

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Analytical Method Development and Validation of Antidiabatic drugs Dapagliflozin Propanediol Monohydrate and Gliclazide

Dr. Chhaya U. Shah^{1*}, Minesh Makwana²

^{1*} Associate Professor, K.B Raval college of pharmacy, Gandhinagar, Gujarat, India.
² Research Scholar, K.B Raval college of pharmacy, Gandhinagar, Gujarat, India.
Corresponding Author: Dr. Chhaya U. Shah
Email Id: mineshm45@gmail.com

ABSTRACT:

This study reports the Method Development and Validation for Anti Diabetic Drugs By RP-HPLC. The drug analysis is playing a vital position within the improvement of medicine, their manufacture and therapeutic use for the simultaneous estimation of medicine present in dosage forms, lot, of suitable techniques are adopted like uv – spectrophotometer HPLC. The chromatographic separation was achieved on a C18 column using a mobile phase composed of acetonitrile and an aqueous buffer containing 0.1% formic acid, delivered at a controlled flow rate. The detection wavelength was set to optimize the response of all three analytes. Forced degradation studies under acidic, basic, oxidative, thermal, and photolytic conditions demonstrated the method's capability to effectively resolve the drugs from their degradation products, confirming its stability-indicating nature. Validation according to ICH guidelines revealed excellent linearity, precision, accuracy, and robustness over the specified concentration ranges, with recovery rates between 97% and 102%. This method offers a rapid, sensitive, and reproducible analytical procedure suitable for routine quality control of tablet formulations containing these active pharmaceutical ingredients.

Keywords: Method development, Validation, RP-HPLC method, Gliclazide, Dapagliflozin Propanediol Monohydrate, Anti Diabetic Drugs

1. INTRODUCTION^[1]

Diabetes Mellitus

Derived from the Greek "diabetes" meaning "to pass through" and the Latin "mellitus" meaning "sweet," diabetes mellitus has a historical origin. The term "diabetes" was initially introduced by Apollonius of Memphis between 250 and 300 BC. Multiple ancient cultures, including the Greeks, Indians, and Egyptians, noticed the sweet quality of urine in people with diabetes, giving rise to the name "Diabetes Mellitus."

The literature review disclosed that a Dapagliflozin is SGLT2 inhibitors (Sodium-Glucose Co-Transporter 2 inhibitors) and works by blocking the reabsorption of glucose by the kidneys, promoting the excretion of excess glucose through urine. Gliclazide is sulfonylurea class of insulin secretagogues and it helps to control diabetes by increases the amount of insulin your pancreas makes. Insulin reduces blood sugar by helping the cells use/store glucose. The combination of dapagliflozin and gliclazide is more effective than many other marketed drugs because it provides strong glycemic control, low risk of hypoglycemia, weight benefits, and cardiovascular and renal protection, all in a cost-effective.

Diabetes is a metabolic condition, characterized by higher than-normal blood glucose levels. It includes different subtypes or categories, such as:

1. Type 1 diabetes mellitus (T1DM): Typically presents in children or adolescents and results from defective insulin secretion.

2.Type 2 diabetes mellitus (T2DM): Commonly affects middle-aged and older adults and is associated with prolonged hyperglycemia due to lifestyle and dietary factors.

3. Maturity-onset diabetes of the young (MODY): A rare form of diabetes with a genetic basis.

4.Gestational diabetes: Occurs during pregnancy and can affect both the mother and the baby.

5. Neonatal diabetes: A rare condition that develops in the first six months of life.

6.Secondary diabetes: Results from underlying medical conditions or medication use, such as steroids.

Adapting to healthy lifestyle and monitoring of blood glucose levels allow individuals to be free from long term complications of diabetes such as diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, increased risk of heart attack/stroke, etc.

Antidiabetic medications are designed to regulate blood sugar levels by enhancing insulin release or addressing insulin resistance, helping to maintain blood sugar within healthy ranges

2. DRUG INTRODUCTION

2.1 Dapagliflozin Propanediol Monohydrate

Table 1: Drug profile of Dapagliflozin propanediol monohydrate

Name	Dapagliflozin propanediol monohydrate ^[2,3]		
Chemical Structure	$\begin{array}{c} OH \\ HO \\ HO \\ OH \\ OH \\ OH \\ HO \\ OH \\$		
Molecular Formula	$C_{24}H_{35}C_{1}O_{9}$		
Molecular Weight	503.0 g/mol		
IUPAC Name	$(2S)-propane-1,2-diol \qquad (2S,3R,4R,5S,6R)-2-\{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl\}-6-(2S)-propane-1,2-diol \qquad (2S,3R,4R,5S,6R)-2-\{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl\}-6-(2S)-propane-1,2-diol \qquad (2S,3R,4R,5S,6R)-2-\{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl\}-6-(2S)-propane-1,2-diol \qquad (2S,3R,4R,5S,6R)-2-\{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl\}-6-(2S)-propane-1,2-diol \qquad (2S,3R,4R,5S,6R)-2-\{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl\}-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl]-6-(4-ethoxyphenyl)methyl]phenyl[phen$		
	(hydroxymethyl)oxane-3,4,5-triol hydrate		
Solubility	solubility of water is approximately 0.39 mg/mL and soluble in methanol.		
pKa (Strongest Basic)	9.86		
pKa (Strongest Basic)	-3		
Log P	2.5		
Melting Point	74° - 78°C		
Pharmacological Class	Gliclazide belongs to drug class sulfonylurea and is used for the treatment of non-insulin- dependent		
	diabetes mellitus (NIDDM).		
	Dapagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and it was the first SLGT2 inhibitor		
	to be approved, is also indicated for managing NIDDM.		
	SGLT2 inhibitors in dual combination with sulfonylurea is recommended by the American Diabetes		
	Association and European Association for the Study of Diabetes to treat patients with NIDDM.		
Dosage Form:	Dapagliflozin is marketed under the trade names of Forxiga® in the EU91 and in the US as Farxiga®. 18		

	It is available in 5 mg or 10 mg strengths. It is also available in combination with metformin, under the
	trade name of Xigduo®, in 5 mg/850 mg or 10 mg/850 mg (dapagliflozin/metformin) strengths.
	Pharmacodynamics
Mechanism of Action	Dapagliflozin inhibits SGLT2, lowering blood glucose. When combined with sulfonylurea, it reduces
	HbA1c in type 2 diabetes patients. It also alleviates heart failure by reducing intravascular volume,
	relieving cardiac workload and improving left ventricular function.
Therapeutic indication	Non-Insulin-Dependent Diabetes Mellitus. Additionally, dapagliflozin has been found to have benefits in
	reducing the risk of heart failure in certain patients with type 2 diabetes
Route of Administration	Oral
Adverse effects	Feeling or being sick
	Stomach pain
	Feeling thirsty
	Mild skin rash
	Pharmacokinetics
Bioavailability	High oral bioavailability (approximately 78%).
Distribution	It primarily targets the kidneys, where it inhibits SGLT2.
Metabolism	Dapagliflozin undergoes minimal hepatic metabolism
Excretion	It is primarily eliminated unchanged through the urine

2.2 Gliclazide

Table	2:	Drug	profile	of	Gliclazide
-------	----	------	---------	----	------------

Name	Gliclazide ^[4,5]
Chemical Structure	$H_{3}C$
Molecular Formula	C ₁₅ H ₂₁ N ₃ O ₃ S
Molecular Weight	323.41 g/mol
IUPAC Name	1-(3,3a,4,5,6,6a-hexahydro-1H-cyclopenta[c]pyrrol-2-yl)-3-(4-methylphenyl) sulfonylurea
Solubility	Soluble in methanol.
pKa (Strongest Basic)	5.8
Log P	1.52
Melting Point	160-166°C
Pharmacological Class	sulfonylurea class of insulin secretagogues
Dosage Form	Dosage should be initiated at 40mg (1/2 tablet) daily and may be increased, if necessary, up to 320 mg
	daily (4 tablets). Doses up to 160mg daily may be taken in a single dose, preferably at the same time each
	morning. Doses in excess of 160mg should be taken in divided doses in the morning and the evening. The
	severity of glycaemia will determine the dosage, requiring adjustment to obtain the optimal response at
	the lowest dosage. Use of gliclazide does not obviate the necessity of regulating diet.
	Pharmacodynamics
Mechanism of Action	Gliclazide is a sulfonylurea medication used to treat type 2 diabetes. Its mode of action involves
	stimulating insulin secretion from pancreatic beta cells, increasing cellular uptake of glucose, and
	reducing blood sugar levels. This helps control diabetes by enhancing the body's response to insulin and
	promoting better glucose utilization.

Route of Administration	Oral
Therapeutic indication	Non-Insulin-Dependent Diabetes Mellitus
Adverse effects	Hypoglycaemia, Headache
	Pharmacokinetics
Absorption	Gliclazide is absorbed in the gastrointestinal tract and can be affected by food.
Distribution	It targets pancreatic beta cells and binds to plasma proteins in the bloodstream.
Metabolism	Gliclazide is metabolized in the liver, mainly by the CYP2C9 enzyme.
Excretion	The drug is primarily eliminated via the kidneys,

3. LITERATURE REVIEW

Official Methods

•

Sr. No.	Title	Chromatographic Parameters	References
1.	Indian pharmacopoeia 2022	Mobile Phase: Triethylamine: trifluoroacetic Acid: acetonitrile: Water: 45:55% v/v. Column: Stainless steel C18 Flow Rate: 0.9 ml/min. Wavelength: 235nm.	6
2.	European pharmacopoeia	Mobile Phase: Triethylamine: Trifluoroacetic acid: acetonitrile: Water (0.1:0.1:45:55 v/v/v/v). Column: C18 Flow Rate: o.9ml/min. Wavelength: 235nm.	7
3.	British pharmacopoeia 2023	Mobile Phase: Triethylamine: Trifluoroacetic acid: acetonitrile: Water (0.1:0.1:45:55). %v/v. Column: C8 Flow Rate: 0.9 ml/min. Wavelength: 235 nm.	8
4.	Japanese pharmacopoeia 2016	Mobile Phase: Water: Acetonitrile: Triethylamine: Trifluoroacetic acid (550:450:1: 1). %v/v. Column: C18 25 Flow Rate: Adjust so that Rt will be 14 minutes Wavelength: 235nm	9

Dapagliflozin monograph is not given in IP, USP, BP, JP or EP.

Table 4: Published method for Dapagliflozin

Sr. No.	Title	Chromatographic Parameters	References
1.	Development and validation of	Mobile phase: Buffer: acetonitrile (60:40) %v/v.	10
	dapagliflozin by RP-HPLC method	Column: Hypersil BDS	
	and its degradation studies	Flow rate: 1 mL/min.	
		Wavelength:245nm.	
2.	RP-HPLC Method for Estimation	Mobile phase: Acetonitrile: 0.1% Triethylamine (pH-5.0) in the ratio	11
	of Dapagliflozin from its Tablet	of 50:50 %v/v	
		Column: Princeton C18 column	
		Flow rate: 1 mL/min	
		Wavelength: 224 nm	
3.	A New RP-HPLC Method	Mobile phase: Phosphate buffer: acetonitrile: 60:40 %v/v.	12
	Development and Validation of	Column: Waters C18	

Table 3: Official method for Gliclazide

	Dapagliflozin in Bulk and Tablet	Flow rate: 1.0 mL/min.	
	Dosage Form	Wavelength: 237 nm.	
4.	Analytical Method Development,	Mobile phase: acetonitrile: water (52:48) %v/v.	13
	Validation, and Forced Degradation	Column: Kromasil 100-5-C8	
	Study of Dapagliflozin by RP-	Flow rate: 1.0 mL/min	
	HPLC	Wavelength:224nm	
5.	Development and Validation of	Mobile Phase: Mixture of acetonitrile and ortho phosphoric acid	14
	stability-Indicating RP-HPLC	(55:45) %v/v.	
	method for determination of	Column: BDS column	
	Dapagliflozin	Flow Rate: 1 ml/min	
		Wavelength: 245 nm	

Table 5:Published methods for Dapagliflozin in combination with other drug

Sr. No.	Title	Chromatographic Parameters	References
1.	Development and validation of QBD	Mobile phase: ACN (Acetonitrile): KH2PO4 pH 4.5 (65:35% v/v)	15
	assisted RP-HPLC method for	Column: Intersil ODS column	
	dapagliflozin and metformin HCL in	Flow rate: 1 mL/min	
	bulk and its combined dosage for	Wavelength: 222 nm and 232 nm for Dapagliflozin and Metformin	
		HCl respectively.	
2.	Simultaneous Estimation of	Mobile Phase : 0.1% ortho phosphoric acid :acetonitrile : 50:50% v/v.	16
	Saxagliptin and Dapagliflozin in	Column: Eclipse XDB C18	
	Human Plasma by Validated High	Flow Rate: 1 mL/min.	
	Performance Liquid Chromatography	Wavelength:260nm	
	- Ultraviolet Method		
3.	Application of quality by design	Mobile Phase: Acetonitrile: Water (60:40) %v/v.	17
	approach in RP-HPLC method	Column: Xterra RP18	
	development for simultaneous	Flow Rate: 1 mL/min	
	estimation of saxagliptin and	Wavelength: 248 nm	
	dapagliflozin in tablet dosage form		
4.	RP-HPLC Method for Dapagliflozin	Mobil Phase: water : methanol:50:50%v/v.	18
	and Metformin HCL in Bulk and	Column: Phenomenex C18	
	Combined Formulation	Flow Rate: 1.0 mL/min.	
		Wavelength: 230 nm.	
5.	Stability Indicating RP-HPLC	Mobile Phase: Methanol and 0.1% o-phosphoric acid (60:40). %v/v.	19
	Method for Determination of	Column: RP C18 (Thermo)	
	Saxagliptin and Dapagliflozin in	Flow Rate: 1 ml/min.	
	Bulk and Tablet Dosage Forms	Wavelength: 220 nm.	
6.	Stability-indicating HPLC method	Mobile phase: A mixture of 60% phosphate buffer $(pH=3)$ and 40%	20
	development and validation for	acetonitrile. % v/v.	
	simultaneous estimation of	Column: Kromasil C18	
	metformin, dapagliflozin, and	Flow rate: 1.0 mL/min	
	saxagliptin in bulk drug and	Wavelength:230nm	
	pharmaceutical dosage form		
7.	Development and Validation of a	Mobile Phase: Phosphate buffer (pH 4) : Acetonitrile (50:50 v/v).	21
	New HPLC Method for the	% v/v.	
	Simultaneous Estimation of	Column: XTerra C18	
	Saxagliptine and Dapagliflozin and	Flow Rate: 1ml/min	
	Its Application in Pharmacokinetic	Wavelength:225nm	
	Studies		

Sr. No.	Title	Chromatographic Parameters	References
1.	Analytical method validation of	Mobile Phase: acetonitrile: water:450ml:550ml%v/v.	22
	gliclazide related substance by	Column: LiChroCART Supersher RP-8	
	HPLC method	Flow Rate: 1.2ml/min	
		Wavelength :235 nm	
2.	Development and Evaluation of	Mobile Phase: Methanol: 0.02 M potassium dihydrogen	23
	Robust RP-HPLC Method for	orthophosphate (70:30 %v/v)	
	Gliclazide Estimation Integrating	Column: Phenomenex C18 column	
	Box Behnken Design	Flow Rate: 1.2 ml/min	
		Wavelength: Detection at 210 nm	
3.	HPLC Method for Determination	Mobile Phase: Acetonitrile: methanol: water (50:30:20,% v/v), pH 3	24
	of Gliclazide in Human Serum	Column: C18 column	
		Flow rate: 1.2ml/min	
		Wavelength: 230nm	
4.	HPLC Estimation of Gliclazide in	Mobile Phase: Water 0.1% w/v: sodium phosphate monobasic (pH	25
	Formulations and In	adjusted to 2.1 using phosphoric acid): acetonitrile (34:66) $\%v/v.$	
	Pharmacokinetic Studies	Column: RP C-18 column	
		Flow rate: 1.2ml/min	
		Wavelength: 230 nm	

Table 6: Published methods for Gliclazide

Table 7: Published methods for Gliclazide in combination with other drugs

Sr. No.	Title	Chromatographic Parameters	References
1.	HPLC method for simultaneous	Mobile Phase: 20 mM ammonium phosphate buffer (pH 3.5):	26
	determination of metformin and	acetonitrile:45:55 (%v/v).	
	gliclazide	Column: Alltima CN column using isocratic mode.	
		Flow rate:1mL/min	
		Wavelength:227nm	
2.	RP-HPLC Method for the	Mobile Phase: ammonium phosphate buffer: acetonitrile: methanol :	27
	Simultaneous Estimation of	50:35:15 %v/v.	
	Rosiglitazone and Gliclazide in	Column: Phenomenex Gemini C18	
	Tablets	Flow Rate: 1 mL/min	
		Wavelength:254nm.	
3.	Simultaneous HPLC Assay of	Mobile Phase: acetonitrile: KH2PO4 (0.01 M,	28
	Gliclazide and Ciprofloxacin in	0.1%v/v: triethylamine, pH 2.7) %v/v.	
	Plasma and its Implementation for	Column: C18 column	
	Pharmacokinetic Study in Rats	Flow Rate: 1 mL/min	
		Wavelength: 229 nm gliclazide:277 nm ciprofloxacin	
4.	HPLC Method Development,	Mobile Phase: Methanol: phosphate buffer (pH 3.0) %v/v.	29
	Validation and Application to	Column: Stainless steel analytical column C18	
	Determining In-Vitro Effect of	Flow Rate: 0.8 mL/min	
	Levofloxacin on the Availability of	Wavelength: 228 nm	
	Gliclazide		
5.	Rapid RP-HPLC Method for	Mobile Phase: MeOH:0.025M KH2PO4 (pH 3.20) with ortho-	30
	Simultaneous Estimation of Some	phosphoric acid:70:30 (%v/v).	
	Antidiabetics; Metformin, Gliclazide	Column: BDS Hypersil C8	
	and Glimepiride in Tablets	Flow Rate: 1 mL/min.	
		Wavelength: 235 nm.	
6.	Development and validation of a	Mobile phase: Methanol: water (65:35 %v/v, pH adjusted to 3.0	31

reversed-phase HPLC method for the	triethylamine-orthophosphoric acid buffer).	
determination of lisinopril and	Column: Zorbax C8 analytical column	
gliclazide in pharmaceuticals	Flow rate: 1.0 mL/min	
	Wavelength: 237nm	

5. CONCLUSION

The oral anti-diabetic drug it is approved by Approval by CDSCO: 29 NOV 2023. The above study gives the analytical methods for analysis of oral anti-diabetic drug in bulk and tablet dosage form. Literature survey reveals that various methods are reported for the development and validation of various drugs. at present review illustrates various analytical approaches exercised for the evaluation of oral anti-diabetic drug numerous investigations had perform including HPLC in bulk, and pharmaceutical dosage form. These methods are reported for the development and validation of various drugs. Analysis of drug plays a significant role during formulation to identify the drug and its metabolites.

6. RESULT

Firstly, Identification of procured API, Dapagliflozin and Gliclazide was done to confirm its identity of both drugs.

A novel RP-HPLC method was used to estimate dapagliflozin and gliclazide. The separation was achieved at 1.0 ml/minute using a stationary phase of Inertsil ODS 3V C18 (150 mm x 4.6 mm x 5 μ) and a mobile phase of Buffer: Methanol (30:70) %v/v. Colum temperature was preset at 25°C, and UV wavelength kept constant at 220 nm. Retention time for DAPA and GLICLA were 3.7 min and 6.13 min, respectively.

Method was validated using ICH Q2 (R1) recommendations and yielded linear results for dapagliflozin, and gliclazide in the ranges of 25 - 75 μ g/ml, and 75 - 225 μ g/ml, respectively. The method demonstrated great selectivity and specificity; there was no interference identified in the blanks at the retention durations of, dapagliflozin, and gliclazide, and there was a good connection between the peak area and drug concentration under ideal circumstances.

The percentage recoveries for dapagliflozin and gliclazide ranged from 100.5% - 100.7% and 99.6% - 100.8%. The suggested approach is precise and robust, as demonstrated by the low level of %RSD during repeatability, intraday and interday accuracy, and robustness testing. %RSD remained below 2, when small deliberate changes were made in method, hence developed method is robust.

The proposed technique is new, simple, precise, linear, sensitive, robust, and accurate for simultaneous estimation of DAPA and GLICLA in tablet formulation, according to the results of the experiment. For routine analysis, this approach was more stable and cost-effective.

7. REFERENCES

- 1. Sapra, A., & Bhandari, P. "Diabetes." National library of medicine, 2023.
- 2. Dapagliflozin/Drug bank. https://search.app/uQFrVePbxX21WeoS6 29th September 2024.
- 3. Dapagliflozin/Pubchem. https://search.app/BuRk8cz3svTiWY3F6 29th September 2024.
- 4. Gliclazide/Drug bank. https://search.app/8YUUwU17DTH7XzHM9 2nd October 2024.
- 5. Gliclazide/Pubchem. https://search.app/ACQC8RzVriNX7MsZ8 2nd October 2024.
- 6. Gliclazide/Indian pharmacopoeia, 2022, vol 2, pp 2176.
- 7. Gliclazide/European pharmacopoeia, 10.0, pp 2748.
- 8. Gliclazide/British pharmacopoeia, 2023, vol-3, pp 733.
- 9. Gliclazide/Japanese pharmacopoeia, 2016, pp 1068
- 10. Basha, S. S., & Sravanthi, P. "Development and validation of dapagliflozin by reversed-phase high-performance liquid chromatography method and its forced degradation studies." Asian journal of pharmaceutical and clinical research, 2017, 10(11), 2455-3891.
- Mante, G. V., Hemke, A. T., & Umekar, M. J. "RP-HPLC Method for Estimation of Dapagliflozin from its Tablet." International Journal of ChemTech Research, 2018, 11(01), 242-248.
- 12. Debata, J., Kumar, S., Jha, S. K., & Khan, A. "A new RP-HPLC method development and validation of Dapagliflozin in bulk and tablet dosage form." International Journal of Drug Development & Research, 2017, 9(2), 48-51.
- Chaudhari, U., Sahu, J. K., & Dande, P. R. "Analytical Method Development, Validation, and Forced Degradation Study of Dapagliflozin by RP-HPLC." Drug Metabolism and Bioanalysis Letters, 2023, 16
- Sanagapati, M., Dhanalakshmi, K., Reddy, G. N., & Sreenivasa, S. "Development and Validation of Stability-Indicating RP-HPLC Method for Determination of Dapagliflozin." Journal of Advanced Pharmacy Education & Research, 2014, 4(3), 350-353.
- 15. Dave, V., & Patel, P. U. "Development and Validation of QbD-Assisted RP-HPLC Method for Dapagliflozin and Metformin HCL in Bulk and Its Combined Dosage Form." International Journal of Pharmaceutical Sciences and Research, 2023, 14(2), 788-794.
- Donepudi, S., & Achanta, S. "Simultaneous Estimation of Saxagliptin and Dapagliflozin in Human Plasma by Validated High-Performance Liquid Chromatography-Ultraviolet Method." Turk J pharm sci., 2019, 16(2), 227–233.

- 17. Braz. J. Pharm. Sci. "Application of quality by design approach in RP-HPLC method development for simultaneous estimation of saxagliptin and dapagliflozin in tablet dosage form" Braz. J. Pharm. Sci., 2019, 55.
- Bhavyasri K, Surekha T, Begum S, Sumakanth M. "RP-HPLC Method for Dapagliflozin and Metformin HCL in Bulk and Combined Formulation." Arch Pharm Pract, 2021, 12(4):106-10.
- Md. Rageeb Md. Usman, Sufiyan Ahmad, Chandrakant Deore, Tanvir Shaikh, Bharat Jain, Md. Imran. "Stability Indicating RP-HPLC Method for Determination of Saxagliptin and Dapagliflozin in Bulk and Tablet Dosage Forms. J. Pharm. Sci. & Res., 2020, 12(4), 499-506.
- Vankalapati, K. R., Alegete, P., & Boodida, S. "Stability-Indicating HPLC Method Development and Validation for Simultaneous Estimation of Metformin, Dapagliflozin, and Saxagliptin in Bulk Drug and Pharmaceutical Dosage Form." Wiley Analytical Science, 2022, 36(7).
- Kommineni, V., Chowdary, K. P. R., & Prasad, S. V. U. M. "Development and Validation of a New HPLC Method for the Simultaneous Estimation of Saxagliptine and Dapagliflozin and Its Application in Pharmacokinetic Studies." International Research Journal of Pharmacy and Medical Sciences (IRJPMS), 2018, 1(6), 16-24.
- 22. SABHYATHA T. S., & NARAYANA BABU. "Analytical method validation of Gliclazide related substances by high-performance liquid chromatography method." International Journal of Current Pharmaceutical Research, 2022
- Mansi S. Dholakia, Hardik B. Rana, Saloni Desai, Mukesh C. Gohel, Kalpana G. Patel, Vaishali T. Thakkar, Tejal R. Gandhi. "Development and Evaluation of Robust RP-HPLC Method for Gliclazide Estimation Integrating Box Behnken Design." Research J. Pharm. and Tech, 2019, 12(1),135-141.
- 24. Ghai, D., & Lakshmi Ganesh, G. "HPLC Method for Determination of Gliclazide in Human Serum." Asian Journal of Chemistry, 2009, 21(6), 4258-4264.
- 25. Chowdary, K.P.R., & Tripura Sundari, P. "HPLC Estimation of Gliclazide in Formulations and In Pharmacokinetic Studies." Asian Journal of Chemistry, 2009, 21(7), 5221-5227.
- Gedawy, A., Al-Salami, H., & Dass, C. R. "Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. "Journal of Food and Drug Analysis, 2019, 27(1), 315-322.
- Rathinavel, G., Uma Nath, U., Valarmathy, J., Samueljoshua, L., Selvin Thanuja, C., Ganesh, M., Sivakumar, T., & Priyadarsini, R. "RP-HPLC Method for the Simultaneous Estimation of Rosiglitazone and Gliclazide in Tablets." Journal of chemistry, 2009, 6 (4), 1188-1192.
- Sasongko, L., Pratiwi, G. K., Leo, M., & Adiwidjaja, J. "Simultaneous HPLC Assay of Gliclazide and Ciprofloxacin in Plasma and its Implementation for Pharmacokinetic Study in Rats." Journal of Chromatographic Science, 2021, 59(4), 338–346.
- 29. Chhitajed, S. S., Sonawnae, S. S., More, P. K., Chaudhari, H., & Kshirsagar, S. J. "HPLC Method Development, Validation and Application to Determining In-Vitro Effect of Levofloxacin on the Availability of Gliclazide." Pharmaceutical Chemistry Journal, 2023, 57(5), 445–450.
- Sebaiy, M. M., El-Adl, S. M., Baraka, M. M., & Hassan, A. A. "Rapid RP-HPLC Method for Simultaneous Estimation of Some Antidiabetics; Metformin, Gliclazide and Glimepiride in Tablets." Egyptian Journal of Chemistry, 2019, 62(3), 429-440.
- Şenkardeş, S., Özaydın, T., Uğurlu, T., & Küçükgüzel, Ş. G. "Development and validation of a reversed-phase HPLC method for the determination of lisinopril and gliclazide in pharmaceuticals." Marmara Pharmaceutical Journal, 2017, 21(2), 338-344.