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ABSTRACT 

Gaze-based communication systems have significantly advanced, offering trans- formative solutions for individuals with severe motor disabilities. This survey 

paper consolidates and compares various gaze-controlled communication tech- nologies, including blink-based interaction methods, virtual keyboards, and gaze 

estimation techniques. Key approaches reviewed include ”NETRAVAAD: Inter- active Eye-Based Communication System for People with Speech Issues,” which 

enhances accessibility through intuitive eye gestures, and ”Translated Pattern- Based Eye-Writing Recognition using Dilated Causal Convolution Network,” which 

leverages neural networks for eye-writing interpretation. Additionally, methodologies like ”E-Gaze: Gaze Estimation with Event Camera” focus on pre- cision gaze 

tracking under dynamic conditions, while ”Blink-To-Live Eye-Based Communication System” introduces innovative emergency alert systems for real-time 

interaction. Applications discussed span assistive technologies, human- computer interaction, and advanced predictive systems. The survey evaluates these methods 

based on accuracy, robustness, and user experience, identifying challenges such as calibration complexity and lighting variability. This study underscores the 

potential of gaze-based communication to redefine assistive technology, promoting inclusivity and enhancing quality of life. 
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1. Introduction 

The rapid advancements in computer vision and assistive technologies have driven sig- nificant progress in gaze-based communication systems, enabling 

innovative solutions for individuals with severe physical disabilities. At the core of these developments is the field of eye tracking, which has transitioned 

from basic gaze-tracking techniques to advanced machine learning architectures capable of accurately interpreting eye move- ments and gestures in 

dynamic environments [1, 2, 5]. The ability to reliably estimate gaze direction, detect blinks, and map eye movements to communication commands has 

become essential for applications such as virtual keyboards, real-time assistive devices, and interactive systems for individuals with speech impairments 

[4, 10]. 

Traditional gaze-based communication systems relied heavily on hardware- intensive methods, such as infrared-based pupil tracking, to estimate gaze 

direction. These systems were effective in controlled settings but struggled to adapt to variations in lighting, head position, and user-specific differences 

[5, 7]. As applications expanded, research shifted toward data-driven and adaptive approaches, introducing algorithms capable of dynamically adjusting 

to contextual changes in gaze behavior and environ- mental conditions, thereby enhancing reliability and usability in real-world scenarios [2, 6]. 

The introduction of deep learning marked a turning point for gaze-based com- munication, with convolutional neural networks (CNNs) and other machine 

learning architectures significantly improving gaze estimation and interaction. CNNs facilitated the automatic learning of hierarchical features from 

complex input data, enabling pre- cise differentiation of gaze direction and blinks even in noisy or dynamic environments. Hybrid approaches that 

combined CNNs with recurrent networks, such as LSTMs, proved particularly effective for sequential gaze interpretation, allowing systems to accurately 

translate eye movements into typing or control commands [3, 6]. These innovations have empowered real-time systems to handle challenging conditions, 

such as head motion and variable lighting, with greater precision [5, 9]. 

Recent advancements focus on improving the accessibility and efficiency of gaze-based communication systems. Notable examples include 

NETRAVAAD, which integrates intuitive gaze gestures for effective communication, and Blink-To-Live, which emphasizes real-time emergency alert 

functionality for users with speech impair- ments [1, 4]. Similarly, predictive typing systems, such as Real-Time Human-Computer Interaction Using Eye 

Gazes, leverage natural language processing (NLP) models to reduce the number of inputs required for text generation, enhancing speed and usabil- ity 

[7]. Advances in gaze estimation using event cameras have further improved system performance under varying environmental conditions, offering 

solutions that are both robust and scalable [3, 8]. The paper by Zhou et al. (2022) reviews various gaze-based control methods for assistive devices, 

discussing their applications in enhancing com- munication and mobility for individuals with disabilities. It highlights the progress in gaze tracking 

technologies and their growing importance in assistive systems [11]. Smith and Huggins (2021) focus on blink-based eye gesture recognition, addressing 

the challenges of detecting blinks for communication systems, and exploring its integra- tion into assistive technologies [12]. Lee et al. (2020) examine 

the use of eye tracking for speech impairment recovery, discussing how eye movement can control communi- cation devices, offering a means of 
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interaction for those with speech disabilities [13]. Tanaka and Yamaguchi (2021) investigate gaze-controlled interfaces for real-time assis- tive 

communication, focusing on systems designed to help people with severe motor disabilities communicate using eye movements [14]. Ohashi and 

Nakamura (2022) explore eye gaze pattern recognition in augmented reality environments, emphasiz- ing its application in improving assistive 

technologies and dynamic user interaction in real-time settings [15]. 

Wang et al. (2024) explore real-time gaze tracking techniques for virtual reality applications, highlighting methods that enhance user experience by 

enabling more intuitive interactions in virtual environments [16]. Kim and Park (2023) focus on adaptive gaze-controlled communication systems for 

disabled individuals, presenting solutions that improve accessibility by adjusting to individual needs and environmental conditions [17]. Nguyen and 

Tran (2022) provide a comprehensive review of gaze- based interaction in augmented reality environments, discussing the challenges and advancements 

in using eye movements for interaction in AR systems [18]. 

In recent years, advancements in gaze-based technologies have opened new possi- bilities for assistive systems, offering enhanced accuracy, reduced 

latency, and robust real-time applicability. These systems have demonstrated significant potential in enabling seamless human-computer interaction, 

particularly for individuals with dis- abilities. By integrating precise gaze tracking, advanced algorithms, and adaptive interfaces, modern solutions 

continue to bridge the gap between accessibility and effi- ciency, paving the way for inclusive and innovative applications in communication, healthcare, 

and beyond. 

 

Fig. 1: Methodologies across various papers 

Figure 1 illustrates the distribution of various gaze-based methodologies and tech- nologies. The majority share, approximately 18.8%, is attributed to 

Blink Detection & Eye Gestures, Eye Tracking & Facial Landmark Detection, CNNs for Gaze Estima- tion, and Temporal Sequence Modeling, indicating 

their prominence in gaze research. Event-Based Gaze Detection and Gaze Pattern Clustering & Intention Prediction hold smaller shares, at 12.5% each. 

This distribution highlights the diversity of approaches in gaze estimation systems, where both traditional and advanced methods contribute to innovations 

in eye-tracking, intention prediction, and gaze behavior analysis. 

 

Fig. 2: Limitations across various papers 

Figure 2 highlights the key challenges associated with gaze-based systems. Lighting Conditions & Environmental Factors represent the most significant 

issue, comprising 33.3% of the challenges, indicating the critical impact of external conditions on sys- tem accuracy. User-specific Variability and 

Performance in Dynamic Conditions each account for 20%, emphasizing the difficulty in adapting systems to individual differ- ences and real-world 

movement. Calibration or Fixed Setup Issues and Computational & Resource Constraints contribute 13.3% each, underscoring the need for precise sys- 

tem tuning and the limitations posed by hardware or processing power. Together, these challenges emphasize the importance of robust, adaptable, and 

resource-efficient solutions in gaze-based technology development. 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 3086-3126 April 2025                                     3088 

 

 

1.1 Problem Statement 

Developing effective gaze-based communication systems for individuals with severe motor impairments presents significant challenges due to the 

variability in user behaviors, environmental conditions, and the complexity of accurately detecting gaze patterns. Traditional eye-tracking methods, such 

as infrared-based pupil detection and simple gaze mapping, often struggle in real-world environments with fluctuat- ing lighting, head movements, and 

varying user physiological conditions. Additionally, while modern gaze-controlled systems utilizing machine learning have made significant progress, 

they are still limited by computational inefficiencies, the need for extensive calibration, and difficulties in ensuring high accuracy across diverse users 

and envi- ronments. These limitations underscore the need for a more adaptable, real-time, and efficient gaze-based communication system capable of 

providing reliable interaction and accurate input for users with severe disabilities, even in dynamic and complex settings. 

1.2 Motivation 

The growing need for assistive technologies in the communication space, especially for individuals with severe physical disabilities, calls for more 

efficient, adaptable, and real-time gaze-based communication systems. Existing gaze-controlled systems often face challenges when dealing with varied 

user behaviors, environmental conditions, and the complex task of accurately detecting eye movements. Traditional gaze-tracking methods struggle to 

provide consistent performance due to fluctuations in lighting, head positioning, and differences in individual users’ eye features. Additionally, while 

modern systems that leverage deep learning techniques offer significant improvements, they are still limited by computational inefficiencies, the need for 

extensive user cali- bration, and difficulty ensuring accurate results in dynamic real-world settings. These limitations highlight the need for a more robust 

and scalable gaze-based communica- tion system capable of reliably addressing the complexities of interaction and ensuring usability for individuals with 

severe motor impairments. 

The following are the contributions of this project: 

• To evaluate the effectiveness of deep learning-based gaze estimation models, such as CNNs, in improving gaze tracking accuracy in dynamic 

environments. 

• To identify key challenges in existing gaze-based systems, including issues with eye movement calibration, tracking accuracy, and real-time 

responsiveness, and propose potential solutions. 

• To benchmark the developed system against existing gaze-controlled systems, measuring its performance in terms of accuracy, computational 

efficiency, and usability. 

The remainder of this paper is organized as follows: Section 2 provides a comprehensive literature review, discussing key developments and limitations 

in existing gaze-based communication systems and their applications for individuals with disabilities. Section 3 details the methodologies employed in 

the system, focusing on the techniques used for gaze tracking and eye movement recognition. Section 4 outlines the implementation details of the system, 

covering the hardware, software, and system architecture used to develop various methodologies discuddes in Section 3 . Section 5 presents and analyzes 

the evaluation results, comparing the system’s performance against existing solutions in terms of accuracy, angular error, and latency. Finally, Section 6 

concludes the paper by summarizing key findings and suggesting future research directions to advance gaze-based communication technologies. 

2. Related Works 

Over the years, significant progress has been made in the development of gaze- based communication systems, particularly in the context of assistive 

technologies for individuals with physical disabilities. Early systems relied on basic gaze-tracking techniques, such as infrared-based methods, to detect 

eye movements for controlling virtual interfaces. However, these systems often faced limitations in terms of accuracy, especially in dynamic environments 

with varying lighting and user behaviors. With the advent of machine learning and deep learning techniques, gaze estimation models have improved 

significantly, offering more precise tracking and interaction capabilities. Research in gaze-controlled virtual keyboards, such as those utilizing predictive 

text, has demonstrated promising results in enhancing communication efficiency for users with limited motor abilities. Furthermore, the integration of 

gaze tracking with other modalities, such as blink detection and eye gestures, has enabled more intuitive and hands-free communication systems. Despite 

these advancements, many existing sys- tems still struggle with challenges such as real-time processing, user calibration, and adaptability across diverse 

environmental conditions. The following section reviews key works in the field, highlighting the achievements, and limitations of existing gaze-based 

communication technologies. 

Netravaad, an innovative eye-based communication system for individuals with speech impairments caused by conditions like ALS, cerebral palsy, or 

locked-in syndrome. Utilizing a unique eye-sign language called Netravaani and the Sarani algo- rithm, the system translates eye movements captured 

via a low-cost USB camera into spoken words or sentences. This device eliminates the need for interpreters, provides predictive text capabilities, and 

ensures portability with its adjustable stand and user- friendly GUI. Testing demonstrated high accuracy in detecting alphabets (91%), words (100%), 

and numbers (93%) among users aged 26–35, showcasing its potential as an effective augmentative and alternative communication (AAC) solution [1]. 

Despite its promise, Netravaad has several limitations. The system’s accuracy and response time can be affected by lighting conditions, as it is highly 

light-sensitive. Additionally, the Sarani algorithm occasionally faces challenges in differentiating cer- tain eye signs, leading to detection delays. The 

GUI lacks advanced customization options, such as on-screen adjustments for screen size or aspect ratio. Furthermore, while predictive text improves 
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usability, the system’s reliance on predefined patterns restricts flexibility for some users. Future improvements, such as integrating machine learning 

models, could enhance accuracy and adaptability, but these would require extensive datasets and further testing [1]. 

Translated Pattern-Based Eye-Writing Recognition Using Dilated Causal Convolu- tion Network, focuses on leveraging eye movements for character 

recognition, providing a novel approach to assist motor-impaired individuals. By employing root transla- tion and dilated causal convolutional (DCC) 

networks, the study addresses challenges like non-uniformity and long eye fixations in eye-writing patterns. Using a dataset of English letters and Arabic 

numerals from 20 participants, the proposed model achieved impressive accuracy (96.20%) and outperformed traditional methods on sev- eral benchmark 

datasets, making it a significant advancement in the field of assistive communication technologies [2]. 

The limitations of, Translated Pattern-Based Eye-Writing Recognition Using Dilated Causal Convolution Network, primarily stem from constraints in 

the deep learning architecture. The network struggles with gaze points that fall outside its receptive field, which can lead to misclassifications, especially 

for patterns with sig- nificant distortions or missing essential parts. While increasing the number of DCC layers could extend the receptive field and 

improve recognition, it would also result in significantly longer training times, posing a challenge for scalability. Additionally, the system has not yet 

been validated with real-world users, such as ALS patients, limiting its applicability and generalizability. Addressing these issues would require 

incorporating mechanisms to enhance spatial and temporal information capture, such as skip connections or alternative network designs [2]. 

E-Gaze, a novel system for gaze estimation utilizing event cameras, which capture asynchronous, motion-triggered data rather than traditional frame-

based imagery. By leveraging the high temporal resolution, low latency, and sparse data format of event cameras, the system extracts pupil features in 

real time using spatiotemporal event distributions. These features feed into a recurrent neural network (RNN) that incor- porates a coordinate-to-angle 

loss function for accurate gaze direction estimation. The system achieves angular accuracy of 0.46° with sub-millisecond latency, making it suitable for 

extended reality (XR) applications [3]. 

Despite its innovation, the system has limitations. It requires calibration for each user session due to headset positioning inconsistencies, which can be 

time-intensive. Additionally, the system’s reliance on a fixed eye-to-display distance for the angular loss function constrains its adaptability to various 

headset designs. The experiments were conducted in controlled laboratory conditions, meaning its robustness against real-world challenges like variable 

lighting, reflections, and occlusions from eyewear remains untested, potentially limiting its broader applicability [3]. 

Blink-To-Live system introduces a cost-efficient and accessible eye-tracking com- munication solution designed for individuals with speech impairments 

caused by conditions such as Amyotrophic Lateral Sclerosis (ALS). Using a smartphone cam- era, the system relies on computer vision to detect eye 

gestures—Blink, Left, Right, and Up—and translates them into over 60 predefined daily commands, which are dis- played and converted into speech in 

the user’s native language. Unlike other expensive sensor-based systems, this innovative approach does not require specialized hardware, making it a 

practical solution for low-income settings. The application also minimizes training time and enhances usability, allowing users to communicate efficiently 

with fewer eye movements [4]. 

The Blink-To-Live system encounters challenges such as occasional delays in com- munication due to the extensive backend processing of video frames 

in real-time. Furthermore, the absence of downward eye gesture tracking limits its gesture set, and fast or inconsistent eye movements can result in 

unrecognized inputs. The system’s speed and accuracy heavily depend on stable internet connectivity and the user’s abil- ity to maintain precise eye 

control without head movement. Additionally, individuals with low educational levels or limited technological familiarity may require prolonged training 

periods to achieve proficiency [4]. 

Uncertainty-Aware Gaze Tracking for Assisted Living Environments, proposes a novel method for gaze tracking in multi-camera setups within assisted 

living facilities. It utilizes a neural network regressor that predicts gaze direction based on facial key- point positions and incorporates a unique feature—

uncertainty estimation for each prediction. This uncertainty is leveraged within an angular Kalman filter framework to enhance temporal consistency and 

robustness. The method addresses challenges such as occlusions and unfavorable views through Confidence Gated Units (CGUs), which mitigate low-

confidence keypoints. Evaluations on datasets like MPIIFaceGaze and Gaze360, alongside a specialized assisted living dataset (MoDiPro), demonstrate 

superior performance over state-of-the-art methods, offering accurate and temporally stable gaze predictions [6]. 

Despite its advancements, the approach has some limitations. The reliance on facial keypoints makes the system vulnerable to significant occlusions or 

extremely low lighting conditions, where pose estimation models may fail to detect keypoints. Addi- tionally, the system assumes a static 2D environment 

and does not fully exploit 3D gaze data, limiting its applicability in complex real-world scenarios requiring precise spatial understanding. Moreover, high 

computational requirements for real-time track- ing, particularly due to the dependency on pose estimation algorithms like OpenPose, might hinder 

deployment in resource-constrained environments [6]. 

Real-time human-computer interaction using eye gazes, introduces a real-time human-computer interaction (HCI) system utilizing eye gaze recognition. 

This sys- tem employs a standard RGB webcam to detect, track, and interpret four distinct eye gazes—looking straight, left, right, and blinking—using a 

Dlib facial landmark detector and a sclera-based region-of-interest method. It integrates eye gaze recogni- tion with a Mask R-CNN-based instance 

segmentation model to identify and segment tools and parts in images. The system is packaged into a user-friendly visual interface, allowing users to 

control and select objects through eye movements alone. Experimen- tal results demonstrate robust performance, with eye gaze recognition achieving 

high accuracy and instance segmentation maintaining high precision and recall values [7]. Despite its strengths, the system has limitations. Its accuracy 

declines with increased distance beyond 160 cm between the eyes and the webcam, restricting its effective operational range. The model’s robustness in 

varying environmental condi- tions, such as low lighting or reflective surfaces, has not been thoroughly explored. Additionally, the instance segmentation 

model relies on a pre-defined set of objects, 
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limiting its generalizability to new or complex environments without retraining [7]. Non-Intrusive  Real-Time  Eye  Tracking  Using  Facial  Alignment  

for  Assistive 

Technologies, presents an innovative solution for gaze estimation using state-of-the- art convolutional neural network (CNN) algorithms. It offers a non-

intrusive and lightweight alternative to traditional eye-tracking methods, which often rely on intru- sive head-mounted devices or infrared systems. The 

proposed approach utilizes a simple webcam to estimate gaze and facial position in real time, achieving significant improvements in computation speed 

(up to a 91% reduction in time) while maintain- ing comparable accuracy. This solution is particularly aimed at enhancing assistive robotic arms for 

individuals with motor disabilities, making it viable for both indoor and outdoor environments without requiring user-specific calibration [8]. 

Non-Intrusive Real-Time Eye Tracking Using Facial Alignment, highlights several limitations. There is a lack of standardized benchmarks for comparing 

computational requirements of gaze estimation methods, leading to challenges in evaluating per- formance consistently across different systems. 

Additionally, appearance-based gaze estimation methods, such as the one proposed, may show reduced accuracy compared to infrared-based systems 

(e.g., PCCR). Training dataset biases, such as underrep- resentation of certain demographics, can also affect model accuracy for some users. Furthermore, 

while the method does not require person-specific calibration, this may limit its precision in scenarios where individual-specific adjustments could 

enhance performance. Finally, the approach may struggle with extreme variations in head pose and gaze angles that are not well-represented in the training 

data [8]. 

A data-driven framework for intention prediction via eye movement with appli- cations to assistive systems, introduces a data-driven framework to predict 

user intentions based on eye movement, targeting assistive technologies for individuals with limited motor or communication abilities. The framework 

uses spatial and temporal patterns of gaze, employing clustering techniques like DBSCAN to identify regions of interest (ROIs) and hidden Markov 

models (HMMs) to capture transition sequences between these ROIs. Through transfer learning with CNNs, it identifies objects in the displayed images 

and predicts user intentions during and after tasks. The framework achieves an impressive accuracy of 97.42% in predicting daily-life activities and incor- 

porates early prediction capabilities with a CNN-LSTM model, showcasing significant advancements over previous methods [9]. 

A data-driven framework for intention prediction via eye movement with applica- tions to assistive systems, framework’s applicability is currently limited 

to controlled environments like kitchens, with tasks involving only 3–4 objects, and it has not been tested in more complex or diverse scenarios. The 

reliance on 2D images constrains its ability to differentiate objects aligned along the same axis, suggesting the need for 3D imagery. Its performance is 

highly dependent on accurate eye-tracking hardware, which may not be accessible to all users. Furthermore, the system cannot accommodate users with 

severe eye impairments, and its dependency on substantial experimental data might limit its scalability to new contexts or tasks [9]. 

Eye Gaze Controlled Virtual Keyboard, presents a system enabling text input using eye gaze and blinking. This innovative approach is tailored for 

individuals with physical disabilities, particularly those unable to use traditional input methods. The system uses a webcam to detect the user’s face and 

eyes, employing advanced techniques like Histogram of Oriented Gradients (HoG) and 68-point facial landmarks for precise detection. Eye movements 

are tracked to select keyboard sections, and blinking is utilized for character selection. The system ensures accessibility, allowing users to type without 

the need for hands, making it a significant contribution to assistive technology [10]. 

While the system demonstrates notable potential, several limitations exist. One significant drawback is the reliance on sequential key highlighting, which 

requires users to blink precisely when the desired key is highlighted. Missing the opportunity to blink during this interval necessitates waiting for the 

entire cycle to repeat, leading to inefficiencies and potential frustration. Additionally, the system’s accuracy in gaze 

detection may degrade under poor lighting conditions or for users wearing glasses due to light reflections. Further optimization, such as improved timing 

control or advanced gaze tracking with higher resolution cameras, could address these issues [10]. 

Table 1: Literature Survey 

S.no Title Author(s) Journal & 

Year 

Methodologies Key Findings Gaps 

1. Netravaad: Farajesh IEEE, The  Netravaad The system The  system’s 

 Interac- Kannan 2024 system uses achieved 91% sensitivity 

 tive Eye Megalingam  a portable accuracy for to lighting 

 Based , Sak-  hardware con- alphabets, conditions 

 Commu- thiprasad  figuration  with 100% for occasion- 

 nication Manoha-  a USB

 cam- 

words, and ally reduced 

 System ran ,  era, mini-PC, 93% for num- detection 

 for Peo- Gokul  touch display, bers, with accuracy. The 

 ple With Riju,  and speaker. the highest GUI lacks 
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    video to detect user-camera adjustments, 

    eye  movements distance. limiting  flex- 

    by calculat- Response ibility. The 
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    blinking  ratios. ensuring real- on predefined 
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    sign language, The system adaptabil- 
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    and numbers. with the Calibration 

    Calibration 26–35 age remains a 
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    face  for  opti- ing  the  best cess, posing 

    mal detection results. It challenges for 

    accuracy, and significantly new users. 

    tests across dis- reduced Limited  test- 
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    cm) validated for human with severe 

    the system’s interpreters, physical 

    performance. offering an impairments 

    These  elements independent restricts 
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track eye movements. 
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Blink, Left, Right, and 
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participants 
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recognition of 

gestures after 
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simpler commands 
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cuted faster. The

 system 
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  and 

accessible, requiring 
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avoiding the need for 
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The system 
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 in gesture 

recognition, 
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transitions 

or complex 

sequences. 

It lacks the 
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to detect 
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eye ges- 

tures, limiting the

 range 
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commands. 

Performance is also 

heav- ily dependent 

on stable 

internet con- 

nectivity and precise

 

 

 eye 

movements, which

 

 may 

pose chal- 

lenges for 

users with 

advanced motor 

impair- ments. 

Additionally, 

individuals with

 low 

technology familiar- 

ity required longer 

train- ing   periods 

to use

 the 

system effectively. 
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5. Uncertainty- 

Aware 

Gaze Track- 

ing for 

Assisted Living 

Environ- ments 

[6] 

Paris Her, 

Logan 

Manderle, 

Philipe A. Dias 

IEEE, 2023 Utilized a neu- ral 

 network 

regressor   

with facial keypoints 

for gaze estima- tion, 

integrated with 

Confidence Gated 

 

 Units 

(CGUs) to han- dle

 occlusions 

and uncertain- ties. An 

angular Kalman 

 

 filter was 

applied for temporal 

 

 con- 

sistency,  using 

uncertainty predictions 

to adjust 

observations 

dynamically. 

The system 

was validated 

on 

 multiple 

datasets, includ- ing

 MoDiPro, 

MPIIFaceGaze, and 

Gaze360. 

Achieved state-of- 

the-art 

performance on 

MoDiPro with a 

mean angular error 

of 21.7°, out- 

performing other

 

  meth- 

ods by up to 36°.

 Demon- 

strated 

 high 

correlation between 

predicted 

uncertainties and

 

 actual 

angular 

errors. CGUs 

improved accuracy 

by up

 to 

3.12° in low- 

confidence 

scenarios, and the

 Kalman 

filter fur- ther 

reduced errors by 

1.5° while enhanc- 

ing temporal 

stability. 

Limited perfor- 

mance under 

extreme con- ditions  

such 

as 

 

 

 severe 

occlusions or poor 

lighting where

 

 

 key- 

points cannot be

 

 detected. 

The 

 

 method is

 restricted 

to 2D gaze 

estimation, 

potentially limiting

 

 

 its 

utility 

 

 in 

scenarios requiring 

precise 

 3D gaze 

tracking. Compu- 

tationally expensive 

due to reliance on 

pose estima- tion

 models 

like Open- 

Pose, which 

may 

 hin- der 

real-time 

performance in

 resource- 

constrained 

environments. 

 

 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 3086-3126 April 2025                                     3096 

 

 

S.no Title Author(s) Journal & 

Year 

Methodologies Key Findings Gaps 

6. Real-Time 

Human- 

Computer 

Interac- tion 

Using Eye 

Gazes [7] 

Haodong Chena, 

Niloofar Zende- 

hdela , 

Ming C. 

Leua , 

Zhaozheng Yin 

Elsevier, 

2023 

Combines 

 the Dlib 

 68-point 

facial landmark 

detector for pre- cise 

eye tracking and a

 

 sclera- 

region-based method 

for gaze recognition. 

Blink detection uses 

eyelash dis- tance 

metrics, while the Mask 

R-CNN model enables 

instance segmentation 

of tools and parts with 

high pre- cision. These 

components are 

integrated into a real-

time, visual software 

inter- face that allows 

users to interact 

through gaze inputs. 

The sys- tem is 

designed to

 operate 

efficiently 

with mini- 

mal hardware 

requirements, making it 

scal- able for various 

applications. 

The system achieves 

99% accuracy 

for eye gaze 

recognition within

 the safe 

distance of 40–60 

cm and maintains 

robustness 

up to 160 cm with

 minor 

performance 

reductions. 

The Mask R- CNN 

instance segmenta- 

tion model 

achieves 

 an 

average 

 pre- 

cision, recall, and 

F1-score exceed- 

ing 99%, 

with certain object 

classes like   pliers 

and prisms achieving 

per- fect 100% 

accuracy. 

Processing time is 

under 

0.001 seconds per

 frame, 

demonstrat- ing real-

time capability and 

efficiency. The 

integrated system 

pro- vides seamless 

interaction through 

eye gestures for 

object selec- 

tion and 

interface control. 

Evaluation under 

varying environmen- 

tal conditions (e.g.,

 

 light- ing

 changes, 

reflections, shadows) 

remains lim- ited.

 

 

 The 

system’s accuracy 

decreases 

at distances beyond 

160 cm. Object 

recognition 

is  restricted 

to prede- 

fined classes, 

requiring retraining 

for new or more 

complex envi- 

ronments. 

These gaps 

highlight 

the need for 

enhanced 

adaptability and

 testing in 

real-world scenarios, 

particularly in 

dynamic envi- 

ronments or 

human-robot 

collaboration tasks. 
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7. Non- Intrusive 

Real 

Time Eye 

Track- 

ing Using Facial 

Align- ment

 for 

Assistive Tech- 

nologies [8] 

C. 

Leblond- 

Menard and

 S. 

Achiche 

IEEE 

Trans- 

actions On 

Neural 

Systems and 

Rehabil- 

itation Engi- 

neering, Vol. 

31, 

2023 

The 

 paper 

employs  

 a four-step 

methodology: face

 detection, 

head pose cor- rection,

 

 eye 

patch extrac- tion, and 

gaze estimation using a 

CNN-based model. The 

pro- cess involves 

detecting 

facial 

 land- marks 

to locate eye

 regions, 

applying   nor- 

malization   to 

reduce pose variability, 

and estimating gaze 

angles in real time

 with- 

out requiring 

user-specific 

calibration. 

Achieved state-of-

the- art angular 

accuracy with errors 

of 4.5° (MPIIGaze), 

3.9° (UTMul- 

tiview), and 

3.3° (Gaze- 

Capture). 

Compu- tational 

efficiency improved 

sig- nificantly, 

reducing inference 

time by up to 91%. 

The lightweight 

model ensures real-

time operation on 

mobile 

 and 

embedded systems 

with low power 

requirements, 

maintaining over 20 

FPS on a single CPU 

core. 

Limited 

by train- 

ing dataset biases, 

which can affect 

perfor- 

mance across diverse 

demo- graphics. 

Appearance- based 

models may

 strug- 

gle with 

extreme head poses 

or gaze angles 

outside the    train- 

ing  domain. 

Additionally, the

 lack

 

 of 

standardized 

benchmarking for

 

 com- 

putational require- 

ments hinders 

consistent 

comparisons across

 

 dif- 

ferent gaze 

estimation 

techniques. 
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8. A Data- 

Driven Frame- 

work 

 

 for 

Intention 

Prediction via

 

 Eye 

Movement With 

Applica- tions

 

 

 

 to 

Assistive 

Systems [9] 

Fatemeh 

Koochaki and 

Laleh 

Najafizadeh 

IEEE, 2021 The frame- work 

integrates DBSCAN 

for clustering 

gaze points 

into regions 

of interest 

(ROIs),  HMMs 

for temporal gaze 

sequence modeling, and 

CNNs for object 

detection using trans- 

fer learning. A CNN-

LSTM 

model is 

employed for early

 inten- tion 

prediction, enabling 

proac- tive 

 task 

identification. All 

components are 

designed to handle 

 spatial and

 tempo- ral 

gaze data efficiently. 

The frame- 

work achieves a high 

clas- sification 

accuracy 

of 97.42% 

for task 

prediction and

 84.24% 

for 

 early 

intention pre- diction

 

  after 

identifying the first 

two objects

 

 

 

 in the 

sequence. Object 

detec- tion is robust, 

with a preci- sion 

exceeding 90% for 

most objects. The 

framework 

successfully models

 

 

 gaze 

behavior, 

demonstrat- ing 

consistent temporal 

pat- terns across 

tasks. 

The 

 frame- 

work’s performance 

is primarily 

validated 

 in 

controlled kitchen

 

 sce- 

narios with limited 

tasks (3–4 objects), 

and its scal- ability

 to 

diverse, 

real-world 

environments is 

unexplored. It relies 

on high-precision 

eye track- 

ers, which may not 

be accessible 

to all users, and 

cannot accommodate 

individu- 

als with 

severe 

 eye 

impairments. 

Additionally, the

 use of 

2D images 

limits depth 

perception, which 

could be addressed 

with 3D 

environments. 
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9. Eye Gaze 

Controlled 

Virtual 

Keyboard [10] 

Partha 

Chakrabort y,

 Dipa 

Roy, Md. 

Zahidur 

Rahman, Saifur 

Rehman 

Internati onal 

Jour- nal of 

Recent Tech- 

nology and 

Engi- 

neering, 2019 

The system 

employs real- time face 

and eye   detection 

using HoG 

descriptors and 68-

point facial landmarks, 

gaze tracking by ana- 

lyzing eyeball position, 

and blink detection 

using the Eye Aspect   

Ratio 

(EAR).   The 

virtual  

 key- board 

highlights keys 

 sequen- 

tially, enabling users to 

select keys through 

intentional blinking. 

The imple- 

mentation achieved 

A typing accuracy

 of 

90.13%, with 

reliable detec- tion 

of gaze direction and 

intentional blinks. 

Face and eye region 

detection performed 

effectively under 

most conditions, 

offering a hands-free 

and 

 acces- 

sible typing 

solution. 

Gaze 

 detec- 

tion accuracy 

decreases for users 

wearing glasses due 

to light 

 reflec- 

tion, and the 

sequential key 

highlighting 

introduces delays, 

mak- ing typing 

slower com- 

pared to 

traditional methods. 

Additionally, the  

system’s 

performance is 

sensitive to 

variations inlighting 

conditions. 

3. Methodologies 

The methodology employed for the development of Netravaad involved a combination of hard- ware and software approaches. A portable and adjustable 

hardware setup, including a touch display, USB camera, and mini-PC, was designed to capture and process eye movements. The researchers developed 

the Sarani algorithm, leveraging image processing techniques for detecting eye movements and translating them into commands. To define a structured 

sys- tem for communication, they introduced a unique eye-sign language called Netravaani, which encodes alphabets, words, and numbers through 

specific eye gestures. The system was evalu- ated through a series of controlled tests with volunteers across different age groups, focusing on accuracy, 

precision, and recall for detecting eye signs and forming messages. Data from these tests informed refinements to the algorithm and system design. 

Calibration techniques were applied to optimize detection, and predictive text was integrated to enhance usability. Ethical considerations, including 

informed consent and training, ensured the participants’ involvement adhered to research protocols [1]. 
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Fig. 3: Sarani Algorithm Steps 

Figure 3 shows the steps involved in Sarani algorithm. Sarani algorithm is the backbone of the Netravaad system, designed to detect and interpret eye 

movements for communication. It preprocesses video frames from a USB camera, identifies facial landmarks, and tracks pupil positions to calculate 

horizontal (HR), vertical (VR), and blinking (BR) ratios. These ratios are mapped to predefined eye-sign patterns in the Netravaani language, enabling 

the formation of alphabets, words, and sentences. This algorithm provides a reliable and efficient solution for eye-based communication. 

Algorithm 1 Pseudocode for Netravaad Methodology 

1: Input: Video feed from camera 

2: Output: Translated alphabets, words, or sentences 

3: Initialize: Calibration parameters and Sarani algorithm 

4: ▷  Calibration Phase 

5: Adjust camera position to align the user’s face within the frame. 

6: Detect facial landmarks (eyes, nose, mouth). 

7: Compute thresholds for pupil detection (horizontal and vertical ratios). 

8: ▷  Eye Sign Detection 

9: while System is active do 

10: Capture video frames from the camera. 11: Preprocess frames (grayscale, resizing). 12: Detect eyes using facial landmarks. 

13: Track pupil position to compute gaze ratios: 

14: Horizontal Ratio (HR) 

15: Vertical Ratio (VR) 

16: Blinking Ratio (BR) 

17: Determine gaze direction: Center, Left, Right, Up, Down. 
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x 

18: end while 

19: ▷  Pattern Matching and Recognition 

20: if Eye sign sequence matches a predefined pattern then 

21: Translate pattern to corresponding alphabet, word, or number. 

22: Display output on screen and play audio. 

23: else 

24: Prompt user to retry or adjust input. 

25: end if 

26: ▷  Post-Processing 

27: Allow user to correct errors or append additional characters. 

28: Save the output and reset for the next input. 

The Netravaad algorithm is designed to detect and interpret eye movements as a form of communication for individuals with speech disabilities. The 

process begins with the calibra- tion phase, where the system ensures proper alignment of the user’s face within the camera’s frame, followed by detecting 

facial landmarks, such as the eyes, nose, and mouth. The system then computes thresholds for accurate pupil detection using horizontal, vertical, and 

blinking ratios. During the eye sign detection phase, real-time video frames are captured, processed, and analyzed to track the user’s pupil movements. 

Based on these movements, the system determines the direction of the gaze (e.g., left, right, up, down, or center). These movements are matched against 

predefined eye-sign patterns, which are then translated into correspond- ing letters, words, or numbers. The detected output is displayed on the screen 

and converted into speech. 

Mathematical Functions 

Netravaad algorithm uses several mathematical functions to track eye movements and calculate gaze directions. Below are the key functions used in the 

algorithm: 

1. Horizontal Eye Movement Ratio (HR) This function calculates the horizontal position of the pupil relative to the center of the eye. 

 

Where: 

• Plx, Prx are the x-coordinates of the left and right pupils. 

• EC is the x-coordinate of the eye center. 

• HRLeft, HRRight are the horizontal ratios for the left and right eyes. 

The combined horizontal ratio is: 

HR = HRLeft + HRRight 

                     2 

2. Vertical Eye Movement Ratio (VR) This function calculates the vertical position of the pupil relative to the center of the eye. 

 

Where: 

• Ply, Pry are the y-coordinates of the left and right pupils. 
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y 
• EC is the y-coordinate of the eye center. 

• V RLeft, V RRight are the vertical ratios for the left and right eyes. 

The combined vertical ratio is: 

V R = V RLeft + V RRight 

                      2 

3. Blinking Ratio (BR) The blinking ratio helps detect if the user’s gaze is downward or if the eyes are closed. It is computed based on the eye width 

and height. 

 

Where: 

• Wl, Hl are the width and height of the left eye. 

• Wr, Hr are the width and height of the right eye. 

• BRLeft, BRRight are the blinking ratios for the left and right eyes. 

The combined blinking ratio is: 

BR = BRLeft + BRRight 

                 2 

4. Gaze Detection The gaze direction is determined by comparing the calculated ratios to predefined thresholds for each direction (center, left, right, 

up, down). The system uses these ratios to classify the gaze direction, for example: 

• If HR is high and V R is centered, the user is gazing right. 

• If BR is high, the system detects a blink (indicating the ”down” direction). 

In the, Translated Pattern-based Eye-writing Recognition using Dilated Causal Convolu- tion Network, eye-writing patterns were captured using a Tobii 

eye tracker, which provided precise gaze coordinates from 20 participants writing 36 characters, including English letters and Arabic numerals. To address 

the non-uniformity in eye-writing caused by varied start- ing points and long eye fixations, a root translation technique was employed, shifting each gaze 

point to a uniform root. This translated pattern was then processed using a Tempo- ral Convolutional Network (TCN), enhanced with three stacked Dilated 

Causal Convolution (DCC) layers. The DCC layers, with varying dilation factors, allowed the model to capture long-range temporal dependencies and 

skip long eye fixations. The model was trained using the translated eye-writing data, and its performance was evaluated using accuracy, precision, recall, 

and F1-score on a newly designed dataset, as well as three existing public datasets. This approach aimed to improve recognition accuracy while handling 

non-uniform and complex eye-writing patterns [2]. 

 

Fig. 4: Translated Pattern-Based Eye-Writing Architecture [2]. 

Figure 4 presents the architecture of the proposed eye-writing recognition system. It begins with gaze data collection using a Tobii eye tracker, followed 

by root translation to align gaze patterns to a uniform starting point. The translated data is processed by a Temporal Convolutional Network (TCN) with 

three Dilated Causal Convolution (DCC) layers, which capture long-range temporal dependencies and handle non-uniform patterns. The system employs 
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global average pooling and a fully connected layer, with softmax classification to predict the character class. This architecture efficiently addresses 

challenges like long eye fixations and pattern variations, enabling robust recognition. 

Algorithm 2 Eye-Writing Recognition with Root Translation and Dilated Causal Convolution Network   

1: Input: Eye gaze data from Tobii eye tracker (Gx, Gy) for each character 

2: Output: Predicted character class 

3: 

4: Step 1: Data Collection 

5: for each participant do 

6:  Capture eye gaze points for 36 characters (26 English letters + 10 Arabic numerals) 

7:  Store gaze points in (Gx, Gy) where Gx and Gy represent horizontal and vertical gaze coordinates 

8: end for 

9: 

10: Step 2: Root Translation 

11: for each eye-writing sample do 

12: Let G0 = (Gx0, Gy0) be the first gaze point 

13: for each gaze point (Gxi, Gyi) in the sequence do 

14: Translate gaze point: 

15: end for 

16: Store the translated gaze points as λx and λy 

17:  end for 

18: 

19: Step 3: Temporal Convolutional Network with Dilated Causal Convo- lution 

20: Initialize Temporal Convolutional Network (TCN) with three stacked Dilated Causal Convolution (DCC) layers 

21: for each translated eye-writing pattern (λx, λy) do 

22: Pass the translated gaze points to the TCN 

23: for each DCC layer do 

24: Apply causal convolution with dilation factor δ 

25: Skip long eye fixations using dilated receptive fields 

26: Apply ReLU activation and normalization 

27: end for 

28:  end for 

29: 

30: Step 4: Classification 

31: After the final DCC block, apply global average pooling  

32: Pass the pooled features to a fully connected (FC) layer  

33: Apply softmax to predict the character class 

34: Output the predicted character 

The above algorithm outlines the methodology for eye-writing recognition using root translation and a Temporal Convolutional Network (TCN) with 

Dilated Causal Convolution (DCC) layers. The algorithm starts by collecting eye gaze data from participants using a Tobii eye tracker, capturing gaze 

λxi = Gxi − Gx0, λyi = Gyi − Gy0 
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points for 36 characters, including both English letters and Arabic numerals. To address non-uniformity in eye-writing patterns, root translation is applied, 

where each gaze point is shifted relative to the first gaze point of the sequence, ensuring consistent starting positions. The translated gaze points are then 

passed through a TCN architecture consisting of three stacked DCC layers. These layers use causal convolutions with varying dilation factors to capture 

long-range temporal dependencies in the gaze data, while skipping long eye fixations. After processing through the DCC layers, the features are pooled, 

passed through a fully connected layer, and a softmax function is applied for classification. The output of this process is the predicted character 

corresponding to the eye-writing pattern. 

Mathematical Functions 

The algorithm uses several mathematical functions to track eye movements and calculate gaze directions. Below are the key functions used in the 

algorithm: 

1. Root Translation of Eye-Writing Patterns This function adjusts the gaze coordinates to align with the root gaze point to ensure uniformity across 

eye-writing patterns. 

λxi = Gxi − Gx0, λyi = Gyi − Gy0 

Where: 

• Gxi, Gyi are the horizontal and vertical gaze coordinates for the i-th gaze point. 

• Gx0, Gy0 are the coordinates of the initial gaze point (the root gaze point). 

• λxi, λyi are the translated gaze points aligned with the root gaze point. 

2. Dilated Causal Convolution The dilated causal convolution function is used to capture long-range temporal dependencies by skipping over certain 

gaze points, based on the dilation factor δ. 

 

Where: 

• λ represents the translated eye-writing pattern. 

• k(i) is the convolution filter applied to the gaze points. 

• δ is the dilation factor that determines how much the receptive field skips between gaze points. 

• The sum accumulates the values of gaze points at different steps defined by the dilation factor, capturing long-range dependencies. 

3. Receptive  Field  of  Dilated  Convolution The receptive field of a dilated convolution layer is calculated based on the number of layers ζ and the 

filter size e. 

r = 2ζ−1 · e 

Where: 

• r is the receptive field, which defines how many previous gaze points are considered during convolution. 

• ζ is the number of layers in the convolutional network. 

• e is the filter size used in the convolution operation. 

The methodology of the E-Gaze system involves two primary stages: eye tracking and gaze estimation. First, the system processes the event-based data 

stream from a near-eye event camera to extract pupil features. Events are accumulated asynchronously based on their spatial and temporal distributions, 

capturing rapid eye movements such as saccades and blinks. These features, represented as ellipses, are then fed into a recurrent neural network (RNN) 

that uses Long Short-Term Memory (LSTM) layers to analyze pupil motion over time. To improve gaze estimation, the system utilizes a custom angular 

loss function that minimizes the angular error between the estimated and actual gaze directions. The system operates entirely on event data, without 

relying on additional frame-based or infrared data, achieving high accuracy (0.46°) and low latency (under 1 ms) [3]. 
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Fig. 5: Overview of the E-Gaze system architecture [3]. 

Figure 5 illustrates the architecture of the E-Gaze system, which is designed for real- time gaze estimation using event cameras. The system begins with 

the Eye Tracking Block, which processes the asynchronous event data generated by a near-eye event camera to extract pupil features. These features are 

represented as ellipses, encoding spatial and temporal information about the pupil’s motion. The extracted sequence of ellipses is then fed into the Gaze 

Estimation Block, which employs a recurrent neural network (RNN) architecture to infer gaze direction. By analyzing temporal patterns in the pupil 

motion, the RNN predicts the display coordinates corresponding to the user’s point of gaze. This modular architecture effectively combines high-temporal-

resolution data processing with advanced neural network- based inference, ensuring precise and low-latency gaze estimation. 

 

where θerror(ui, vi) is the angular error between the estimated gaze direction vector 

ui and the ground truth vector vi. 

16: Repeat until convergence 

The above algorithm outlines the methodology of the E-Gaze system, which is designed for real-time gaze estimation using event-based data. The process 

begins with the Eye Tracking Block, where the system accumulates event data into sets and extracts pupil features by analyzing the spatial and temporal 

distributions of the events. These features are used to fit ellipses that represent the pupil’s position and shape. Next, in the Gaze Estimation Block, the 

sequence of pupil features is fed into a recurrent neural network (RNN) with Long Short- Term Memory (LSTM) layers. The RNN processes the pupil 

motion over time to predict gaze coordinates on the display. The network is trained by minimizing an angular loss function, which computes the angular 

error between the predicted and ground truth gaze directions. The algorithm iterates through these steps, refining its gaze predictions based on the input 

event stream, and optimizing the system’s accuracy using the angular loss function. This method ensures that the system can provide precise gaze estimates 

with minimal latency, suitable for applications like extended reality (XR). 

 

i=1 

pupil pupil 

pupil 

n 

Algorithm 3 E-Gaze System Methodology 
 

1: Input: Event data stream {ei}n 
2: Output: Gaze direction (xd, yd) 
3: Step 1: Eye Tracking Block 
4:  Accumulate event sets Eset = {ei, ei+1, . . . , ei+2000} 
5: Extract pupil features Fpupil using event distributions and spatial-temporal 

characteristics 
6:  Fit pupil ellipses to extract center coordinates (xp, yp), height hp, width wp, and 

rotation ϕp 
7: Repeat for each event set in the stream 
8: Step 2: Gaze Estimation Block 
9: For each sequence of pupil features {Fpupil}, feed to RNN with LSTM layers 

10: Process sequence of N pupil features {F 1 2 
pupil , . . . , F N } 

11: For each time step t: 

12: Update RNN hidden state ht = LSTM(ht−1, F t ) 
13: Use fully connected layers to output gaze coordinates (xd, yd) 
14: Step 3: Loss Function Optimization 
15: Minimize angular loss function: 

L = 
1 Σ 

θ (u , v )2 
angular 

 
 

n 
i=1 

error i  i 

, F 
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Mathematical Functions 

The E-Gaze algorithm uses several mathematical functions to track eye movements and estimate gaze directions. Below are the key functions used in the 

algorithm: 

1. Angular Error Function (Angle between Gaze Vectors) This function calculates the angular error between the estimated gaze direction 

and the ground truth gaze direction. 

 

• ui is the estimated gaze direction vector (from the eye to the estimated gaze point on the display). 

• vi is the ground truth gaze direction vector (from the eye to the actual gaze point on the display). 

•  ui  and vi  are the magnitudes of the gaze vectors. 

• ui · vi is the dot product of the estimated and ground truth gaze direction vectors. 

2. Angular Loss Function The angular loss function is used to minimize the angular error between the estimated and actual gaze directions 

over multiple samples. 

 

Where: 

• n is the number of gaze estimation samples. 

• θerror(ui, vi) is the angular error between the estimated and ground truth gaze direction vectors for the i-th sample. 

The goal of this function is to minimize the mean squared angular error to improve gaze estimation accuracy. 

The methodology of the Blink-To-Live system revolves around a mobile-based applica- tion leveraging computer vision techniques to enable 

communication for individuals with speech impairments. The system employs a smartphone camera to capture real-time video frames, which are sent to 

a backend for processing. Key modules include facial landmark detection, eye tracking, and gesture recognition, where four eye gestures—Blink, Left, 

Right, and Up—serve as the foundational alphabets. These gestures are combined into sequences of three states to encode over 60 daily life commands. 

The backend uses Histogram of Ori- ented Gradients (HOG) with a Support Vector Machine (SVM) for facial detection and the Eye Aspect Ratio (EAR) 

for blinking recognition. Recognized commands are translated into text and synthesized into lifelike speech in the user’s native language. The system 

prioritizes simplicity and cost-efficiency, ensuring accessibility by eliminating the need for specialized hardware while delivering flexible, real-time 

communication [4]. 

Figure 6 illustrates the architecture of the Blink-To-Live communication system, show- casing its key components and workflow. The system consists of 

two main modules: a mobile application built using the Flutter framework and a Python-based backend for real-time image analysis. The process begins 

with a caregiver activating the smartphone camera to capture video frames, which are sent to the backend via a web socket for processing. The backend 

performs facial landmark detection to localize the eyes and track movements based on pre- defined gestures—Blink, Left, Right, and Up. These gestures 

are encoded into sequences of three states, which are matched to a command dictionary. The recognized commands are translated into the user’s native 

language and converted to lifelike speech through a Text-to- Speech module. The resulting text and audio are displayed on the mobile application, 

enabling seamless communication. This architecture ensures real-time performance, flexibility, and cost efficiency by eliminating the need for specialized 

hardware. 
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Fig. 6: Blink-To-live Communication System Architecture [4]. 

Algorithm 4 Blink-To-Live Eye-Tracking Communication System 

1: Input: Real-time video frames captured by smartphone camera 

2: Output: Translated text command and synthesized speech 

3: Initialize the mobile application 

4: Start the camera to capture video frames in real-time 

5:  while frames are being captured do 

6: Step 1: Facial Landmark Detection 

7: Detect face using Histogram of Oriented Gradients (HOG) + SVM 

8: Extract 68 facial landmarks (eyes, mouth, nose, etc.) 

9: Step 2: Eye Detection and Gesture Recognition 

10: Localize and track left and right eyes using facial landmarks 

11: Compute Eye Aspect Ratio (EAR) to detect blinking  

12: Recognize eye gestures (Left, Right, Up, Blink)  

13: Step 3: Command Encoding 

14: Store recognized gestures in a sequence of three states 

15: if sequence matches predefined dictionary then 

16: Retrieve corresponding command from dictionary 

17: else 

18: Prompt for correction or retry 

19: end if 

20: Step 4: Translation and Speech Synthesis 21: Translate command into user’s native language  

22: Synthesize speech using Text-to-Speech module 

23: Display text and play synthesized speech on screen 

24:  end while 

25:  End application 

The Blink-To-Live algorithm enables real-time communication by processing video frames captured through a smartphone camera. Facial landmarks are 

detected using the HOG + SVM model, and eye gestures—Blink, Left, Right, and Up—are identified through Eye Aspect Ratio (EAR) analysis. These 

gestures are recorded in sequences of three states and matched to a predefined dictionary of commands. Recognized commands are translated into the 

user’s native language and synthesized into speech using a Text-to-Speech module. The output is displayed and played on the device, providing a simple 

and cost-efficient communication solution. 
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Mathematical Functions 

The Blink-To-Live algorithm uses several mathematical functions to track eye movements and detect blinking. Below is the key function used to calculate 

the Eye Aspect Ratio (EAR): 

1. Eye Aspect Ratio (EAR) This function calculates the ratio of eye aspect to detect blinking by analyzing the distance between specific eye landmarks. 

 

Where: 

• p1, p2, p3, p4, p5, p6 represent the coordinates of six key landmarks around the eye. 

•  pi − pj  is the Euclidean distance between two points. 

The EAR value is constant when the eye is open, and it drops significantly when the eye blinks. A threshold value t (e.g., 0.2) is used to determine whether 

the eye is open or closed. 

In the, Uncertainty-aware gaze tracking for assisted living environments,gaze tracking approach leverages facial keypoint detection from a human pose 

estimation model to estimate gaze direction. A neural network regressor uses the relative positions of keypoints (eyes, nose, and ears) to predict the gaze 

direction in a 2D image plane. To handle uncertainties arising from occlusions or low-confidence detections, Confidence Gated Units (CGUs) are 

integrated into the network, reducing the impact of unreliable keypoint predictions. The model also provides an estimate of uncertainty for each gaze 

prediction, which is used in an angular Kalman filter to improve temporal consistency and tracking accuracy. The Kalman filter combines past gaze 

estimates with new predictions, adjusting the influence of each based on the uncertainty values. This methodology is evaluated on real-world datasets 

from assisted living environments, as well as publicly available datasets, demonstrating its robustness and ability to accurately track gaze over time [6]. 

Algorithm 5 Uncertainty-Aware Gaze Tracking with Kalman Filter 

1:  Input: Video frames with facial keypoints (xi, yi, ci), where i denotes facial keypoints, and their confidence scores ci. 

2:  Output: Predicted gaze direction and uncertainty for each frame. 

3:  Initialize Kalman Filter with initial gaze state s0 = [ρ0, ω0]. 

4:  Initialize neural network model NN to predict gaze direction and uncertainty from facial keypoints. 

5:  for each frame in video do 

6: Detect facial keypoints using pose estimation model. 

7: Normalize the keypoints’ positions to obtain relative coordinates. 

8: Obtain the confidence levels of the detected keypoints. 

9: Feed the keypoints into the neural network model NN to predict gaze direction gj and uncertainty σj. 

10: if confidence of keypoints is low then 

11: Apply Confidence Gated Units (CGUs) to adjust the contribution of low- confidence keypoints. 

12: end if 

13: Use uncertainty σj to adjust the Kalman filter observation model: 

14: Set observation covariance σv = e−σj or σv = 1/σj. 

15: Predict the new gaze state sˆt using the Kalman filter: 

16: sˆt = F · st−1 + wt where F is the state transition matrix and wt is process noise. 

17: Update the gaze prediction using the Kalman filter: 

18: st = st−1 + Kt · (zt − H · st−1) where Kt is the Kalman gain. 

19: Update the Kalman filter state with the new gaze direction gt and angular velocity ωt. 

20: Store the updated gaze prediction and uncertainty for the current frame. 

21:  end for 

22:  Return: Sequence of gaze directions and uncertainties for all frames. 
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The algorithm presented above outlines the process of uncertainty-aware gaze tracking using a neural network and an angular Kalman filter for temporal 

integration. First, for each frame in a video, facial keypoints (such as eyes, nose, and ears) are detected using a pose estimation model. The relative 

positions of these keypoints are normalized, and their associ- ated confidence levels are computed. The neural network then predicts the gaze direction 

and uncertainty based on these keypoints. If the confidence in the keypoints is low due to occlu- sions or poor visibility, Confidence Gated Units (CGUs) 

are applied to adjust the influence of these unreliable keypoints. The uncertainty from the neural network is then used to adjust the observation model of 

the Kalman filter by modifying the observation covariance. The Kalman filter predicts the gaze state, which includes the gaze direction and angular 

velocity, by combining the new predictions with the previous state, with adjustments made based on the uncertainty. This process ensures that the gaze 

predictions are temporally consistent and robust. The final output is a sequence of gaze directions and their associated uncertainties for each frame in the 

video, providing an accurate and stable gaze tracking solution. 

Mathematical Functions 

The proposed gaze tracking algorithm uses several mathematical functions to track gaze direction and estimate uncertainty. Below are the key functions 

used in the algorithm: 

1. Facial Keypoint Normalization The keypoints of the face are normalized relative to the head centroid: 

 

• xj,k,s, yj,k,s are the original coordinates of the k-th keypoint of the j-th subject. 

• xj,h, yj,h are the coordinates of the head centroid. 

• xj,m, yj,m are the distances from the head centroid to the furthest keypoint. 

2. Gaze Direction Estimation The neural network estimates the gaze direction in the 2D image plane: 

 

Where: 

• gjx, gjy are the components of the gaze direction vector. 

• ρj is the apparent gaze angle with respect to the horizontal axis. 

3. Kalman Filter State Prediction The Kalman filter predicts the current gaze state based on the previous state: 

sˆt = F · st−1 + wt 

Where: 

• sˆt is the predicted state (gaze direction and angular velocity). 

• F is the state transition matrix. 

• wt is the process noise, assumed to be normally distributed. 

4. Kalman Filter Update The Kalman filter updates the state st based on the new gaze prediction zt: 

st = st−1 + Kt · (zt − H · st−1) 

Where: 

• st is the updated state (gaze direction and angular velocity). 

• Kt is the Kalman gain. 

• zt is the new gaze prediction. 

• H is the observation matrix. 

The Kalman gain Kt is computed as: 

Kt =   Pt−1  

       Pt−1 + Rt 

Where: 

• Pt−1 is the error covariance from the previous state. 
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• Rt is the observation noise covariance. 

5. Observation Covariance Adjustment The uncertainty σj is used to adjust the observation covariance in the Kalman filter: 

 

Where: 

• σv is the observation covariance. 

• σj is the predicted uncertainty for the gaze direction. 

Real-Time Human-Computer Interaction Using Eye Gazes, describes a webcam-based system that facilitates real-time eye gaze recognition and object 

segmentation. The system employs the Dlib 68-point facial landmark detector to track and identify eye regions, focusing on the sclera to determine gaze 

directions (straight, left, right) and blinking through sclera ratios and eyelash distance metrics. For object segmentation, a Mask Region-Based Convo- 

lutional Neural Network (Mask R-CNN) is trained using annotated datasets with polygon masks to recognize and segment tools and parts. These elements 

are integrated into a user- friendly visual interface, enabling seamless interaction where users select segmented objects using their eye gazes. The system 

is designed for real-time operation, ensuring high accuracy and robustness with standard RGB camera hardware [7]. 

 

Fig. 7: Real-Time Human-Computer Interaction Using Eye Gazes System Overview [7]. 

Figure 7 illustrates the architecture of the real-time eye-gaze-based human-computer interaction (HCI) system. The system integrates three core 

components: real-time eye track- ing and gaze recognition, object recognition using instance segmentation, and a visual software interface for interaction. 

The input from a standard RGB webcam captures facial landmarks and eye regions, which are analyzed to detect and track gaze directions (left, right, 

straight) and blinks. Simultaneously, the Mask R-CNN model processes image data to iden- tify and segment tools and parts with high accuracy. These 

components are combined into a seamless software interface, allowing users to interact by selecting objects using eye gestures. The system’s design 

emphasizes efficiency and scalability, making it suitable for practical real-time applications. 

Algorithm 6 Real-Time Eye Gaze Recognition and Object Segmentation 

1: Input: RGB Webcam Frames 

2: Output: Recognized Eye Gaze and Segmented Objects 

3: Step 1: Eye Detection and Tracking 

4: Load the Dlib 68-point Facial Landmark Detector. 

5: Detect facial landmarks and extract eye regions (landmarks 37–48). 

6: Define Regions of Interest (ROI) based on sclera and eyelash positions. 

7: Step 2: Eye Gaze Recognition 
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8: Convert ROI to grayscale and binary scale. 

9: Calculate sclera area ratios to determine gaze direction: 

10: if ϕ < 0.70 then 

11: Gaze is to the left. 

12: else if 0.70 ≤ ϕ ≤ 1.20 then 

13: Gaze is straight ahead. 

14: else 

15: Gaze is to the right. 

16: end if 

17: Detect blinking by calculating eyelash distances: 

18: if ψ ≥ 5.50 for at least 15 frames then 

19: Gaze is a blink. 

20: end if 

21: Step 3: Instance Segmentation 

22: Train a Mask R-CNN model with annotated datasets of tools and parts. 

23: Input webcam frame to the model for segmentation. 

24: Output segmented objects with bounding boxes, masks, and class labels. 

25: Step 4: Integration into Software Interface 

26: Visualize real-time gaze recognition and segmentation. 

27: Allow user interaction via gaze (e.g., blink to select segmented object). 

28: Step 5: Output Results 

29: Display selected tools and parts based on user gaze input. 

The above algorithm for real-time eye gaze recognition and object segmentation integrates eye tracking, gaze recognition, and instance segmentation into 

a cohesive process. First, the Dlib 68-point facial landmark detector is utilized to identify facial features and extract eye regions. These regions are 

processed to calculate sclera area ratios, which determine the direction of gaze—left, straight, or right—based on predefined thresholds. Blinking is 

detected by analyzing the relative distances between eyelash landmarks over consecutive frames. For object segmentation, a Mask R-CNN model is 

trained using annotated datasets, enabling accurate segmentation of tools and parts in the input frame. The recognized gaze directions and segmented 

objects are integrated into a visual software interface, allowing users to interact with the system through gaze inputs. For instance, users can select 

segmented objects by blinking. The algorithm ensures real-time processing and robust performance, even with minimal hardware requirements, enabling 

natural and efficient human-computer interaction. 

Mathematical Functions 

Real-Time Human-Computer Interaction Using Eye Gazes algorithm uses several mathe- matical functions to track eye movements and calculate gaze 

directions. Below are the key functions used in the algorithm: 

1. Gaze Direction Ratio (ϕ) This function calculates the horizontal direction of the gaze based on the visible sclera areas in the left and right 

parts of the eye. 

ϕ = Left Sclera Pixels  

      Right Sclera Pixels 

Where: 

• Left Sclera Pixels: The number of white pixels on the left side of the eye. 

• Right Sclera Pixels: The number of white pixels on the right side of the eye. 

• ϕ is the gaze ratio that determines the gaze direction. 

The gaze direction is determined as follows: 
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• If ϕ < 0.70, the gaze is considered to be looking left. 

• If 0.70 ≤ ϕ ≤ 1.20, the gaze is considered straight ahead. 

• If ϕ > 1.20, the gaze is considered to be looking right. 

2. Blink Detection Ratio (ψ) This function detects blinking by comparing the length of the vertical and horizontal lines connecting eye 

landmarks. 

ψ = Horizontal Line Length  

        Vertical Line Length 

Where: 

• Horizontal Line Length: The distance between the landmarks on the left and right sides of the eye. 

• Vertical Line Length: The distance between the upper and lower eyelash landmarks. 

• ψ is the ratio that helps detect blinking. 

A blink is detected if ψ ≥ 5.50 for at least 15 frames (0.5 seconds). 

Non-Intrusive Real-Time Eye Tracking Using Facial Alignment for Assistive Technologies employs a four-step methodology for gaze estimation: face 

detection, head pose correction, eye patch extraction, and iris detection for gaze estimation. The process begins with face detection to locate the user’s 

face in the image, followed by extracting facial landmarks to identify the eye positions. Head pose correction is then applied to normalize the eye images 

by removing the roll component, ensuring consistent gaze estimation input. Eye patches are extracted from the normalized images and passed through a 

CNN-based gaze estimation model. The model detects the iris and estimates gaze angles (pitch and yaw), providing the gaze origin. This method delivers 

real-time gaze estimation without requiring person-specific calibration, making it computationally efficient and suitable for both indoor and outdoor 

environments [8]. 

 

Fig. 8: Workflow of Non-Intrusive Real Time Eye Tracking. 
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Figure 8 illustrates the sequential workflow employed in Non-Intrusive Real-Time Eye Tracking Using Facial Alignment for Assistive Technologies. 

The process begins with face detection, identifying the user’s face and extracting key facial landmarks. These landmarks are used to estimate the head 

pose, which plays a critical role in normalizing the eye patch images. This normalization involves correcting the roll component of the head pose to ensure 

consistent input for gaze estimation. The normalized eye patches are then fed into the gaze estimation model, which calculates gaze angles and provides 

the corrected gaze direction. 

The figure emphasizes the systematic progression of tasks, highlighting how each step builds upon the previous one to achieve real-time and accurate 

gaze tracking. 

Algorithm 7 Non-Intrusive Real-Time Eye Tracking Methodology 

1: Input: Image containing user’s face 

2: Output: Gaze angles (pitch, yaw), gaze origin 

3: 

4: Step 1: Face Detection 

5: Detect the face in the input image 

6: Extract facial landmarks (eyes, nose, mouth, ears) 

7: 

8: Step 2: Head Pose Correction 

9: Calculate head pose using facial landmarks 

10: Normalize the eye region by removing the roll component of the head pose 

11: 

12: Step 3: Eye Patch Extraction 

13: Extract eye patches from the image based on normalized facial landmarks 

14: Crop and resize the eye patches for input to gaze estimation model 

15: 

16: Step 4: Iris Detection and Gaze Estimation 

17: Apply CNN-based gaze estimation model to detect the iris 

18: Estimate the gaze direction using the iris position and facial landmarks 

19: Output the gaze angles (pitch, yaw) and gaze origin 

The above algorithm outlines the step-by-step methodology for Non-Intrusive Real-Time Eye Tracking Using Facial Alignment for Assistive 

Technologies. It begins by detecting the user’s face within the input image and extracting key facial landmarks such as the eyes, nose, mouth, and ears. 

These landmarks are then utilized to calculate the head pose, followed by normalization to remove the roll component, ensuring consistency across the 

input data. The next step involves extracting and resizing eye patches based on the normalized facial landmarks, preparing them for gaze estimation. 

Finally, a CNN-based model detects the iris and estimates the gaze direction, outputting accurate gaze angles (pitch and yaw) and the gaze origin. The 

sequential nature of the algorithm ensures efficiency and real-time processing, making it suitable for practical applications in assistive technologies. 

Mathematical Functions 

Non-Intrusive Real-Time Eye Tracking Using Facial Alignment for Assistive Technologies uses several mathematical functions to track eye movements 

and calculate gaze directions. Below are the key functions used in the algorithm: 

1. Head Pose Correction This function normalizes the eye image by removing the roll component of the head pose. 

g⃗ = H · g⃗e 

Where: 

• g⃗ is the world coordinates gaze direction. 

• H is the head pose matrix. 

• g⃗e is the eye gaze direction with respect to the face. 
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2. Eye Position Calculation This function calculates the eye position in world coordinates using the head pose and the eye center from the canonical 

model. 

e⃗ = H · e⃗c 

Where: 

• e⃗ is the eye center position with respect to the camera. 

• H is the head pose matrix. 

• e⃗c is the eye center in the canonical model. 

3. Perspective Transformation This function applies a perspective transformation to correct the image, removing head pose and camera parameter 

variations. 

 

Where: 

• W is the perspective transformation matrix. 

• e⃗ is the adjusted eye position. 

• l∗ and l are the focal lengths used for transformation. 

• e⃗∗ is the reference eye position. 

4. Gaze Angle Error This function computes the angular error between the real gaze direction and the estimated gaze direction using cosine similarity. 

 

Where: 

• g⃗ is the real gaze direction. 

• g⃗e is the estimated gaze direction. 

• e is the angular error between the real and estimated gaze directions. 

A Data-Driven Framework for Intention Prediction via Eye Movement With Applications to Assistive Systems, employs a data-driven approach to predict 

user intentions based on eye movement patterns. Eye tracking is used to capture the gaze points of users on displayed images, which are processed using 

the DBSCAN clustering algorithm to identify regions of interest (ROIs) based on gaze density. Temporal patterns of gaze are analyzed using hidden 

Markov models (HMMs) to determine the sequence of object selections. Transfer learning is utilized with pre-trained convolutional neural networks 

(CNNs) to identify objects within the ROIs. The methodology includes two main phases: task classification for predicting intended versus unintended 

tasks and early intention prediction that uses both spatial and temporal gaze data to forecast the user’s task in advance. This approach ensures high 

accuracy and adaptability for real-world applications, particularly in assistive technologies [9]. 

 

Fig. 9: Workflow of Non-Intrusive Real Time Eye Tracking. 

Figure 9 illustrates the proposed framework for predicting user intention by leverag- ing spatial and temporal patterns of eye movement. The framework 

is composed of four primary modules, each addressing a critical aspect of the prediction process. The first mod- ule clusters gaze points using DBSCAN 



International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 3086-3126 April 2025                                     3115 

 

 

to identify regions of interest (ROIs) and analyzes the sequence of these regions via Hidden Markov Models (HMMs). The second module dis- tinguishes 

intended tasks from unintended tasks based on the number of detected ROIs. The third module predicts the type of intended task using a CNN-based 

object detection mechanism to classify objects within the ROIs. Lastly, the fourth module focuses on early task prediction by combining spatial and 

temporal gaze data with a CNN-LSTM model, enabling proactive intention forecasting. This modular approach ensures high accuracy and adaptability 

for assistive technology applications. 

Mathematical Functions 

A Data-Driven Framework for Intention Prediction via Eye Movement With Applications to Assistive Systems uses several mathematical functions to 

analyze eye movement and predict user intention. Below are the key functions used in the framework: 

1. DBSCAN Clustering for Eye Movement Data This function clusters gaze points based on spatial density to identify regions of interest 

(ROIs). 

Cluster(P) = {q | Dist(P, q) ≤ ϵ and MinPts(P) ≥ minP ts} 

Where: 

• P, q are gaze points. 

• ϵ is the radius of the neighborhood for clustering. 

• MinPts(P) is the minimum number of points required to form a cluster. 

• Dist(P, q) is the distance between points P and q. 

2. Hidden Markov Model (HMM) for Temporal Gaze Sequences This function models the temporal sequence of gaze points by representing 

gaze transitions as hidden states in the HMM. 

 

Where: 

• O represents the observed gaze data. 

• λ represents the model parameters (transition and emission probabilities). 

• q1, q2, ..., qT are the hidden states (ROIs). 

The forward algorithm for computing the probability of observing a sequence is: 

 

Where: 

• αt(i) is the probability of observing the sequence up to time t and being in state I at time t. 

Algorithm 8 Data-Driven Framework for Intention Prediction 

1: Input: Eye movement data (gaze points, timestamps), displayed images 2: Output: Predicted user intention (task classification or early prediction) 3: 

Step 1: Clustering Eye Movement Data 

4: Use DBSCAN to cluster gaze points based on spatial density 

5: Identify Regions of Interest (ROIs) for each trial 

6: Output: ROIs for each gaze pattern 

7: Step 2: Temporal Sequence Analysis 

8:  Use Hidden Markov Models (HMM) to analyze gaze sequence  

9:  Model transitions between ROIs to capture temporal patterns  

10:  Output: Temporal sequence of object selection 

11: Step 3: Object Identification with CNN 

12: Apply pre-trained CNN (ResNet50) to identify objects within ROIs 

13: Fine-tune the model with trial-specific images for better object detection 

αt(i) = P (O1, O2, ..., Ot, qt = i|λ) 
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14: Output: Identified objects in each ROI 

15: Step 4: Task Classification 

16: Classify tasks as intended or unintended based on number of ROIs 

17: if Number of ROIs ¿ 2 then  

18: Predict task as intended  

19: else 

20: Predict task as unintended 

21: end if 

22: Step 5: Early Intention Prediction (CNN-LSTM) 

23:  Combine CNN features with Long Short-Term Memory (LSTM) for early task prediction 

24: Use sequence of ROI images to predict task intention at early stages 

25: Output: Early prediction of user intention 

The avove algorithm outlines a systematic approach to analyze eye movement data and predict user intention. The framework integrates multiple 

techniques to ensure robust pre- dictions. Initially, gaze points are clustered using DBSCAN to identify Regions of Interest (ROIs), which represent areas 

of visual attention. Temporal patterns within these ROIs are then modeled using Hidden Markov Models (HMM) to capture transitions and sequences in 

gaze behavior. To identify specific objects within the ROIs, a Convolutional Neural Network (CNN), such as a fine-tuned ResNet50, is employed, 

enhancing object detection accuracy by leveraging trial-specific image training. For task classification, the framework analyzes the number of ROIs: tasks 

with multiple ROIs are classified as intended, while those with fewer are deemed unintended. Finally, CNN-LSTM models are used for early intention 

prediction, combining spatial features from CNNs with temporal dependencies captured by LSTMs, enabling the system to anticipate user intentions in 

real-time. This multi-step framework effectively bridges eye movement data and predictive user intention modeling. 

The eye gaze-controlled virtual keyboard system, comprises several key steps: face detec- tion, eye detection, gaze tracking, blinking detection, and 

virtual keyboard interaction. Initially, a webcam captures real-time video, and the system uses Histogram of Oriented Gradients (HoG) with dlib-based 

68-point facial landmarks for accurate face and eye detec- tion. Eye gaze is tracked by analyzing the position of the eyeballs, determining whether the 

user is looking left, right, or center, to select sections of the virtual keyboard. Blinking is detected by monitoring the closure of the eyelids through vertical 

and horizontal line inter- section techniques, which differentiate between involuntary blinks and intentional blinks for key selection. A virtual keyboard 

with sequential key highlighting enables the user to type by blinking when the desired key is lit. Each component is optimized to work in real-time, 

providing a hands-free text input method tailored for individuals with physical disabilities [10]. 

Algorithm 9 Eye Gaze Controlled Virtual Keyboard 

1: Input: Live video stream from webcam 

2: Output: Typed text using eye gaze and blink detection 

3:  procedure EyeGazeKeyboard 

4: Initialize video capture from webcam 

5: while Video stream is active do 

6: Step 1: Face Detection 

7: Detect face using HoG + dlib 68-point landmarks 

8: if Face Detected then 

9: Extract eye region (left and right eye) 

10: Step 2: Eye Gaze Detection 

11: Calculate eyeball position for gaze detection 

12: if Eyeball looks left then 

13: Select Left Section of Virtual Keyboard 

14: else if Eyeball looks right then 

15: Select Right Section of Virtual Keyboard 
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16: else 

17: Default to Center Position 

18: end if 

19: Step 3: Eye Blink Detection 

20: Calculate vertical and horizontal eye ratios 

21: if Vertical line vanishes AND eyelids remain closed for threshold duration then 

22: Detect intentional blink 

23: Select the currently highlighted key 

24: Append key to output text 

25: end if 

26: Step 4: Virtual Keyboard Key Scanning 

27: Highlight keys sequentially in the selected section 28: Wait for intentional blink to confirm key selection  

29: end if 

30: end while 

31: End Procedure 

32: end procedure 

The above algorithm for the eye gaze-controlled virtual keyboard operates by processing live video input from a webcam to enable hands-free text input. 

It begins with face detection using a Histogram of Oriented Gradients (HoG) descriptor combined with dlib’s 68-point facial landmark detector to 

accurately identify and isolate the eye region. Following this, the system analyzes the position of the user’s eyeballs to determine gaze direction (left, 

right, or center) for selecting the corresponding section of the virtual keyboard. The virtual keyboard lights up keys sequentially within the selected 

section. Eye blinking is monitored using vertical and horizontal eye aspect ratios to distinguish intentional blinks from involuntary ones. A valid blink, 

held for a defined threshold duration, confirms the selection of the currently highlighted key. The selected key is appended to the output text, and the 

process continues, enabling efficient and accessible typing for users with physical disabilities. The algorithm ensures seamless integration of gaze tracking 

and blinking detection, optimizing the typing experience for accessibility. 

Mathematical Functions 

The algorithm uses several mathematical functions to track eye movements and calculate gaze directions. Below are the key functions used in the system: 

1. Eye Aspect Ratio (EAR) This function determines whether the eye is open or closed by calculating the ratio of vertical to horizontal distances 

between specific eye landmarks. 

 

Where: 

• p1, p4: Horizontal landmarks (corners of the eye). 

• p2, p3, p5, p6: Vertical landmarks (top and bottom points of the eye). 

•  · : Euclidean distance between two points. 

2. Gaze Ratio (GR) This function calculates the relative position of the eyeball within the eye to detect gaze direction. 

 

Where: 

• Sum of Pixel Intensity in Eye Region (Left/Right): The grayscale intensity values of the eye region. 

• Total Area of Eye Region: The area enclosed by eye landmarks, representing the eye region. 
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3. Blinking Detection Threshold (BDT) Blinking is detected by checking whether the eye aspect ratio (EAR) drops below a predefined 

threshold. 

 

Where: 

• EAR: The eye aspect ratio. 

• Threshold: A predefined value (e.g., 0.2) based on experimental calibration. 

4. Implementation Details 

Netravaad Interactive Eye Based Communication System for People With Speech Issues, is implemented using a combination of hardware and software 

modules designed for efficiency and accessibility. The hardware setup consists of a USB camera, a touch display, a speaker, and a mini-PC mounted on 

an adjustable stand for flexible positioning. The system operates on the Sarani algorithm, which processes video feed from the camera to detect eye 

movements using image processing techniques, relying on thresholds for horizontal, vertical, and blinking ratios. These inputs are mapped to a predefined 

eye-sign language, Netravaani, enabling users to form characters, words, or sentences [1]. 

In the study Translated Pattern-Based Eye-Writing Recognition Using Dilated Causal Convolution Network, the implementation leverages a Tobii eye 

tracker to capture gaze points as input data for a novel eye-writing recognition system. The captured gaze data undergoes root translation, a process that 

aligns gaze coordinates to a uniform starting point, min- imizing the impact of non-uniformity in eye-writing patterns. The translated data is then processed 

through a Temporal Convolutional Network (TCN) composed of three Dilated Causal Convolution (DCC) layers, designed to capture long-range temporal 

dependencies and handle variations in eye fixation. The model uses dilation factors to skip over unnecessary data points, ensuring efficient temporal 

feature extraction. The processed features are passed through a fully connected layer, followed by a softmax activation function for character clas- 

sification. The implementation achieves high recognition accuracy across multiple datasets, demonstrating its robustness in handling complex and non-

uniform eye-writing patterns [2]. E-Gaze employs a robust and efficient implementation pipeline designed for real-time gaze estimation using event 

cameras. The system processes asynchronous, motion-triggered event data to extract spatiotemporal features of eye movements. These features are 

aggregated into sets of 2000 events, enabling the precise detection of pupil characteristics through a combi- nation of image processing techniques and 

kernel density estimation. To optimize latency, the system employs a region-of-interest (ROI) approach, leveraging previously detected pupil locations 

to reduce computational overhead. The extracted pupil features are represented as ellipses and passed into a recurrent neural network (RNN) with Long 

Short-Term Mem- ory (LSTM) layers, which analyze temporal sequences of eye movements. The network is further optimized using a custom angular 

loss function that minimizes the angular error between the predicted and ground truth gaze directions. The system is capable of achiev- ing sub-millisecond 

latency and angular accuracy of 0.46°, making it suitable for demanding applications in extended reality (XR) [3]. 

Blink-To-Live is implemented as a mobile-based application designed to facilitate com- munication for individuals with speech impairments using eye 

gestures. The system leverages computer vision techniques to process real-time video frames captured by a smartphone camera. Facial landmarks are 

detected using a combination of the Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) models, enabling accurate identifica- 

tion and tracking of eye movements. Eye gestures, including blink, left, right, and up, are recognized through the calculation of the Eye Aspect Ratio 

(EAR), which determines blink- ing and other directional movements. The recognized gestures are encoded into sequences of three states, mapped to 

predefined commands stored in a backend dictionary. Communica- tion is facilitated by translating these commands into text and synthesizing them into 

lifelike speech using a Text-to-Speech module. The system uses the Flutter framework for the fron- tend mobile application and Python-based backend 

modules for image processing, ensuring a lightweight, platform-independent, and cost-efficient solution for users [4]. 

Uncertainty-Aware Gaze Tracking for Assisted Living Environments employs a robust framework combining neural network-based gaze estimation with 

a Kalman filter for temporal consistency. The implementation begins with the detection of facial keypoints using an off- the-shelf pose estimation model, 

which provides the coordinates and confidence scores for key facial landmarks. These keypoints are normalized relative to the subject’s head centroid to 

ensure scale invariance. A neural network regressor predicts the gaze direction and its associated uncertainty using the normalized keypoints, 

incorporating Confidence Gated Units (CGUs) to mitigate the impact of low-confidence or occluded keypoints. The uncertainty estimates are then utilized 

to dynamically adjust the observation model of an angular Kalman filter, which integrates predictions over time to produce accurate and stable gaze 

trajectories. The system was implemented using TensorFlow and evaluated on several datasets, including MoDiPro, MPIIFaceGaze, and Gaze360, 

demonstrating its effectiveness in real-world assisted living environments [6]. 

Real-Time Human-Computer Interaction Using Eye Gazes implements a robust system for real-time eye gaze recognition and object segmentation using 

standard RGB cameras and machine learning models. The system is built upon the Dlib 68-point facial landmark detec- tor to identify facial and eye 

regions, focusing on key landmarks to extract the sclera and eyelash features for gaze analysis. A sclera-region-based method calculates gaze direction, 

while eyelash distances are used for blink detection. For object segmentation, the Mask R- CNN model is trained on a custom dataset annotated with 

polygon masks, enabling accurate identification of tools and parts. These components are integrated into a user-friendly visual interface that operates in 
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real-time, leveraging efficient frame processing and minimal com- putational overhead. The software architecture ensures scalability and robustness, 

making it suitable for various human-computer interaction applications [7]. 

Non-Intrusive Real-Time Eye Tracking Using Facial Alignment for Assistive Technologies leverages a streamlined implementation to ensure high 

computational efficiency and adapt- ability across various devices. The system is developed using PyTorch, enabling flexibility in deployment across 

CPU and GPU platforms. It incorporates advanced facial alignment mod- els such as BlazeFace and FaceMesh, converted from TensorFlow-Lite to 

PyTorch for seamless integration. The gaze estimation model is trained using publicly available datasets like MPI- IGaze, employing a leave-one-out 

approach for cross-validation. Optimization is achieved through the Ranger21 optimizer, enhancing convergence with minimal hyperparameter tun- ing. 

The lightweight architecture is designed to perform efficiently on mobile and embedded systems, with real-time performance exceeding 20 frames per 

second even on a single CPU core, demonstrating its suitability for assistive technology applications [8]. 

A Data-Driven Framework for Intention Prediction via Eye Movement With Applications to Assistive Systems is implemented using a modular approach 

that integrates advanced machine learning techniques for analyzing eye movement data. The framework first employs the DBSCAN clustering algorithm 

to identify regions of interest (ROIs) from gaze data, leveraging spatial density to detect areas of focus. Temporal gaze sequences are modeled using 

Hidden Markov Models (HMMs), capturing the transitions between ROIs to analyze user behavior. For object identification within the ROIs, the system 

utilizes transfer learning with a pre-trained ResNet50 convolutional neural network, ensuring robust object detection. Additionally, the framework 

incorporates a CNN-LSTM model for early intention prediction, combining spatial and temporal features to forecast user intentions at an early stage. All 

components are integrated into an efficient pipeline, allowing real-time analysis and high accuracy, making the system practical for use in assistive 

technologies [9]. 

The implementation of Eye Gaze Controlled Virtual Keyboard is centered around utiliz- ing real-time video capture to enable hands-free text input for 

users with physical disabilities. The system employs OpenCV and dlib libraries to detect the user’s face and eyes through the Histogram of Oriented 

Gradients (HoG) feature descriptor and 68-point facial landmark- ing. Eye gaze detection is achieved by analyzing the position of the eyeball relative to 

the eye region, determining left, right, or center gaze. A virtual keyboard is displayed on the screen, divided into sections that are highlighted sequentially. 

Users select keys by intentional blinking, detected using the Eye Aspect Ratio (EAR) metric. Blinking is identified by moni- toring changes in vertical 

and horizontal eye landmarks, distinguishing between involuntary and intentional actions. This approach integrates real-time image processing techniques 

with intuitive interaction mechanisms, ensuring accessibility and accuracy for the target audience [10]. 

5. Results and Discussions 

The survey of various eye-gaze tracking methods and communication systems reveals signif- icant advancements in their ability to address the diverse 

needs of users with physical and communication impairments. Techniques ranging from traditional infrared-based gaze esti- mation to modern deep 

learning-based approaches demonstrate notable progress in precision, adaptability, and usability. However, the review also highlights persistent 

challenges, such as sensitivity to environmental factors, variability in user-specific physiological traits, and the computational demands of advanced 

algorithms. This section presents a comparative analysis of the methodologies, focusing on key metrics. 

5.1 Evaluation Metrics 

The evaluation metrics used in the Netravaad Interactive Eye Based Communication System for People With Speech Issues focus on measuring the 

system’s accuracy, precision, recall, and response time in detecting eye signs and translating them into meaningful communication. Tests were conducted 

across multiple age groups and varying distances between the user and the camera to evaluate the robustness of the Sarani algorithm. Accuracy reflects 

the proportion of correctly identified eye signs, alphabets, words, and numbers, while precision measures the relevance of correctly detected outputs 

compared to all detected outputs. Recall assesses the system’s ability to identify intended patterns from the total possible inputs, ensuring minimal 

omission. Response time was evaluated to determine the average duration required to process and classify each eye sign, providing insights into the 

system’s real- time efficiency. These metrics were further analyzed across specific operational scenarios, such as alphabet detection, word formation, and 

numerical input, highlighting the system’s adaptability and effectiveness in diverse conditions [1]. 

The evaluation metrics used in Translated Pattern-Based Eye-Writing Recognition Using Dilated Causal Convolution Network include accuracy, 

precision, recall, and F1-score, which collectively assess the effectiveness of the proposed recognition system. Accuracy measures the overall correctness 

of predictions by calculating the proportion of correctly identified characters to the total predictions. Precision evaluates the ratio of true positives to the 

total predicted positives, reflecting the system’s ability to minimize false positives. Recall assesses the ratio of true positives to all actual positives, 

highlighting the model’s ability to identify relevant instances. The F1-score provides a harmonic mean of precision and recall, balancing the trade-off 

between the two for an overall performance measure. These metrics are derived from a confusion matrix, which details true positives, false positives, 

false negatives, and true negatives for each character. This comprehensive evaluation framework ensures a detailed assessment of the model’s recognition 

performance across diverse datasets [2]. 

The evaluation metrics in E-Gaze focus on assessing the accuracy and efficiency of both the eye tracking and gaze estimation processes. For eye tracking, 

the Intersection over Union (IoU) score and center distance error are used to evaluate how well the extracted pupil ellipse matches the ground truth. IoU 

quantifies the overlap between the predicted and reference pupil shapes, with scores above 0.5 indicating satisfactory segmentation, while the center 

distance measures the pixel-level difference between the predicted and actual pupil centers, with lower values preferred. For gaze estimation, the system 
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uses angular accuracy, calculated as the mean absolute error (MAE) of the angle between the estimated gaze direction and the ground truth vector. This 

metric reflects the precision of gaze predictions in degrees, ensuring alignment with real-world gaze estimation standards. Additionally, system latency 

is evaluated to verify real-time performance, focusing on the time taken to process an event set and generate a gaze estimate. These metrics collectively 

ensure a comprehensive evaluation of the system’s accuracy, efficiency, and practical usability [3]. 

The evaluation metrics for Blink-To-Live focus on assessing the system’s communication accuracy, speed, and usability across diverse user 

demographics. Communication accuracy is measured as the percentage of correctly recognized eye gesture sequences out of the total attempted 

commands, reflecting the system’s ability to decode eye movements into mean- ingful phrases. Communication speed evaluates the time taken to process 

three eye gesture sequences and display the corresponding command on the screen, considering factors such as gesture complexity and transitions. 

Usability testing involved participants with varying ages, education levels, and technology awareness to assess how easily users could learn and uti- lize 

the system. Metrics such as the number of trials required to successfully communicate a command and the participants’ feedback on training requirements 

were recorded. These eval- uation criteria provided insights into the system’s performance, reliability, and adaptability for real-world applications [4]. 

The evaluation of the proposed method in Uncertainty-Aware Gaze Tracking for Assisted Living Environments is primarily based on the angular error 

between the predicted and ground truth gaze directions. This metric quantifies the accuracy of gaze estimation by mea- suring the deviation in degrees 

between the two vectors. Additionally, the correlation between the predicted uncertainty and the actual angular error is analyzed to validate the 

effectiveness of the uncertainty estimation. The temporal stability of gaze predictions is evaluated by com- paring the performance of the angular Kalman 

filter against simpler temporal methods like moving averages. Furthermore, the method’s robustness is assessed under varying conditions, such as partial 

keypoint occlusions and low-confidence detections, to highlight the contribu- tions of the Confidence Gated Units (CGUs). Performance is benchmarked 

across multiple datasets, including MoDiPro, MPIIFaceGaze, and Gaze360, to ensure generalizability and reliability of the approach in real-world 

scenarios [6]. 

The evaluation of Real-Time Human-Computer Interaction Using Eye Gazes relies on widely accepted metrics to assess the performance of its 

components. For the eye gaze recognition model, accuracy is the primary metric, measuring the proportion of correctly identified gaze directions and 

blinks. Additionally, robustness is evaluated by testing the sys- tem under varying distances between the eyes and the webcam. For the instance 

segmentation model, metrics such as precision, recall, and F1-score are used to quantify the accuracy of object classification and segmentation. The 

confusion matrix is employed to visualize class- specific performance, highlighting true positive, false positive, and false negative rates for each object 

class. Combined, these metrics provide a comprehensive understanding of the system’s effectiveness in real-time interaction scenarios [7]. 

The evaluation metrics used in Non-Intrusive Real-Time Eye Tracking Using Facial Align- ment for Assistive Technologies focus on assessing the 

angular accuracy and computational efficiency of gaze estimation models. Angular error, measured in degrees, serves as the primary metric for quantifying 

the deviation between the predicted gaze direction and the ground truth. This error is computed using the arc cosine of the cosine similarity between the 

real and estimated gaze vectors, ensuring precise measurement of directional discrepancies. Addi- tionally, inference time is evaluated to gauge 

computational performance, with comparisons conducted across multiple hardware configurations, including GPU acceleration, multi-core CPU 

processing, and single-core CPU setups. These metrics provide a comprehensive under- standing of the trade-offs between accuracy and efficiency, 

critical for real-time applications in assistive technologies [8]. 

The evaluation metrics used in A Data-Driven Framework for Intention Prediction via Eye Movement With Applications to Assistive Systems focus on 

assessing classification accuracy, task differentiation, and early prediction performance. The primary metric for evaluating task prediction is classification 

accuracy, which measures the percentage of correctly iden- tified tasks among the intended and unintended categories. For early intention prediction, 

accuracy is evaluated at different stages of object selection (e.g., after identifying the first two or three objects), highlighting the system’s ability to predict 

user intentions proactively. Confusion matrices are utilized to analyze the performance of the CNN model for object iden- tification, ensuring the 

robustness of the object detection process within regions of interest. Additionally, recurrence rates from hidden Markov models (HMMs) are employed 

to validate the consistency of gaze transition sequences, providing insights into the temporal dynamics of user behavior. These metrics collectively 

demonstrate the effectiveness and reliability of the framework in predicting user intentions in real-world scenarios [9]. 

The evaluation metrics used in Eye Gaze Controlled Virtual Keyboard focus on assess- ing the accuracy and usability of the system in real-time scenarios. 

Key metrics include the accuracy of eye gaze detection, which measures the system’s ability to correctly identify gaze direction (left, right, or center) and 

its impact on selecting the appropriate section of the virtual keyboard. Blink detection accuracy evaluates the precision of the system in distin- guishing 

between intentional and involuntary blinks, critical for accurate key selection. Typing accuracy, defined as the percentage of correctly selected keys 

versus total attempts, is also a significant metric. Additionally, the system’s response time is measured, encompassing the time taken from detecting a 

gaze or blink to key selection. These metrics collectively provide insights into the system’s performance, efficiency, and reliability under various 

environmental and user-specific conditions [10]. 

5.2 Performance Analysis 

The performance of the Netravaad Interactive Eye Based Communication System for People With Speech Issues was evaluated through extensive testing 

across multiple age groups and varying operational scenarios. The system demonstrated high accuracy, achieving 91% for alphabets, 100% for words, 

and 93% for numbers among users aged 26 to 35 years. The system maintained optimal performance at a distance of 70 cm between the camera and the 

user, with recall, precision, and accuracy values consistently exceeding 85% across most tasks. Response time testing revealed an average duration of 
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0.36 seconds for detecting changes in gaze direction, underscoring its real-time applicability. The performance metrics indicate that Netravaad is a reliable 

and efficient communication tool, offering robust adaptability and usability for individuals with speech impairments in diverse environments [1]. 

The performance of the method proposed in Translated Pattern-Based Eye-Writing Recognition Using Dilated Causal Convolution Network, demonstrates 

its effectiveness in recognizing complex and non-uniform eye-writing patterns. The system achieved an impres- sive average accuracy of 96.20% on a 

newly designed dataset comprising English letters and Arabic numerals, showcasing its robustness in handling variations in eye-writing styles across 

participants. Additionally, the model outperformed baseline methods on public datasets such as HideMyGaze, Complex Gaze Gesture, and Japanese 

Katakana datasets, achieving accu- racies of 98.81%, 97.76%, and 93.51%, respectively. The high precision, recall, and F1-scores across these datasets 

further highlight the system’s ability to balance correct classifications and minimize errors. Notably, the use of root translation and dilated causal 

convolution lay- ers enabled the model to overcome challenges such as long eye fixations and irregular starting points, resulting in superior recognition 

performance compared to traditional methods [2]. 

The performance of E-Gaze demonstrates its capability as a high-accuracy, low-latency gaze estimation system. The system achieves an impressive 

angular accuracy of 0.46° within the commonly evaluated 20×40° field of view (FoV), outperforming or matching state-of- the-art frame-based systems. 

Its eye tracking component provides reliable pupil feature extraction, with a median Intersection over Union (IoU) score of 0.8 and a median center dis- 

tance error of 1 pixel, ensuring precise representation of the pupil across diverse subjects. In terms of latency, the system achieves sub-millisecond delays 

(1.025 ms on average) for gaze prediction, thanks to the region-of-interest (ROI) optimization, which significantly reduces computational overhead. Even 

during complex eye movements like saccades and blinks, the system maintains robust performance. These results highlight **E-Gaze** as an efficient, 

accurate, and real-time solution for extended reality (XR) applications and beyond [3]. 

The performance of Blink-To-Live was evaluated based on communication accuracy, speed, and user adaptability. The system demonstrated a high 

accuracy rate in recogniz- ing eye gestures, with most participants achieving over 90% success in decoding predefined commands after adequate training. 

Communication speed ranged from 10 to 25 seconds per command, depending on the complexity of the gesture sequence and the stability of the partic- 

ipant’s eye movements. The system performed consistently across varying user demographics, including differences in age, education, and technology 

awareness. Participants with higher technology familiarity and training achieved faster and more accurate communication. How- ever, the system 

experienced occasional delays in recognizing gestures with rapid transitions or blinking states. Despite these challenges, Blink-To-Live proved to be a 

reliable and efficient solution, offering significant potential for real-world applications in aiding speech-impaired individuals [4]. 

The proposed method in Uncertainty-Aware Gaze Tracking for Assisted Living Envi- ronments delivers strong quantitative performance across multiple 

benchmark datasets. On the MoDiPro dataset, specifically designed for real-world assisted living environments, the 

method achieves a mean angular error of 21.7°, significantly outperforming state-of-the- art methods by up to 36° in similar settings. When tested on 

publicly available datasets such as Gaze360 and GazeFollow, the approach demonstrates competitive accuracy, with average angular errors as low as 

17.6° in static gaze estimation tasks. The integration of Confidence Gated Units (CGUs) reduces angular errors by up to 3.12° in scenarios involv- ing 

low-confidence detections, while the uncertainty-aware Kalman filter improves temporal consistency, reducing angular error by an additional 1.5°. The 

method also shows a high cor- relation between predicted uncertainties and actual angular errors, with 80% of predictions having uncertainties below 0.1, 

corresponding to average angular errors of only 15°. These results highlight the model’s robustness and adaptability to both controlled and real-world 

conditions, making it highly suitable for practical applications [6]. 

The performance of Real-Time Human-Computer Interaction Using Eye Gazes demon- strates the system’s robustness and efficiency in real-time 

scenarios. The eye gaze recognition model achieves an average accuracy of 99% within the recommended safe distance of 40–60 cm between the eyes 

and the webcam, with a processing time of less than 0.001 seconds per frame, far exceeding real-time requirements. The instance segmentation model, 

trained on a dataset of eight tools and parts, achieves an average precision, recall, and F1-score of over 99%, with certain classes, such as pliers and 

prisms, achieving 100% accuracy. The sys- tem remains effective even at distances up to 160 cm, with minor reductions in accuracy. These results 

confirm the system’s ability to deliver precise and responsive human-computer interaction using minimal hardware, making it suitable for practical 

deployment in diverse environments [7]. 

The performance of Non-Intrusive Real-Time Eye Tracking Using Facial Alignment for Assistive Technologies demonstrates a significant balance 

between accuracy and computa- tional efficiency. The model achieves state-of-the-art angular accuracy on benchmark datasets, including 4.5° average 

error on MPIIGaze, 3.9° on UTMultiview, and 3.3° on GazeCapture. These results are comparable to existing state-of-the-art methods while significantly 

reducing computational overhead. The system achieves a reduction in computation time by up to 91% compared to slower models, ensuring real-time 

performance with over 20 frames per second on a single CPU core. This efficiency, combined with the lightweight design and adaptability for both indoor 

and outdoor environments, highlights the model’s practicality for real-world assistive technology applications, particularly in power-constrained scenarios 

like mobile or embedded devices [8]. 

The performance of A Data-Driven Framework for Intention Prediction via Eye Movement With Applications to Assistive Systems demonstrates 

significant advancements in intention prediction accuracy and early task forecasting. The framework achieves an impressive average classification 

accuracy of 97.42% for task prediction, surpassing existing gaze-based intention prediction methods. Early intention prediction, facilitated by a CNN-

LSTM model, achieves an accuracy of 84.24% after identifying the first two objects in the gaze sequence and improves to 97.26% after identifying all 

relevant objects, showcasing the system’s capability for proac- tive predictions. The object detection module, utilizing a pre-trained ResNet50, 

demonstrates high precision, with most objects correctly identified with probabilities exceeding 90%. The integration of spatial clustering (DBSCAN) 

and temporal modeling (HMM) ensures reli- able detection of regions of interest and consistent gaze sequence analysis, further solidifying the 
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framework’s robustness. These results highlight the framework’s potential for real-time applications in assistive technologies, providing both accuracy 

and efficiency [9]. 

The performance of the Eye Gaze Controlled Virtual Keyboard demonstrates promising results, particularly in terms of accessibility and usability for 

individuals with physical dis- abilities. The system achieved a typing accuracy of approximately 90.13%, indicating reliable detection of eye blinks and 

gaze directions. Real-time implementation showcased efficient face and eye region detection using the HoG descriptor and 68-point facial landmarks, 

enabling seamless interaction. However, the accuracy of gaze detection was found to be slightly lower for users wearing glasses due to light reflection, 

which occasionally impacted precise eyeball tracking. Additionally, the sequential key highlighting mechanism ensured clarity but intro- duced minor 

delays in typing speed. Despite these limitations, the system’s ability to provide hands-free typing with minimal errors highlights its potential as a robust 

assistive tool for communication [10]. 

Table 2: Performance Analysis Table 

Title Quantitative Analysis Qualitative Analysis Comparison with 

Alternatives 

NETRAVAAD: 

Interactive Eye-Based 

Communication System 

For People With Speech 

Issues[1] 

Achieved 91% accuracy for 

alphabets, 100% for words, 

and 93% for numbers. 

Maintained optimal 

performance at a 70 cm user- 

camera distance. 

Avg. response time: 

0.36 seconds. 

Demonstrated reliability 

across various age groups. 

Achieved consistent recall and 

precision, showing 

adaptability to diverse 

operational scenarios. 

Outperformed traditional gaze 

systems by providing better 

precision for structured 

communication tasks. Exhibits 

high efficiency, making it 

suitable for 

real-world deployment. 

 

Translated Pattern-

Based Eye-Writing 

Recognition Using 

Dilated Causal 

Convolution Network 

[2] 

Avg. accuracy: 96.20% on a 

custom dataset; Public dataset 

results: 98.81% 

(HideMyGaze), 97.76% 

(Complex Gaze Gesture), and 

93.51% (Katakana). 

Robust handling of complex 

and non- uniform eye-writing 

patterns. Efficient in 

overcoming challenges like 

irregular starting points and 

long eye fixations. 

Surpasses baseline methods in 

accuracy and robustness, 

excelling in multilingual 

eye-writing recognition tasks. 

E-Gaze: Gaze 

Estimation with Event 

Camera [3] 

Angular accuracy: 0.46°; 

Median IoU: 

0.8; Avg. latency: 

1.025 ms. Performs well in 

20×40° FoV, even during 

complex eye movements like 

saccades and blinks. 

Maintains robustness across 

diverse subjects and eye 

movements. Efficient pupil 

feature extraction ensures 

precise tracking. 

Minimal computational 

overhead enhances real-time 

applicability. 

Matches or exceeds state-of-

the-art systems in extended 

reality (XR) applications. ROI 

optimization ensures low 

latency for 

real-time interactions. 

Blink-To-Live Eye-

Based Communication 

System for Users With 

Speech Impairments [4] 

Accuracy: 90% for gesture 

recognition; Communication 

speed: 10–25 

seconds/command based on 

complexity. 

Adaptable across user 

demographics with adequate 

training. Handles predefined 

commands effectively, though 

rapid gesture transitions can 

occasionally cause delays. 

Competitive compared to 

existing systems, offering high 

accuracy and adaptability for 

speech-impaired individuals. 

Slightly slower for complex 

commands due to its reliance 

on gesture training. 

Uncertainty- Aware 

Gaze Tracking for 

Assisted Living 

Environments [6] 

Mean angular error: 

21.7° (MoDiPro dataset); 

CGUs reduce error by 3.12°, 

and Kalman filter improves 

consistency by 1.5°. 

Handles 

low-confidence detections 

with enhanced temporal 

consistency. Strong 

adaptability to real- world 

conditions, including dynamic 

and uncontrolled 

environments. 

Outperforms alternatives by 

reducing angular error by up to 

36°. Suitable for deployment 

in 

real-world assisted living 

applications. 
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Real-Time Human- 

Computer Interaction 

Using Eye Gazes [7] 

Accuracy: 99%; Processing 

time: 

¡0.001 

seconds/frame. Effective up to 

a 160 cm user-camera distance 

with minimal  degradation. 

Provides robust performance 

in varying distances and 

environments. Effective tool 

recognition enhances its 

usability for human-computer 

interaction. 

Superior real-time efficiency 

compared to existing systems. 

Its minimal hardware 

requirements make it ideal for 

practical deployments. 

Non-Intrusive Real-

Time Eye Tracking 

Using Facial Alignment 

for Assistive 

Technologies [8] 

Angular error: 4.5° 

(MPIIGaze), 3.9° 

(UTMultiview), 3.3° 

(GazeCapture). 

Computation time reduced by 

up to 91%. 

Lightweight and power-

efficient design suitable for 

mobile and embedded devices. 

Adaptable for both indoor and 

outdoor environments. 

Comparable accuracy to state-

of- the-art models with 

significantly reduced 

computation time, ensuring 

practicality for low-power 

devices. 

A Data-Driven 

Framework for 

Intention Prediction via 

Eye Movement [9] 

Task prediction accuracy: 

97.42%; Early prediction 

accuracy: 84.24% after two 

gaze objects. Object detection 

precision exceeds 90%. 

Proactive task forecasting 

with consistent gaze sequence 

analysis. Effectively 

integrates spatial and temporal 

data for reliable predictions. 

Outperforms previous 

intention prediction 

frameworks in accuracy and 

efficiency. Strong potential for 

real-time assistive 

technologies. 

Eye Gaze Controlled 

Virtual Keyboard [10] 

Typing accuracy: 90.13%. 

Efficient face and eye region 

detection using HoG 

descriptors and facial 

landmarks. 

Reliable and accessible for 

hands-free typing. Sequential 

key highlighting 

enhances clarity but 

introduces minor delays. 

Challenges noted for users 

with glasses due to light 

reflections. 

Competitive for hands-free 

typing, though slightly less 

effective for users wearing 

glasses. 

Usability remains high despite 

limitations. 

 

Table 2 provides a comprehensive analysis of ten selected studies on eye-gaze tracking and communication methodologies, highlighting their quantitative 

and qualitative performance metrics along with comparisons to alternative approaches. The results demonstrate signif- icant advancements in accuracy, 

adaptability, and computational efficiency across various applications. For instance, systems like NETRAVAAD and Translated Pattern-Based Eye- 

Writing Recognition showcase high accuracy rates of over 90% and robust handling of complex user inputs. Similarly, E-Gaze and Uncertainty-Aware 

Gaze Tracking emphasize low latency and adaptability in real-world scenarios, making them suitable for dynamic environments. While some studies, 

such as Real-Time Human-Computer Interaction and Non-Intrusive Eye Tracking, excel in minimizing computational overhead and hardware 

requirements, others, 

like Blink-To-Live and Gaze-Based Control, focus on improving user adaptability and pro- viding foundational insights. Collectively, these 

methodologies underline the diversity and innovation in gaze-based systems, with opportunities for further research to address chal- lenges such as 

handling rapid gestures, light reflections, and enhancing usability for diverse user demographics. 
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Fig. 10: Comparison of methodologies using Quantitative Accuracy. 

The above Figure 10 showcases the performance of different gaze-based communication systems in terms of their accuracy percentage. This metric is 

critical in assessing how reliably each system can interpret user intentions and translate them into actionable outputs. Systems like ”NETRAVAAD” and 

”Real-Time Human-Computer Interaction” exhibit high accuracy percentages, signaling their effectiveness in reliably detecting and processing gaze 

inputs. The graph demonstrates the variations in accuracy across different systems, highlighting the differences in performance based on factors such as 

dataset quality, user interaction conditions, and the underlying technology used. These findings are essential for understanding which systems offer the 

most precise gaze detection, contributing significantly to the success of gaze-based communication. 

 

Fig. 11: Comparison of methodologies using Angular Error. 

Figure 11 presents the precision of various systems in terms of their angular deviation from the true gaze direction. A lower angular error indicates more 

accurate gaze estima- tion, which is particularly important for applications requiring fine control, such as assistive communication tools. In this graph, 

systems like ”E-Gaze” and ”Non-Intrusive Real-Time Eye Tracking” are seen to achieve minimal angular errors, signifying their ability to track eye 

movements with high precision. The graph highlights how each system’s error rate cor- relates with its real-world applicability, where a lower angular 

error enhances the system’s responsiveness and usability. This metric is crucial for determining the practical efficiency of eye-tracking systems in dynamic 

environments. 
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Fig. 12: Comparison of methodologies using Latency. 

Figure 12 highlights the responsiveness of gaze-based systems, measured by the time delay between user input and system output. Lower latency is 

crucial for real-time applica- tions, ensuring seamless interaction and enhancing user experience. Systems like ”E-Gaze” demonstrate exceptional 

performance with an average latency of just 1.025 ms, showcas- ing their capability for real-time responsiveness even during complex eye movements 

like saccades and blinks. The graph underscores the importance of minimal computational over- head and optimized processing pipelines in achieving 

low latency. This metric plays a pivotal role in determining a system’s suitability for applications like virtual reality and real-time communication, where 

delays can significantly impact usability and effectiveness. 

6. Conclusions and Future Scope 

The findings from this survey highlight the significant advancements in gaze-based commu- nication systems, particularly in the areas of gaze tracking 

and eye movement recognition. These technologies have shown great promise in providing individuals with disabilities a means to interact and 

communicate through eye movements. Despite the progress made, most existing systems still rely on predefined sets of words or phrases, limiting the 

flexibility and expressiveness of communication. 

While current gaze-based communication systems have made considerable strides in improving accessibility for individuals with disabilities, they still 

face limitations in terms of scalability and customization. The reliance on a fixed vocabulary or predefined set of com- mands restricts the scope of 

communication, preventing users from expressing themselves freely. Overcoming these limitations requires further research. With continued innovation, 

these systems have the potential to evolve into more dynamic and flexible tools that cater to the unique needs of each user. 
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