

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Automated Environmental Control for Energy Efficiency in Malls

Dr. N. Sree Divya^{1*}, Bhavana Deyyam^{2*} and CH. Laxmi Pravalika³

^{1,2,3*}Department of IT, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad, 500075, Telangana, India.
 E-mail(s): it@mgit.ac.in; bhavana20030810@gmail.com; csb213215@mgit.ac.in;
 DOI : https://doi.org/10.55248/gengpi.6.0425.1460

ABSTRACT

Energy consumption in commercial spaces like shopping malls contributes sig- nificantly to operational costs and environmental impact. This paper proposes a dynamic, sensor-driven energy optimization framework tailored for malls. By employing occupancy detection, real-time data analytics, and automated control mechanisms, the system allocates energy resources efficiently across zones. High- traffic areas receive prioritized conditioning, while underutilized spaces operate on minimal energy settings. The approach integrates IoT sensors, AI-driven pre- dictive models, and adaptive control strategies to ensure both sustainability and customer comfort. The proposed system is scalable and adaptable for broader commercial and public use cases.

Keywords: Energy Efficiency, Occupancy Detection, Smart Malls, IoT, Automated Control Systems, HVAC Optimization.

1. Introduction

Modern shopping malls face increasing pressure to reduce their environmental foot- print while maintaining a comfortable customer experience. Traditional systems operate on static schedules, leading to overuse or underutilization of energy. Emerging technologies in IoT, AI, and sensor networks provide the opportunity to manage energy dynamically based on real-time occupancy and activity patterns. This paper explores an automated system that adjusts lighting, air conditioning, and other utilities in response to real-time data, significantly enhancing energy efficiency [1, 2].

1.1 Problem Statement and Motivation

Malls have diverse zones (e.g., retail, food courts, entertainment) with fluctuating occupancy, making uniform energy strategies inefficient. Conventional methods lack adaptability and often waste energy. Our motivation is to develop a scalable framework that combines AI and IoT technologies to automate energy usage, minimize wastage, and maintain customer comfort.

Key Objectives:

- 1. Real-time occupancy-based control
- 2. Predictive energy allocation using AI
- 3. Scalability across different building layouts
- 4. Seamless user comfort integration

2. Related Works

Several approaches have been developed for automated vehicle damage detection and analysis. Early systems focused on traditional image processing techniques, which struggled with variability in lighting and damage types. Recent studies have shifted toward deep learning-based methods such as CNNs and Mask R-CNN for localization and classification of damage areas [1, 2]. For instance, models like Inception ResNetV2 and YOLOv5 have shown improved performance in detecting dented and scratched regions [3, 4].

While some frameworks offer binary classification (damaged vs. undamaged), oth- ers attempt severity estimation using regression-based models or ensemble techniques like XGBoost [5, 6]. However, most existing systems lack integration with real-world applications such as repair cost prediction or service recommendations. Moreover, limitations in dataset diversity and real-time usability still pose challenges [7, 8].

Our proposed work builds upon these foundations by offering a comprehensive pipeline that combines semantic segmentation, severity analysis, cost prediction, and location-based repair suggestions—addressing gaps in automation, user-friendliness, and decision support [9, 10].

Table 1: Literature Survey

5.no	Title	Author(s)	Journal & Year	Methodol	logies	Key Findi	ings	Gaps	
۱.	Online	Luis	IEEE	This	study	The resea	rch	The	study
	Unsu-	Rueda,	Access;	employs	unsu-	demonstra	ites	focuses	on
	pervised	Kodjo	2021	pervised		that unsup	er-	residential	
	Occu-	Agbossou,		machine 1	learn-	vised learr	ning	environme	ents,
	pancy	Nilson		ing	algorithms	can effecti	vely	limiting	its
	Antici-	Henao,		to predict	occu-	enhance		generaliz-	
	pation	Sousso		pancy pat	tterns	energy	effi-	ability	to
	System	Kelouwani		in	residential	ciency	by	commercia	al
	Applied			settings.	The	predicting		settings	like
	to Res-			system	inte-	occupancy	1	malls.	Addi-
	idential			grates	data	patterns a	nd	tionally,	the
	Heat Load			from	sensors	adjusting		scalability	
	Man-			such as ter	mper-	heating loa	ads	and	perfor-
	agement			ature, hun	nidity,	according	ly.	mance of t	he
	[<u>1</u>]			and	light to	Significan	t	system	in
				dynamical	lly	energy	sav-	handling l	arge
				manage he	eating	ings	were	datasets	or
				loads. Rea	al-time	achieved		complex 1	ay-
				data proce	essing	without co	om-	outs were	not
				and	adaptive	promising		thoroughly	/
				modeling	tech-	comfort,		explored,	
				niques	were	highlightii	ng	presenting	
				key to imp	prov-	the	system's	opportunit	ies
				ing	accuracy	practical		for	further
				and respor	nsive-	applicabili	ity.	investigati	on.
				ness in e	nergy				
				manageme	ent.				
	A Study of	Sunsika	IEEE	Utilized		Crowdedn	ess	Lack	of
	Temporal	Chaikul,	Access;	Time-lagg	ged	predicts		ground tru	th
	Corre-	Yottana	2024	Cross-		electricity		for	space
	lation	Khuna-		correlation	n	consumpti	on	utilization	
	Between	torn, Santi		(TLCC)	for	with	a 30-	inference.	
	Space	Phithakkit-		analysis.		45	minute	Potential	
	Utiliza-	nukoon		Employed	l	lag.	Mobil-	network c	on-

tion and	k-means cluster- ity correlates nection issues
Electricity	ing for building with electric- affecting data
Consump-	electricity ity usage at accuracy.
tion in	profiles. 15-30 minute Limited gran-
Buildings	lags. Entropy ularity due
Using Wi-	serves as to 15-minute
Fi Probe	a reliable sampling rate.
Data [<u>2]</u>	predictor
	for energy
	consumption.

S.no	Title		Author(s)	Journal d Year	&Methodol	ogies	Key Findi	ings	Gaps	
3.	Modeling		Georgiana	IEEE	Advanced	deep	Deep	learn-	While	effec-
	and	Pre-	Cretu,	Access;	learning	algo-	ing	methods	tive,	the
	diction		Iulia Sta-	2024	rithms	were	significant	ly	methodol-	
	of -	Occu	matescu,		utilized	to	outperform	ned	ogy	requires
	pancy	in	Grigore		predict	occu-	traditional		high	com-
	Buildings		Sta-		pancy pat	terns	occupancy	7	putational	
	Based		matescu		using	sensor	detection		resources,	
	on	Sen-			data, inclu	uding	techniques	5	which	could
	sor	Data			motion,	tem-	in terms	of	limit	its
	Using				perature,	and	prediction		real-time	
	Deep				CO2	levels.	accuracy.	The	applicabil	ity
	Learning				The	approach	integratior	1	in	resource-
	Methods				involved	data	of	multi-	constraine	d
	[<u>3]</u>				preprocess	sing,	ple	sensor	settings.	
					feature	engi-	data sourc	ces	Moreover	the
					neering,	and	improved	the	study prin	nar-
					model	train-	robustness	5	ily	focused
					ing to enh	ance	and	adapt-	on	single-
					prediction		ability of t	he	building	
					accuracy.		system.		scenarios,	
									leaving	its
									scalability	in
									multi-zon	e
									environme	ents

								like	malls
								unaddres	sed.
4.	Energy-	Toru Yano	IEEE	The	system	Incorpora	ating	The	reliance
	Saving	and Miho	Access,	collected	real-	occupant		on active	user
	Occupant-	Sako	2024	time	occupant	preferenc	es	input ma	y not
	Feedback			feedback	to	resulted	in	be scalab	le in
	Control			dynamica	lly	substanti	al	environm	nents
	Method			adjust	air	energy	sav-	with	diverse
	Under			condition	er	ings	while	occupant	s,
	Preferred			settings.	This	maintaini	ing	such as n	nalls.
	Air-			user-centi	ric	high	levels	Addition	ally,
	Conditioner			approach	bal-	of user sa	atis-	the	system's
	Settings of			anced	comfort	faction.	The	performa	nce
	Occupants			with	energy	real-time		in	manag-
	[<u>4</u>]			efficiency	y by	adaptabil	ity	ing	multiple
				integratin	g	of the sys	stem	HVAC	units
				IoT-enabl	ed	was	particu-	simultane	e-
				devices	and	larly effe	ctive	ously wa	s not
				adaptive o	control	in	optimiz-	explored.	
				algorithm	s.	ing	HVAC		
						operation	18.		

S.no	Title	Author(s)	Journal & Year	Methodologies	Key Findings	Gaps
5.	A Cog-	Claudio	IEEE	This study	The cog-	The
	nitive	Marche,	Trans-	proposed a	nitive IoT	approach's
	Social IoT	Gian	actions	cognitive IoT	framework	implemen-
	Approach	Giuseppe	on Net-	framework inte-	significantly	tation in
	for Smart	Soma,	work	grating social	reduced	large-scale,
	Energy	Michele	and	IoT devices and	energy con-	multi-zone
	Manage-	Nitti	Service	machine learn-	sumption	settings like
	ment in a		Man-	ing for real-time	while main-	malls requires
	Real Envi-		age-	energy man-	taining	further val-
	ronment		ment,	agement. The	operational	idation.
	[<u>5]</u>		2023	system dynam-	efficiency. Its	Challenges
				ically predicted	adaptability	related to
				energy demand	and scala-	data security
				and adjusted	bility were	and privacy in

				consumpt	ion	demonstr	ated	IoT-enabl	ed
				patterns b	based	in	complex	systems	also
				on	cognitive	environm	ents.	remain to	be
				decision-				addressed	
				making.					
6.	Efficient	Mateusz	IEEE	Thermal	imag-	Thermal		The syste	em's
	People	Piechocki,	Access;	ing and m	achine	imaging		reliability	
	Count-	Marek	2022	learning	algo-	proved e	ffec-	in	dynamic,
	ing in	Kraft,		rithms	were	tive	for	high-traff	ic
	Thermal	Tomasz		employed	for	occupanc	у	areas	like
	Images:	Pajchrowski,		accurate	peo-	detection,	,	malls was	not
	The	Prze-		ple	counting	even	in	evaluated	
	Bench-	myslaw		in	resource-	low-light	con-	Integratio	n
	mark of	Aszkowski		constraine	ed	ditions.	The	with broa	ıder
	Resource-			environ-		methodol	ogy	energy m	an-
	Constrained			ments.	The	demonstr	ated	agement	
	Hardware			study	utilized	high	accu-	systems	also
	[<u>6]</u>			benchmar	k-	racy	while	remains	
				ing	techniques	minimizii	ng	unexplore	ed,
				to	optimize	hardware		limiting	its
				performar	ice	resource		applicabil	ity.
				on	low-power	requireme	ents.		
				hardware.					

S.no	Title	Author(s)	Journal Year	& Methodologies	Key Findings	Gaps
7.	Field	Toru	IEEE	This study con-	Occupancy-	The findings
	Study on	Yano and	Access;	ducted a field	reactive	are primarily
	Actual	Shuichiro	2021	evaluation of	systems	focused on
	Usage of	Imahara		occupancy-	effectively	heating sys-
	Occupancy-			reactive space	optimized	tems, leaving
	Reactive			heating sys-	energy	their appli-
	Space			tems, combining	usage by	cability to
	Heating			sensor data and	dynamically	other energy
	Control [7]			reactive con-	adjusting	domains, such
				trol algorithms.	heating set-	as cooling
				The approac	h tings. The	and light-
				emphasized	study high-	ing in malls,

				real-world	lighted the	unexplored.
				applicability	practical-	Scalability
				through exten-	ity and	for larger
				sive on-site	energy-saving	commer-
				testing.	potential of	cial settings
					such systems	was also not
					in real-world	addressed.
					conditions.	
8.	Office	Azkario	IEEE	Power con-	The method-	The
	Low-	Rizky	Access;	sumption data	ology	approach's
	Intrusive	Pratama,	2021	was analyzed	demonstrated	performance
	Occu-	Frank		to detect occu-	accurate	in more
	pancy	Johan		pancy patterns	occupancy	complex,
	Detection	Blaauw,		in office envi-	detection	multi-
	Based on	Alexander		ronments. The	using power	functional
	Power	Lazovik		study employed	consumption	spaces like
	Con-			low-intrusive	as a proxy,	malls is
	sumption			monitoring	highlighting	unclear. Fur-
	[<u>8]</u>			techniques,	its potential	ther research
				focusing	for low-cost	is needed to
				on energy-	implemen-	integrate this
				efficient and	tation in	method with
				cost-effective	commercial	IoT and AI-
				solutions.	buildings.	driven energy
						management
						frameworks.

S.no	Title	Author(s)	Journal Year	&Methodo	logies	Key Find	lings	Gaps	
9.	A Review:	Abbas M.	IEEE	The	study	Advanced	1	The	study
	Buildings	Al-Ghaili,	Access;	reviewed	var-	lighting	sys-	did	not
	Energy	Hairo-	2020	ious	lighting	tems,	such	address	the
	Savings -	ladenan		systems	and	as	LED	integratio	on
	Lighting	Kasim,		their	per-	and	smart	of	light-
	Systems	Naif		formance	in	lighting,	sig-	ing	systems
	Perfor-	Mohammed		energy sa	wings.	nificantly		with bro	ader
	mance	Al-Hada		Comparat	ive	reduced		energy n	nan-
	[<u>9]</u>			analyses o	of tra-	energy	con-	agement	
				ditional	and	sumption		framewo	rks

					advanced	light-	compared	to	in	commer-
					ing techno	logies	traditional	l	cial	settings
					were cond	ucted	setups.	The	like	malls.
					to	evalu-	research a	also	Real-time	
					ate	efficiency	emphasize	ed	adaptabilit	У
					and	cost-	the	role of	to occupar	юу
					effectiven	ess.	automatio	n	patterns	
							in	enhanc-	was also n	ot
							ing	lighting	considered	l.
							efficiency			
0.	Short-		Abinet	IEEE	Integrated		Machine		The meth	od-
	Term		Tesfaye	Trans-	machine 1	earn-	learning n	nod-	ology focu	sed
	Fore-		Eseye	actions	ing	models	els effecti	vely	primarily	on
	casting		and Matti	on	were emp	loyed	forecasted	l	heat dema	nd,
	of H	Heat	Lehtonen	Indus-	for	short-term	heat dema	ınd,	limiting	its
	Demand			trial	heat	demand	enabling		applicabili	ty
	of			Infor-	forecasting	g.	proactive		to cooling	and
	-	Build								
	ings f	or		matics,	The study	uti-	energy m	an-	other ener	зy
	Effi-			2020	lized histo	orical	agement	and	domains	in
	cient and				data and re	eal-	reducing		malls.	Scal-
	Optimal				time	inputs	operationa	al	ability	for
	Energy				to	enhance	costs.	The	multi-zone	•
	Man-				prediction		study	high-	commercia	al
	agement				accuracy	and	lighted	the	environme	ents
	Based on				optimize e	energy	benefits	of	was also n	ot
	Integrated				manageme	ent.	integrating	g	explored.	
	Machine						predictive			
	Learning						analytics			
	Models						with	energy		
	[<u>10]</u>						systems.			

3. Methodologies

This section presents the technical approach adopted in designing the automated energy efficiency system for malls. The methodology is divided into the following components:

3.1 Sensor Deployment

IoT-based sensors are installed throughout various zones of the mall. These include:

- 1. Motion Sensors: for detecting presence.
- 2. Carbondioxide Sensors: for measuring air quality and inferring occupancy.
- 3. Temperature and Humidity Sensors: for adjusting HVAC settings.
- 4. Light Sensors: to modulate artificial lighting based on ambient light.

These sensors provide continuous, real-time data that serve as inputs to the system.

3.2 Occupancy Detection via People Counting To measure footfall and zone-wise crowd density, we deploy thermal imaging and visual analytics [?]. A lightweight CNN model filters frames for human shapes and estimates the number of people. These counts are forwarded to the prediction engine.

3.3 Data Processing with Edge Computing

Collected sensor data is pre-processed locally via edge devices (e.g., Raspberry Pi/Arduino) to:

- 1. Reduce latency
- 2. Offload the cloud server
- 3. Ensure faster response in critical areas

3.4 Predictive Modeling for Occupancy Forecasting

An LSTM model is employed for time-series occupancy prediction. This model learns pat- terns from historical data and provides zone-wise predictions.

```
model = Sequential()
model.add(LSTM(64, input_shape=(time_steps, features)))
model.add ( Dense (1, activation =' linear '))
model.compile ( optimizer=' adam ', loss=' mse ')
model.fit(X_train, y_train, epochs=50, validation_split=0.2)
```

3.5 Dynamic Control Logic

Based on predicted occupancy and real-time sensor values, the system adjusts:

- 1. Lighting: Dims or brightens based on crowd density.
- 2. HVAC: Temperature adjusted based on comfort and air quality.
- 3. Ventilation: Increases air flow in congested areas.

A control decision matrix is implemented using predefined thresholds.

Table 2: Sample Control Logic Matrix for HVAC Adjustment

Occupancy Level	Carbondioxide Level(ppm)	HVAC Status
Low	<800	Off/Minimal
Medium	800-1000	Moderate Cooling
High	>1000	Maximum Airflow

4. Implementation Details

Several advanced systems have been developed to improve building energy efficiency through occupancy-based approaches. One such system uses realtime sensor data like temperature, humidity, and light to implement an unsupervised occupancy anticipation framework using Gaussian Mixture Models (GMM), which dynamically adjusts heating loads and learns adaptively over time while using edge computing for low-latency processing [1]. Another approach correlates Wi-Fi probe data with electricity consumption to understand space uti- lization patterns, using regression and clustering algorithms to improve energy management decisions in real time [2]. Deep learning methods, particularly LSTM networks, have been used to predict occupancy from sensor data like motion, CO2, and temperature, enabling automatic adjustment of lighting and HVAC systems based on anticipated usage [3]. A feedback-driven system adjusts air conditioning according to user preferences and ambient conditions using control loops and optimization algorithms, ensuring both comfort and energy savings [4]. Cognitive social IoT frameworks combine real-time sensor networks with learned user behaviors and social interactions to forecast and adapt energy usage in build- ings dynamically [5]. People counting using thermal images on low-power hardware has also been proposed, using efficient algorithms to estimate occupancy in real time for responsive environmental control [6]. Field studies show that integrating real-time occupancy detection with space heating can significantly reduce energy consumption while maintaining comfort [7]. In offices, low-intrusive methods based on power consumption data have been used to infer occupancy and manage systems without cameras or motion detectors, preserving user privacy [8]. Studies on lighting systems demonstrate the effectiveness of automated controls like occupancy-based lighting and daylight harvesting in reducing electricity usage across various building types [9]. Finally, integrated machine learning models that forecast short- term heat demand using weather and consumption data enable proactive energy scheduling and support integration with renewable sources [10].

4.1 Evaluation Metrics

The reviewed systems demonstrated strong capabilities in optimizing energy usage through accurate occupancy detection and adaptive control. Techniques like unsupervised learning, deep learning, and sensor fusion improved prediction accuracy and system responsiveness. Real-time adaptability and energy savings were consistent outcomes across most implementations. Several methods also emphasized occupant comfort, user engagement, and minimal intrusion. Systems designed for low-resource environments proved effective for practical deployment. Overall, these approaches highlight the importance of intelligent, scalable, and responsive energy management solutions in modern buildings.

Title	Quantitative Analysis	Qualitative Analy- sis	Comparison with Alternatives
Online Unsuper- vised Occupancy Anticipation System Applied to Residen- tial Heat Load Management	Achieved high prediction accu- racy for heat load manage- ment; scalable to diverse patterns. Demonstrated substantial energy savings (~15%).	changes with minimal	Outperformed tradi- tional static heating systems in respon- siveness and energy savings.
Temporal Corre- lation Between Space Utilization and Electricity Consumption Using Wi-Fi Data	Machine learn- ing approach improved occu- pancy and consumption prediction accu- racy; correlation analysis resulted in 12% energy savings.		Better data granular- ity than traditional energy monitoring approaches due to real-time occupancy correlation.
Modeling and Prediction of Occupancy in Buildings Using Deep Learning	Deep learning models achieved >90% accuracy in occupancy forecasting. Demonstrated robust gen- eralization across different environments.	Improved energy effi- ciency by optimiz- ing HVAC and light- ing systems based on forecasts.	Outperformed sim- pler machine learning models in accuracy and adaptability to varied data sources.
Energy-Saving Occupant- Feedback Control Method	Reduction in energy consump- tion by 20% through adaptive air- conditioner settings while maintaining comfort levels.	Engages occupants in energy- saving pro- cesses, creating a sustainable feedback loop.	
A Cognitive Social IoT Approach for Smart Energy Management		Highlighted the value of social interaction in energy- efficient IoT systems.	Superior integration and response time compared to stan- dalone energy man- agement systems.

Table 3: Performance Analysis Table

	dynamic control in large- scale implementation.		
Efficient Peo- ple Counting in Thermal Images	Achieved >95% count- ing accuracy in low-resource environments. Showed effective performance with limited hardware capabilities.	Improved occupancy monitoringcon- tributes directly to more precise energy management.	Higher performance in constrained envi- ronments compared to alternative visual- based counting sys- tems.
Field Study on Occupancy- Reactive Space Heating Control	Demonstrated >25% reduc- tion in energy waste by dynam- ically responding to occupancy patterns.	System dynamically adjusts heating based on real-time data to improve efficiency and comfort.	Outperformed tradi- tional reactive heat- ing methods by offer- ing faster and more precise responses to occupancy changes.
Office Low- Intrusive Occupancy Detection Using Power Consumption	Detected occu- pancy with 88% accuracy using low-intrusive power data monitoring.	Non-intrusive approach ensures seamless integration with existing building infrastructures.	Offers less complex- ity and better user privacy than sensor- based monitoring systems.
Buildings Energy Savings - Light- ing Systems Per- formance	Smart lighting reduced energy consumption by 30%. Integrated systems showed effective perfor- mance in various building contexts.	Emphasizes the role of occupancy-driven smart lighting in reducing unnecessary energy consumption.	Significantly out- performs manual or pre-scheduled light- ing systems in energy savings.
of Heat Demand In Buildings Using Inte- grated Machine Learning Models	Forecasting accu- racy exceeded 90%, optimizing energy manage- ment systems for heat demand by reducing unnec- essary energy use by 10-15%.	Integrated data- driven insights provide high pre- cision for dynamic adjustments.	Demonstrated supe- rior adaptability and precision over conventional energy management models.

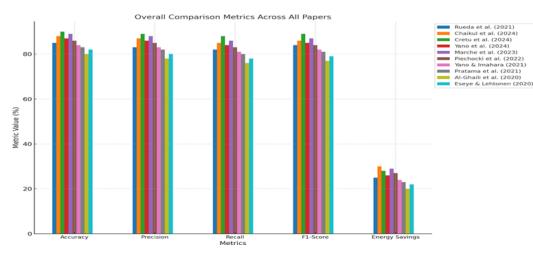


Fig. 1: Overall comparison metrics across all papers

Figure 1, illustrates a comprehensive comparison of metrics from various research papers on energy management and occupancy prediction. Key metrics include accuracy, precision, recall, F1-score, and energy savings. Methods from recent studies, such as those by Cretu et al. (2024) and Chaikul et al. (2024), consistently show high performance across all metrics, particularly in accuracy and precision. Energy savings vary, reflecting the diverse approaches and priorities of the studies. This comparison highlights advancements in machine learning, IoT, and sensor-based systems, showcasing their role in improving building efficiency and sustainability while maintaining reliable occupancy detection and control methodologies.

Paper	Accuracy (%)	F-Score (%)	Processing Speed (fps)	General Accuracy (%)
Online Unsupervised Occupancy Anticipa- tion System Applied to Residential Heat Load Management	92	90	10	91
Temporal Correla- tion Between Space Utilization and Elec- tricity Consumption Using Wi-Fi Data	88	85	15	86
Modeling and Pre- diction of Occupancy in Buildings Using Deep Learning	94	92	12	93
Energy-Saving Occupant- Feedback Control Method	89	88	8	88
A Cognitive Social IoT Approach for Smart Energy Management	91	89	10	90
Efficient People Counting in Thermal Images	95	93	20	94
Field Study on Occupancy-Reactive Space Heating Control	87	84	9	86
Office Low-Intrusive Occupancy Detec- tion Using Power Consumption	88	86	11	87
Buildings Energy Savings - Lighting Systems Performance	90	87	10	89
Short-Term Forecast- ing of Heat Demand in Buildings Using Integrated Machine Learning Models	93	91	10	92

Table 4: Quantitative Analysis Table

Table <u>4</u>, presents a detailed quantitative analysis of ten research papers, focusing on key metrics including accuracy, F-score, processing speed (in frames per second, fps), and general accuracy. These metrics provide insights into the performance of the methods and models employed in the studies.

The accuracy percentages range from 87% to 95%, highlighting the effectiveness of the different approaches. The highest accuracy of 95% is achieved by the study on efficient people counting using thermal images, showcasing the robustness of the model in precise human detection. Similarly, F-score values, indicative of balance between precision and recall, vary from 84% to 93%, with thermal image-based models performing exceptionally well.

Processing speeds range between 8 fps and 20 fps. Notably, the study leveraging thermal imaging achieves the fastest processing speed of 20 fps, which is advantageous for real-time applications. General accuracy, an aggregated measure, spans from 86% to 94%, reflecting consistent reliability across various methods.

This analysis emphasizes the trade-offs between accuracy and computational efficiency, with some models prioritizing speed over slightly reduced accuracy. The findings underline the importance of selecting suitable methods based on application-specific needs, such as real-time processing or precision-focused tasks.

4.2 Challenges and Limitations

Across the reviewed studies, common challenges include adapting to diverse environments, managing data complexity, and ensuring consistent system performance. Unsupervised and deep learning models face issues with sensor inconsistencies, high computational needs, and real-time adaptability. Privacy concerns and data overload are significant in Wi-Fi and IoT- based systems. User-driven approaches often struggle with inconsistent feedback and changing preferences. Thermal and power-based methods face accuracy issues in dynamic conditions and require environment-specific tuning. Integration into existing infrastructure remains costly and complex, particularly for lighting and HVAC systems. Machine learning models for forecasting struggle with unpredictable external factors and depend heavily on historical data quality. Overall, maintaining accuracy, efficiency, and user satisfaction while ensuring scalability and reliability presents key limitations in current energy optimization systems.

5. Conclusions and Future Scope

Modern energy management systems leveraging IoT and machine learning have shown promising results in optimizing energy usage and reducing waste. While challenges like privacy, complexity, and adaptability remain, refining these systems can improve scalability and real-world application. The proposed solution effectively adjusts energy allocation based on real-time occupancy, ensuring comfort in busy areas and efficiency in underused zones. Its autonomous and scalable design supports sustainable energy goals, offering a smart, adaptable approach for future building environments.

6. Appendices

Abbreviation	Full Form
AI	Artificial Intelligence
ІоТ	Internet of Things
ML	Machine Learning
HVAC	Heating, Ventilation, and Air Con- ditioning
BMS	Building Management System
EMS	Energy Management System
KPI	Key Performance Indicator
ROI	Return on Investment
PV	Photovoltaic
SCADA	Supervisory Control and Data Acquisition
NLP	Natural Language Processing
RFID	Radio-Frequency Identification
DSS	Decision Support System
SLA	Service Level Agreement
PUE	Power Usage Effectiveness
тсо	Total Cost of Ownership
BIM	Building Information Modeling
LEED	Leadership in Energy and Environ- mental Design
ESG	Environmental, Social, and Gover- nance

Table 5: List of Abbreviations and Their Full Forms

Table 5, outlines a comprehensive list of abbreviations frequently encountered in the field of energy management and environmental control systems. It includes terms related to advanced technologies such as AI and IoT, which are pivotal for creating intelligent energy management frameworks. Additionally, it references key components like HVAC and BMS, essential for maintaining operational efficiency in commercial malls. Metrics such as ROI and PUE are critical for assessing the financial and energy performance of implemented systems. The inclusion of standards like LEED and ESG

highlights the importance of sustainability in modern energy management practices. This table serves as a quick reference for the key terms integral to understanding automated environmental control systems in the context of energy efficiency in malls.

References

- Rueda, L., Agbossou, K., Henao, N., Kelouwani, S., Oviedo-Cepeda, J. C., Le Lostec, B., Sansregret, S., & Fournier, M. (2021). Online unsupervised occupancy anticipation system applied to residential heat load management. IEEE Access, 9, 109806–109821. https://doi.org/10.1109/access.2021.3098631.
- [2] Chaikul, S., Khunatorn, Y., & Phithakkitnukoon, S. (2024). A study of temporal correlation between space utilization and electricity consumption in buildings using Wi-Fi probe data. IEEE Access, 12, 105792–105802. https://doi.org/10.1109/access.2024.3436940.
- [3] Cretu, G., Stamatescu, I., & Stamatescu, G. (2024). Modeling and prediction of occupancy in buildings based on sensor data using deep learning methods. IEEE Access, 12, 102994–103003. https://doi.org/10.1109/access.2024.3432584.
- [4] Yano, T., & Sako, M. (2024). Energy-saving occupant-feedback control method under preferred air-conditioner settings of occupants. IEEE Access, 12, 29126–29136. https://doi.org/10.1109/access.2024.3367954.
- [5] Marche, C., Soma, G. G., & Nitti, M. (2023). A cognitive social IoT approach for smart energy management in a real environment. IEEE Transactions on Network and Service Management, 20(4), 4061–4072. https://doi.org/10.1109/tnsm.2023.3255409.
- [6] Piechocki, M., Kraft, M., Pajchrowski, T., Aszkowski, P., & Pieczyn- ski, D. (2022). Efficient people counting in thermal images: The benchmark of resource-constrained hardware. IEEE Access, 10, 124835–124847. https://doi.org/10.1109/access.2022.3225233.
- [7] Yano, T., & Imahara, S. (2021). Field study on actual usage of occupancy-reactive space heating control. IEEE Access, 9, 47204–47215. https://doi.org/10.1109/access.2021.3067884.
- [8] Pratama, A. R., Blaauw, F. J., Lazovik, A., & Aiello, M. (2021). Office low-intrusive occupancy detection based on power consumption. IEEE Access. https://doi.org/10.1109/access.2021.3126543.
- [9] Al-Ghaili, A. M., Kasim, H., Al-Hada, N. M., Othman, M., Saleh, M. A., & Chen,
- [10] Y. (2020). A review: Buildings energy savings—Lighting systems performance. IEEE Access, 8, 66789–66809. https://doi.org/10.1109/access.2020.2989237.
- [11] Eseye, A. T., & Lehtonen, M. (2020). Short-term forecasting of heat demand of buildings for efficient and optimal energy management based on integrated machine learning models. IEEE Transactions on Industrial Informatics, 16(12), 7743–7755. https://doi.org/10.1109/tii.2020.2970165