International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 1504-1509 April 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

WWW.IJRPR.COM

Virtual Mouse Using Hand Gesture

My. R. Maruthu Pandi, Dr.B.Ramya’

IStudent, IIl BCA B, Department of Computer Application, Dr. N.G.P Arts and Science College, Coimbatore-641048
2Assistant Professor, Department of Computer Application, Dr. N.G.P Arts and Science College, Coimbatore-641048.
DOI : https://doi.org/10.55248/gengpi.6.0425.1365

ABSTRACT

This project aims to develop a Virtual Mouse system using hand gestures for intuitive, hands-free interaction with computers, utilizing Python, OpenCV, and
MediaPipe for real-time hand tracking and gesture recognition. The system leverages a live webcam feed to detect hand movements, translating them into
corresponding cursor control actions, thereby revolutionizing Human-Computer Interaction (HCI). The system is composed of several key modules: Hand
Detection, which uses MediaPipe Hands to track 21 hand landmarks; Gesture Recognition, which interprets specific hand movements (e.g., pinching or spreading
fingers) to trigger mouse actions; and Cursor Control, where hand positions are mapped to screen coordinates using the PyAutoGUI library, ensuring smooth
cursor movement. The Mouse Action Simulation module translates gestures into mouse clicks and scrolling actions, such as using a pinch gesture to simulate a
left-click.Additionally, the User Interface module provides real-time feedback by overlaying the webcam feed with hand landmarks and gesture cues. The
Smoothing and Optimization module ensures smooth cursor movements by applying filtering algorithms to reduce noise and improve performance. The frontend
is implemented using React.js, offering a dynamic and responsive user interface, while the backend is powered by Flask for seamless communication between the
frontend and Python modules. This system not only enhances accessibility and user experience but also introduces a novel, immersive method of interaction that

has applications in accessibility, gaming, and other areas requiring hands-free computer control.

Keywords : Hand Gesture Control, Virtual Mouse, Opencv, Mediapipe, Python, Human-Computer Interaction (Hci), Gesture Recognition and Al.

1. INTRODUCTION

The increasing reliance on digital devices has spurred the need for innovative and more intuitive ways of interacting with technology. Traditional input
devices like the mouse and keyboard can sometimes be limiting, especially for individuals with physical disabilities or those seeking more immersive
ways to interact with computers. This project introduces a Virtual Mouse system that is controlled entirely by hand gestures, providing a hands-free
alternative to conventional mouse-based interactions. By utilizing computer vision and machine learning techniques, the system interprets real-time
hand movements captured through a webcam, enabling users to control the mouse cursor, perform clicks, and even scroll—all with simple hand

gestures.

The core technology behind this system is OpenCV for real-time image processing, combined with MediaPipe Hands for hand landmark detection and
tracking. These technologies allow the system to recognize and track key hand movements such as finger positioning and gestures. For example, a
simple pinch gesture can simulate a mouse click, and spreading fingers can trigger scrolling. Additionally, PyAutoGUI is used to map the hand's
position to the cursor on the screen, ensuring smooth and accurate movement.

In terms of the system architecture, the backend is powered by Python and Flask, which communicate with the frontend developed using React.js. The

system provides visual feedback to users by displaying the webcam feed with overlaid hand landmarks, enhancing usability and interaction.

2. SYSTEM STUDY
2.1 EXISTING SYSTEM

Existing systems for human-computer interaction (HCI) primarily rely on traditional input devices such as the mouse, keyboard, and touchscreens.
These methods, while effective, are limited in their ability to provide hands-free control and can be challenging for users with disabilities or in
environments where traditional input methods are impractical. Recent advancements in HCI have led to the development of gesture-based interfaces,
where users control devices using body movements, particularly hand gestures. These systems often use technologies like computer vision and motion

sensing to detect and interpret hand gestures for interaction.

A notable example of such systems is the Leap Motion Controller, which utilizes infrared sensors to track hand movements and map them to digital

interactions, such as cursor control and object manipulation. Similarly, systems using Microsoft Kinect have enabled gesture-based control for gaming

https://doi.org/10.55248/gengpi.6.0425.1365
http://www.ijrpr.com

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 1504-1509 April 2025 1505

and interactive applications by capturing the user’s body movements through infrared depth sensors. Gesture recognition software has also been
integrated into devices like smartphones and tablets, where touchless controls (such as swipes and taps) are detected using cameras or proximity sensors.

2.2 PROPOSED SYSTEM

The proposed system aims to revolutionize human-computer interaction (HCI) by developing a Virtual Mouse controlled entirely through hand gestures,
providing a hands-free, intuitive, and accessible solution for interacting with computers. This system utilizes a webcam to capture real-time hand
movements, allowing users to control the mouse cursor and perform actions such as clicking, scrolling, and dragging through simple gestures.

The system is powered by Python, OpenCV, and MediaPipe, with a modular architecture designed for accurate hand tracking and gesture recognition.
The Hand Detection Module uses MediaPipe Hands to identify the system to detect and map hand positions. The Gesture Recognition Module
interprets specific hand movements—such as pinching, spreading fingers, or moving hands in different directions—and maps these gestures to mouse
actions, such as left-click, right-click, or scrolling.

3.SYSTEM DESIGN

3.1 MODULE DESCRIPTION

Hand Detection Module

The Hand Detection Module leverages MediaPipe Hands and OpenCV to track and identify key hand landmarks from the live webcam feed. It detects
21 key points on the hand, including the index finger and thumb tips. This real-time detection provides the foundation for interpreting hand movements
and gestures. By continuously analyzing each video frame, the system can accurately identify hand positions and gestures, allowing for precise
mapping of the hand’s movements to on-screen actions. The module plays a crucial role in ensuring the system recognizes the user's hand accurately,
enabling seamless gesture-based interactions.

Gesture Recognition Module

The Gesture Recognition Module interprets specific hand gestures by calculating the distances and angles between the hand’s key landmarks, such as
finger positions. Gestures like pinching, spreading fingers, or pointing are identified and translated into corresponding mouse actions, including clicks,
scrolling, and cursor movement. This module’s primary function is to map distinct hand movements to specific tasks, such as a pinch gesture for a left-
click or spreading fingers for scrolling. Accurate and fast gesture recognition ensures a fluid, intuitive interaction, allowing the system to translate the
user’s hand gestures into real-time computer control.

Cursor Control Module

The Cursor Control Module is responsible for translating the position of the user's hand into corresponding cursor movement on the screen. By using
the coordinates of the index finger tip, the system maps the hand’s position relative to the screen’s coordinates. PyAutoGUI is employed to smoothly
move the cursor to the calculated position. The module also incorporates smoothing algorithms, such as exponential moving averages, to filter out hand
movement noise, ensuring that the cursor moves fluidly and with minimal jitter. This module guarantees precise and real-time control of the mouse
cursor, enhancing the user’s interaction experience.

Mouse Action Simulation Module

The Mouse Action Simulation Module converts recognized hand gestures into mouse events, such as clicks or scrolling. For instance, a pinch gesture
triggers a left-click, while spreading fingers or using multiple fingers can enable scrolling. This module utilizes PyAutoGUI to simulate the actual
mouse actions based on the gestures detected by the Gesture Recognition Module. It provides essential functionality for performing standard mouse
tasks without the need for physical input devices, ensuring that users can interact with their computer as they would with a traditional mouse, making
the experience more natural and efficient.

User Interface Module

The User Interface Module provides real-time feedback to users by displaying the webcam feed with overlaid hand landmarks and visual indicators for
gestures. This ensures that users can clearly see their hand’s position and movement, facilitating easier and more accurate interactions. The interface
also provides cues about recognized gestures, helping users understand how their actions are being interpreted by the system. The module is developed
using React.js, ensuring an interactive and user-friendly design. It enhances the overall usability of the system by giving constant visual feedback and
allowing users to engage with the interface intuitively.

Smoothing and Optimization Module

The Smoothing and Optimization Module enhances the system’s performance by ensuring smooth cursor movements and reducing jitter caused by
erratic hand movements. It applies algorithms like exponential moving averages to filter out noise and ensure more stable tracking. Additionally, the
module optimizes the system for real-time processing, reducing latency and improving responsiveness. This ensures that the system can handle user

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 1504-1509 April 2025 1506

gestures accurately and without noticeable delay. The module's core function is to make the gesture-based interaction as seamless and fluid as possible,
enabling users to have an efficient and lag-free experience.

3.2 FORM DESIGN

Cursor Control Module

User Interface Module

Settinas
@ Display

Brightness and color

Change brightness for the built-in display

Night light
@D off

Night light settings

Smoothing and Optimization Module

3.3 DATABASE DESIGN

User Profiles Table

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 1504-1509 April 2025

1507

Gesture Data Table

Column Name ||Data Type Description
user_id INT Primary key, unique identifier for each user
username VARCHAR(255) ||User’s name or unique username
gesture_config ||TEXT Stores the mapping of gestures to mouse actions
sensitivity FLOAT User’s preferred cursor sensitivity
created_at TIMESTAMP Date and time the user profile was created
updated at TIMESTAMP Date and time the user profile was last updated
Column Name Data Type Description
gesture_id INT Primary key, unique identifier for each gesture

gesture_name

VARCHAR(255)||Name of the gesture (e.g., pinch, spread, swipe)

gesture_coordinates

TEXT Coordinates of landmarks used for the gesture detection

System Logs Table

action_type VARCHAR(50) ||The corresponding mouse action (click, scroll, etc.)
description TEXT Description of the gesture or additional details

Column Name||Data Type Description

log_id INT Primary key, unique identifier for each log entry

timestamp TIMESTAMP ||Date and time of the log entry

event_type VARCHAR(50)||Type of event (e.g., error, performance, gesture recognition)

log_message ||TEXT Detailed message or description of the log event

severity VARCHAR(20)|[Severity of the log (info, warning, error)

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 1504-1509 April 2025 1508

3.4 DESIGN NOTATION

STRAT AND EXECUTE

USER APPLICATION TRAINING

REAL-TIME
ACCESS

ALGORITHM

w

W

TESTING

w

4.SYSTEM TESTING AND IMPLEMENTATION
4.1 SYSTEM TESTING

Testing is a crucial phase in the software development lifecycle that ensures the system functions as intended and meets user expectations. For an
virtual mouse, testing verifies that all features, including the learning page, quizzes, test modules, progress tracking, and admin functionalities, work
seamlessly. The testing process can be broken down into several categories:

4.2 Unit Testing

Unit testing focuses on verifying individual components or modules of the Virtual Mouse system to ensure they function as intended. Each module,
such as the Hand Detection Module or the Cursor Control Module, is tested in isolation. Similarly, gesture recognition is tested with different hand
gestures to validate proper action mapping. Unit tests are essential for identifying bugs early in the development process, ensuring each module
operates independently before integration into the larger system.

4.3 Integration Testing

Integration testing ensures that the individual modules of the Virtual Mouse system work together seamlessly. After unit tests are successful,
integration testing checks how well the Hand Detection Module communicates with the Gesture Recognition Module and how those integrate with
the Cursor Control Module..

4.4 User Interface Testing

User Interface (UI) testing focuses on validating the frontend interactions, ensuring the system provides clear, real-time visual feedback to users. The

UL, built with React.js, should accurately display the webcam feed, overlaid hand landmarks, and gesture cues. UI testing checks that these elements
are correctly rendered and responsive

5.CONCLUSION

In conclusion, the Virtual Mouse system using hand gestures offers a revolutionary approach to Human-Computer Interaction (HCI), enabling users to
interact with their devices in a hands-free and intuitive manner. By leveraging technologies such as Python, OpenCV, and MediaPipe Hands, the system
effectively detects and tracks hand movements, interpreting them into corresponding mouse actions like clicks, cursor movement, and scrolling. The
integration of PyAutoGUI ensures seamless mouse action simulation, while React.js and Flask provide an interactive user interface and robust backend
support. This system offers numerous advantages, including accessibility for individuals with physical disabilities, improved ergonomic practices, and
the potential for creating more immersive digital experiences. The real-time performance, coupled with smoothing algorithms, ensures precise and
responsive control. Additionally, by reducing reliance on traditional input devices, this system has the potential to enhance user experience in fields
such as gaming, design, and virtual reality.

International Journal of Research Publication and Reviews, Vol 6, Issue 4, pp 1504-1509 April 2025 1509

REFERENCES

1. Shneiderman, B., Plaisant, C., Cohen, M., & Jacobs, S. (2016). Designing the User Interface: Strategies for Effective Human-Computer

Interaction. Pearson Education.
2. Benyon, D. (2014). Designing Interactive Systems: A Comprehensive Guide to HCI, UX and Interaction Design. Pearson Education.
3. Dix, A, Finlay, J., Abowd, G., & Beale, R. (2004). Human-Computer Interaction (3rd ed.). Prentice Hall.
WEB REFERENCES

1. MediaPipe Documentation - Google. (2023). MediaPipe: Cross-platform framework for building multimodal applied ML pipelines.
https://google.github.io/mediapipe/

2. OpenCV Documentation. (2023). OpenCV: Open Source Computer Vision Library. https://opencv.org/

3. PyAutoGUI Documentation. (2023). PyAutoGUI: A Python module for GUI automation. https://pyautogui.readthedocs.io/

4. React Documentation. (2023). React: A JavaScript library for building user interfaces. https://reactjs.org/docs/getting-started.html

https://opencv.org/
https://pyautogui.readthedocs.io/

	1. INTRODUCTION
	2. SYSTEM STUDY
	2.1 EXISTING SYSTEM
	2.2 PROPOSED SYSTEM

	3.SYSTEM DESIGN
	3.1 MODULE DESCRIPTION
	3.2 FORM DESIGN
	3.3 DATABASE DESIGN
	3.4 DESIGN NOTATION

	4.SYSTEM TESTING AND IMPLEMENTATION
	4.1 SYSTEM TESTING
	4.2 Unit Testing
	4.3 Integration Testing
	4.4 User Interface Testing

	5.CONCLUSION

