on that subset. The 

Region Proposal Network (RPN) was used to generate candidate regions, which were refined through RoI (Region of Interest) pooling and passed through 

classification and regression heads. Bounding box coordinates were adjusted based on image resizing, and augmentation was applied through random 

flips and rotations to increase training variability. 

Model performance was assessed using metrics such as accuracy, precision, recall, F1-score for classification, and Intersection over Union (IoU) along 

with mean Average Precision (mAP) for object detection. Training progress and loss curves were logged across epochs to monitor learning trends and 

prevent overfitting. 

The proposed methodology successfully integrates classification and detection to provide a comprehensive diagnostic aid, capable of identifying both the 

presence and precise location of pneumonia-related lung opacities from chest X-ray images. 

Experiments and Results 

To evaluate the effectiveness of the proposed pneumonia detection framework, a series of experiments were conducted for both classification and object 

detection tasks. All experiments were executed using Python and Keras with TensorFlow backend, and due to resource constraints, training was performed 

on Google Colab with GPU acceleration. 

For the classification task, both VGG16 and ResNet50 models were fine-tuned using transfer learning. The last few convolutional layers of the pre-

trained networks were unfrozen, and new fully connected layers were added for binary classification (Target: 0 - No Opacity, 1 - Opacity) as well as 

multiclass classification (Normal, No Lung Opacity/Not Normal, Lung Opacity). The input images were resized to 300×300 and normalized, while 

histogram equalization was applied to enhance contrast. Two optimizers—Adam and RMSprop—were tested with learning rates of 0.0001, 0.001, and 

2e-5. Despite achieving high training accuracy (>98%), the validation accuracy plateaued around 72–74% for binary classification and 33–35% for 

multiclass classification, indicating overfitting due to class imbalance. 

The ResNet50 model demonstrated slightly better performance than VGG16, with a validation accuracy of 73.47%, precision of 36.73%, recall of 50%, 

and F1-score of 42.35% for the binary classification task. The multiclass setup yielded lower metrics due to overlapping visual features and label 

imbalance. Confusion matrices further revealed a high false-negative rate, especially for lung opacity cases, suggesting a need for better data augmentation 

and balancing. 

For the object detection task, the Faster R-CNN architecture was implemented with ResNet50 as the backbone. Due to the absence of bounding box 

annotations for Target = 0 images, the model was trained exclusively on 6,012 lung opacity images (Target = 1). The Region Proposal Network generated 

anchors at different scales (64, 128, 256) and aspect ratios (1:1, 1:2, 2:1), and data augmentation techniques such as horizontal/vertical flips and 90° 

rotations were employed. The input image size was standardized to 300×300, and bounding boxes were rescaled accordingly. 

The Faster R-CNN model was trained for 40 epochs. Key evaluation metrics included Mean Intersection over Union (IoU), classification accuracy, and 

Mean Average Precision (mAP). The IoU steadily improved across epochs, reaching over 5.33, and the final mAP achieved was 0.383, indicating a 

reasonable detection capability given the dataset size and hardware constraints. The classification accuracy for object detection reached 86.57%, while 

overall loss reduced significantly from 5.12 to 1.63 during training. 

Qualitative results further validated the model’s performance. In sample predictions, bounding boxes closely matched the ground truth, and the model 

performed robustly even on augmented (flipped/rotated) images. However, certain false positives were noted, especially in regions with overlapping 

anatomical structures. 

These experiments demonstrate that the proposed framework, especially with Faster R-CNN for localization, holds promise for clinical screening 

assistance. However, further improvements in data balance, augmentation, and training infrastructure are needed to enhance generalizability and real-

world performance. 

Discussion and Limitations 

The results of this study highlight both the potential and challenges of using deep learning for pneumonia detection in chest radiographs. While 

classification models such as ResNet50 and VGG16 showed promising training performance, their relatively lower validation accuracy indicates 

overfitting, primarily due to class imbalance and limited variability in the dataset. Additionally, the multiclass classification task faced difficulty 

distinguishing between “No Opacity/Not Normal” and “Normal” classes, likely due to overlapping visual features and insufficient contextual data. 

The object detection approach using Faster R-CNN yielded better generalization, achieving a mean average precision (mAP) of 0.383 and classification 

accuracy of 86.57%. The model demonstrated good localization of lung opacities even in augmented scenarios, validating its robustness. However, 

computational limitations on Google Colab restricted the ability to run larger batch sizes, deeper networks (like EfficientDet or RetinaNet), or extended 

epochs, which could further improve results. 

From a real-world deployment perspective, challenges remain. The current model is trained on a specific dataset and may not generalize well to different 

hospitals or demographic groups. Furthermore, lung opacity alone is not a definitive indicator of pneumonia, and clinical symptoms must also be 

considered. Future work should integrate NLP-based symptom analysis, diverse datasets, and potentially multi-modal diagnostics for higher clinical 

relevance. 
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Conclusion  

This study presents a deep learning-based framework for the classification and localization of pneumonia-related lung opacities from chest X-ray images. 

By leveraging transfer learning on pre-trained CNN architectures such as VGG16 and ResNet50, and integrating Faster R-CNN for object detection, the 

proposed system effectively identifies both the presence and spatial location of abnormalities. The classification models demonstrated high training 

accuracy but encountered overfitting during validation, primarily due to class imbalance and limited augmentation. Nonetheless, the object detection 

model offered better generalization, achieving a mean average precision (mAP) of 0.383 and providing reasonably accurate bounding box predictions on 

lung opacity cases. 

The outcomes of this research confirm the potential of AI-powered tools to assist in radiological diagnostics, especially in environments with limited 

access to trained radiologists. The combination of classification and object detection in a unified pipeline adds clinical relevance by not only flagging 

abnormal cases but also visually guiding radiologists to the regions of concern. Furthermore, the use of image preprocessing techniques like histogram 

equalization, and the adoption of data augmentation strategies, contributed to enhanced model robustness despite hardware constraints. 

However, for real-world deployment, the framework must address several challenges. The dataset used is restricted in diversity, and the models may not 

perform equally well across varying demographics, imaging devices, or clinical conditions. Moreover, lung opacity, although indicative of pneumonia, 

is not a definitive marker in isolation; other conditions such as COVID-19, edema, or fibrosis may present similar radiographic patterns. Thus, to truly 

serve as a clinical decision support tool, integration with patient symptoms, history, and additional diagnostic tests is essential. 

Future Work  

Building upon the findings of this study, several directions can be explored to further enhance the performance, reliability, and clinical applicability of 

the proposed framework. One of the primary areas of improvement lies in the expansion and diversification of the dataset. Incorporating chest X-ray data 

from multiple healthcare institutions across various geographic regions, age groups, and patient demographics will help reduce model bias and improve 

generalizability. Additionally, the inclusion of varied imaging modalities and devices can enable the model to adapt to real-world heterogeneity in medical 

imaging practices. 

Another promising direction involves the integration of clinical metadata and symptom-based patient information through natural language processing 

(NLP). Since radiographic findings alone may not be sufficient for conclusive diagnosis, fusing imaging data with clinical symptoms such as fever, cough, 

oxygen saturation, or blood reports could significantly enhance diagnostic accuracy. The development of a multi-modal AI system that considers both 

visual and textual information can provide a more holistic and context-aware assessment. 

From a technical standpoint, future research can explore the adoption of more advanced deep learning architectures. Models such as RetinaNet, 

EfficientDet, YOLOv8, and transformer-based vision models like Swin Transformer or Vision Transformers (ViT) offer improved performance and 

faster inference times. These architectures also come with features such as focal loss and multi-scale detection, which are well-suited for detecting subtle 

abnormalities like lung opacities. 

Moreover, the current model's deployment is limited by the computational resources available during experimentation. Future implementations can 

leverage cloud-based GPU clusters or high-performance computing platforms to support larger batch sizes, longer training schedules, and hyperparameter 

optimization through AutoML frameworks. 

Lastly, transitioning from research to real-world clinical deployment will require rigorous validation in collaboration with radiologists, as well as 

alignment with medical regulations such as FDA or CE approvals. User interface design, explainability of predictions (e.g., using Grad-CAM), and 

integration into hospital information systems (HIS) are also critical steps toward operationalizing AI in medical imaging. 

In essence, while the current study lays a solid foundation, future work must focus on data diversity, clinical context integration, architectural innovation, 

and real-world validation to build a trustworthy and scalable AI solution for pneumonia detection and beyond. 
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