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ABSTRACT:  

Electronic components must be connected and secured using a printed circuit board (PCB), which serves as a substrate. Its extensive incorporation can be seen in 

a variety of contemporary electronic devices, including computers, smartphones, televisions, digital cameras, and other equipment. Defect detection is made more 

difficult by the increased accuracy of modern circuit boards, which makes it necessary to do thorough defect inspection in order to ensure product quality. Due to 

their limited accuracy and inefficiency, conventional algorithms are unable to meet usage benchmarks. On the other hand, deep learning-based PCB defect detection 

algorithms have the potential to achieve higher accuracy and efficiency due to their ability to identify new types of defects. This review explores the domains of 

machine learning and deep learning to provide a thorough examination of machine vision-based PCB defect detection algorithms. It begins by placing these 

algorithms in context and explaining their importance, then delves deeply into how they have developed within the machine vision framework, including 

categorization, comparison, and analysis of algorithmic principles, strengths, and shortcomings. Furthermore, the evaluation of algorithmic performance is improved 

by the addition of commonly used PCB fault detection datasets and assessment indices. At an Intersection over Union (IoU) of 0.5, the detection accuracy can 

currently surpass 95%. Finally, several avenues for future research are noted in order to tackle the problems with the current method. In order to improve PCB 

defect detection performance, these directions include using Transformers as a basic framework for developing new algorithms and applying strategies like 

reinforcement learning and Generative Adversarial Networks (GANs). Because PCBs are so small, it might be difficult to find flaws within them. However, 

improvements in deep learning approaches have greatly improved defect identification using deep learning-based methods. The algorithms used over the last 10 

years, including CNN, attention mechanism, transformer, and hybrid approaches combining these approaches, are thoroughly compiled and examined in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION : 

In recent years, the utilization and popularity of electronic products have surged, largely due to the rapid growth of the global economy and the swift 

advancements in information technology. As electronic products undergo continuous upgrades and enhancements, the demands for performance and 

quality in printed circuit boards (PCBs) are increasing. Serving as essential foundations and critical components in electronic devices, PCBs must exhibit 

strong stability, significant resistance to interference, and excel in attributes such as high-speed transmission, increased integration levels, and compact 

size. Additionally, the layout of PCBs involves the strategic organization of electronic components, connection lines, holes, and other specific elements, 

representing a vital phase in the manufacturing of electronic devices. Important aspects of the PCB layout process include: 

Layout: This entails the careful planning and arrangement of electronic components, connection lines, holes, and other specific elements on a PCB. The 

quality of the layout has a direct impact on circuit performance, electromagnetic interference (EMI), thermal efficiency, and maintenance considerations. 

http://www.ijrpr.com/
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Component placement is a critical stage in the layout process, involving the strategic positioning of electronic components, including chips, resistors, 

capacitors, and connectors, on the printed circuit board (PCB). Effective component placement is vital for achieving optimal circuit performance and 

ensuring efficient signal transmission. 

Routing follows the completion of the layout, where the wiring paths are established to connect the various components and create the circuit. This 

process necessitates careful consideration of factors such as signal integrity, power supply, grounding, and signal transmission lines. 

Power distribution is another essential aspect of the layout process, requiring a well-thought-out plan for the allocation of power and ground lines. This 

ensures that electronic components receive a reliable power supply while minimizing noise and interference within the circuit. 

Consequently, PCB layout represents a crucial step in the design and production of electronic products. It requires engineers to simultaneously consider 

various factors, including performance, heat dissipation, and maintainability, to achieve a logical arrangement and connection of electronic components. 

This meticulous planning guarantees that the PCB adheres to design specifications and supports efficient manufacturing. Therefore, the detection of 

defects and the implementation of quality control measures in PCB manufacturing and production processes are of utmost importance. 

However, as component sizes decrease and density increases, along with the complexity and variety of PCB manufacturing, these boards become 

vulnerable to numerous factors such as mechanical wear, electrostatic interference, and chemical corrosion during production. These issues can lead to a 

range of defects, including missing holes, mouse bites, open circuits, shorts, spurs, spurious copper, and broken holes. Such defects significantly 

compromise the quality and performance of PCBs. 

 
 

 

 

 

 

 

 

 

 

 

FIGURE 1. - Variety of PCB defect types: (a) Missing hole [8]; (b) Mouse bite [8]; (c) Open circuit [8]; (d) Short [8]; (e) Spur [8]; (f) Spurious 

copper [8]. 

Currently, the identification of PCB defects is a significant issue in the electronics manufacturing industry. A variety of inspection techniques have been 

researched and developed to tackle different types of PCB defects and meet the requirements of industrial production. These techniques include the 

functional test method, visual inspection technology, instrument on-line inspection method, and manual visual subjective assessment. The functional test 

method employs a fault simulator to evaluate the functionality of the circuit board and detect potential defects. While this method is known for its 

reliability and accuracy, it requires specialized equipment and complex testing procedures, making it a labor-intensive and time-consuming process. 

Visual inspection technology predominantly utilizes artificial intelligence algorithms, incorporating image processing and pattern recognition techniques 

for the rapid and automated detection of PCB defects. However, its success is contingent upon continuous optimization and improvement of the detection 

algorithms. The instrument on-line detection method is primarily used to monitor PCB defects through various instruments, such as high-voltage detection 

and insulation hydrocarbon detection methods. This approach offers the advantages of ease of use and quick detection, although it can sometimes 

encounter issues with misjudgment. The artificial visual subjective judgment method relies mainly on experiential and perceptual evaluations, making it 

vulnerable to human bias; nonetheless, it is applicable in certain specialized inspection contexts. 

Despite the variety of methods available for detecting defects in printed circuit boards (PCBs), each technique has its own limitations and shortcomings. 

The choice of the most appropriate method should be tailored to meet specific needs and conditions. In recent years, driven by ongoing advancements 

and the integration of technology, deep learning algorithms have increasingly gained traction across various sectors. In the industrial realm, these 

algorithms are utilized for processing and positioning tasks, while also demonstrating the capability to detect defects in consumer electronics. In the 

medical sector, deep learning algorithms assist healthcare professionals in interpreting medical images for diagnostic purposes. In agriculture, they play 

a role in monitoring crop health. Furthermore, in the military sector, these algorithms analyze remote sensing images to enable rapid positioning. 

Concurrently, deep learning-based algorithms for PCB defect detection are set to become essential tools in the electronic manufacturing industry, 

providing a wider range of applications and opportunities for development. 

A standard printed circuit board (PCB) generally consists of several distinct layers: 

Bottom copper layer: This foundational layer serves to establish ground connections and layouts for various circuit components. It often includes a solder 

mask layer to protect the circuit traces and a copper layer. 

Top copper layer: This uppermost layer accommodates the primary circuit components, wires, and signal paths, frequently featuring pads for connecting 

electronic elements. 

Inner layers: In addition to the top and bottom copper layers, a PCB may contain one or more inner layers made of glass fiber and copper foil, which 

facilitate the transmission of signals or power. 

Signal layers: These layers are responsible for transmitting signals between electronic components, including data, control signals, and clock signals. 

Power layers (power planes): These layers are responsible for providing power connections, including both power and ground, and are designed to 

distribute these connections effectively to maintain stability across the board. 
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Ground layer (ground planes): This specialized layer ensures a reliable ground connection, which helps to reduce signal interference and improve overall 

circuit performance. 

Pad layer: Located above the top and bottom copper layers, the solder mask layer safeguards the circuit traces and copper layer from short circuits, 

typically featuring openings for pads to facilitate the soldering of electronic components. 

Silkscreen layer: This layer generally contains labels, markings for component pins, and other relevant information to assist assembly and maintenance 

personnel in accurately identifying and managing electronic components. 

The arrangement of these layers may vary based on the specific requirements of the PCB design. This review emphasizes deep learning-based PCB defect 

detection, primarily utilizing machine vision applications, where defect detection is mainly focused on surface layers, including: 

Top copper layer: In this layer, the deep learning model is capable of detecting pad defects, such as incorrect soldering, short circuits, open circuits, 

offsets, and various other issues. 

Bottom copper layer: This layer also features the arrangement of pads and electronic components, with defect detection processes akin to those applied 

to the top copper layer. 

Pad layer: This layer enables the deep learning model to identify defects in the pad opening region. 

Silkscreen layer: This layer contains details regarding component and pin markings, facilitating the detection of problems such as misaligned or damaged 

lettering by deep learning models. 

Additionally, certain PCBs may feature specialized layers, including solder masks and inner layers, which can be utilized for identifying specific defects. 

This review provides a systematic examination and comprehensive synthesis of the research literature on PCB defect detection over the past decade. It 

primarily emphasizes methods and algorithms that leverage deep learning techniques to improve the effectiveness of PCB defect detection. The 

performance and implications of these algorithms in real-world applications are discussed in detail. Furthermore, a thorough explanation of the core 

principles of deep learning, along with a brief overview of the Transformer model, is provided to ensure that readers gain a solid understanding of the 

foundational concepts in this field. The paper also presents commonly used datasets and evaluation metrics for PCB defect detection. Ultimately, based 

on the existing literature, current algorithms are analyzed and discussed, while potential avenues for future development in this area are proposed. 

Fundamentals of Deep Learning   

A. Basic Knowledge   

The term deep learning (DL), introduced in 1986, initially emerged within the field of machine learning and later expanded into artificial neural networks 

by 2000. Deep neural networks are characterized by multiple hidden layers that progressively refine data features. This architecture enables computers to 

independently learn higher-level abstract features, thereby facilitating a variety of tasks including classification, regression, clustering, and generation. 

Unlike traditional machine learning techniques, deep learning eliminates the need for manually crafted features, automating the extraction and learning 

of features through extensive training on large datasets. A significant advantage of deep learning is its capability to efficiently process large volumes of 

data, leading to impressive results when sufficient data is available. However, challenges remain, such as the requirement for large amounts of labeled 

data, the high cost of computational resources, and the interpretability of the models. As a result, the training process is critically important, particularly 

in applications like PCB defect detection. This phase involves data preprocessing, the development of a relevant network model, and the establishment 

of an appropriate loss function. Recent advancements in deep learning can be attributed to significant improvements in network models, loss functions, 

and activation functions. As technology continues to advance, deep learning is expected to explore broader developmental avenues in the future, 

solidifying its role as a vital element of the artificial intelligence landscape. Attention will subsequently focus on convolutional neural networks (CNNs) 

and the emerging Transformer architecture. 

In 1994, Lecun et al. unveiled LeNet, one of the first convolutional neural networks (CNNs) designed for handwriting font recognition. This 

groundbreaking research significantly influenced the future development of CNNs. In 2012, Krizhevsky presented AlexNet, which built upon the 

groundwork established by LeNet. AlexNet incorporated the Rectified Linear Unit (ReLU) as its activation function, a choice that proved to be more 

effective than the Sigmoid function for deeper networks, effectively mitigating issues such as the vanishing gradient problem. At the same time, the 

advent of CUDA (Compute Unified Device Architecture) technology enabled the acceleration of training deep convolutional networks by harnessing the 

powerful parallel computing capabilities of GPUs (Graphics Processing Units) to handle extensive operations during the training process. The notable 

success of AlexNet in winning the 2012 ImageNet competition serves as a testament to the effectiveness of this methodology, particularly in comparison 

to traditional machine learning classification algorithms. The achievements of AlexNet provide clear evidence of the enhanced performance of CNNs in 

tackling large-scale image classification tasks. In 2014, Simonyan et al. introduced VGG, a new network architecture characterized by a deeper structure 

and the use of smaller convolutional kernels to reduce the number of parameters. This capability was validated by VGG's second-place finish in the 2014 

ILSVRC competition. That same year, Szegedy also presented a new deep learning architecture known as GoogLeNet. While earlier networks primarily 

focused on increasing depth to improve training results, this approach often led to challenges such as overfitting, vanishing gradients, and gradient 

explosions. GoogLeNet addressed these issues by introducing the inception module, which optimizes the use of computational resources while enhancing 

feature extraction within the same computational load, thereby increasing its overall effectiveness. 

As the number of layers in a network increases, training the model becomes increasingly complex, leading to challenges such as gradient vanishing. In 

2015, He et al. introduced residual networks (ResNet), which included a specially designed residual module aimed at addressing the gradient vanishing 

problem associated with deeper networks in deep neural networks. This architectural innovation simplifies the training process for deeper networks. In 

2016, Cai et al. proposed a convolutional neural network (CNN) that utilized cascade learning, resulting in enhanced detection outcomes. This further 

highlights the considerable potential of CNNs in the detection of defects on printed circuit boards (PCBs). 

In conclusion, driven by the rapid progress in deep learning, CNNs have reached significant achievements in the field of computer vision, fundamentally 

altering the landscape of image recognition and classification. This review focuses on the foundational architectures of CNNs, including LeNet, AlexNet, 

VGG, GoogLeNet, and ResNet. These architectures have attracted considerable scholarly interest and have demonstrated remarkable effectiveness in 

both industrial and practical applications. By conducting a thorough comparison and analysis of these network architectures, a deeper understanding of 

how various design strategies impact CNN performance can be achieved. This insight will be crucial for guiding future research efforts in the CNN field. 
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Table 1 presents a comprehensive overview of the strengths (including key features and innovations) and limitations of the aforementioned CNNs. The 

objective of this review is to provide readers with a clear understanding of both the advantages and drawbacks of these networks. 

TABLE 1 A Comparative Analysis of Strength and Boundedness Among Classical Algorithms Employed in CNNs 

 

 

 

 

 

 

 

 

 

 

 

 

 

The convolutional neural networks (CNNs) previously mentioned have evolved from having a limited number of layers to achieving considerable depths, 

with some networks comprising dozens or even hundreds of layers. Concurrently, the sophistication of these networks has advanced, paralleling 

improvements in activation functions, the incorporation of max pooling layers, and various other methodologies. Figure 2 (a) presents the schematic 

representation of the AlexNet architecture. It is noteworthy that AlexNet standardizes all input images to a size of 32×32 pixels prior to applying a series 

of convolutional operations. The results are then processed through a fully connected layer, producing a 1×10 vector that represents character weights. 

Figure 2 (b) illustrates the enhanced architecture of AlexNet, which features deeper network configurations and incorporates the Max Pooling technique, 

drawing inspiration from LeNet. Additionally, GPU acceleration is utilized during the training phase, leading to the model's significant achievements in 

the ImageNet competition. Figures 2 (c) and 2 (d) depict the Inception module, a defining feature of both VGG and GoogLeNet, which were introduced 

in the same year. VGG adopts a block-based methodology to gradually increase the network's depth, a simple yet effective approach. In contrast, 

GoogLeNet focuses on expanding network depth through an increase in width, introducing the Inception module. This module has seen continuous 

improvements over time, resulting in notable enhancements in accuracy. However, the persistent challenge of excessive network depth during this period, 

which led to less than optimal results, remained unresolved. Figure 2 (e) showcases the schematic of the residual module, a pivotal innovation introduced 

by ResNet. This module not only captures the output of the network but also includes the sum of the original input, thereby promoting a residual 

architecture. This structural concept has been reiterated in subsequent network designs, ultimately becoming a cornerstone in the evolution of CNNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. - Diagrams illustrating the network structures of classical CNNs: (a) LeNet; (b) AlexNet; (c) VGG block; (d) GoogleNet Inception 

module; (e) ResNet residual structure. 

Nevertheless, none of the previously mentioned methods take into account the innate human inclination to focus selectively on certain information while 

ignoring other observable data during visual perception. The implementation of the attention mechanism offers a more efficient alternative. 

C. Attention Mechanism 

The Attention Mechanism concept emerged from insights gained from human visual processing. In 2014, Mnih et al. observed that even with the 

utilization of multiple GPUs and prior knowledge for image data processing, convolutional neural networks (CNNs) still necessitated prolonged training 

durations. This idea was subsequently combined with human visual observations to apply the attention mechanism in image recognition, validating its 

effectiveness. This represented the first incorporation of the attention mechanism into deep learning. The concept was later adapted for use in natural 

language processing (NLP). In 2017, Google Research unveiled the Transformer model, which is based on the attention concept and achieved outstanding 

results, significantly impacting the NLP landscape. Similarly, the field of computer vision (CV) saw the introduction of various innovative attention 

models. Hu et al. presented the SENet (Squeeze-and-Excitation Network), which integrates attention mechanisms within feature channels. SENet 
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autonomously determines the importance of different channels, utilizing this knowledge to enhance significant features while diminishing the influence 

of less relevant ones for the task at hand. The SE attention mechanism module is illustrated in Fig. 3 (a). However, SENet does not address the feature 

space dimension. In response, Woo et al. [45] developed the convolutional block attention module (CBAM), which combines the attention mechanism 

across both feature channels and feature space dimensions, thereby improving network performance without a significant increase in parameter count. A 

schematic representation of this module can be found in Fig. 3 (b). Nonetheless, the earlier attention mechanisms displayed increased complexity, resulting 

in more intricate models. Wang et al. [46] developed an efficient channel attention mechanism for deep convolutional neural networks, known as ECA-

Net, which is distinguished by its lower parameter count and significant performance gains. The schematic representation of the ECA module can be 

found in Fig. 3 (c). In contrast to previous attention mechanisms that primarily focused on inter-channel information while neglecting spatial location 

details and long-range relationships, Hou and his team introduced coordinate attention (CA). This innovative approach not only captures inter-channel 

information but also incorporates orientation-based positional data, thereby improving the model's capability to accurately localize and identify targets. 

Furthermore, Coordinate Attention is characterized by its lightweight and adaptable design, allowing for easy integration into various networks while 

achieving considerable performance improvements. The CA attention module is illustrated in Fig. 3 (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. - Diagram illustrating attention mechanisms: (a) SE attention mechanism module; (b) CBAM attention mechanism module; (c) 

ECA attention mechanism module; (d) CA attention mechanism module. 

In the context of PCB defect detection, it is observed that most regions are generally free of defects, with only a small fraction displaying imperfections. 

The implementation of an attention mechanism allows for increased emphasis on these defect-prone areas, thereby improving the efficiency of defect 

identification. As a result, the integration of an attention mechanism into the PCB defect detection model is highly beneficial. D. Transformer The 

Transformer architecture, developed by Google Research, marks a pivotal advancement in the field of natural language processing. Conventional 

sequential models, such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), frequently face challenges like gradient 

vanishing and explosion when processing long sequences. In contrast, the Transformer effectively addresses these issues by utilizing a self-attention 

mechanism, which significantly enhances its ability to capture long-range dependencies within sequences. As a result, the Transformer has become the 

foundational architecture in the NLP field, with its essential structure illustrated in Fig. 4 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. - Transformer models: (a) The transformer model introduced by Google Research for NLP applications; (b) Fundamental 

architecture of ViT; (c) Transformer encoder configuration within ViT. 

Nevertheless, none of the previously mentioned methods take into account the innate human inclination to focus selectively on certain information while 

ignoring other observable data during visual perception. The implementation of the attention mechanism offers a more efficient alternative. 

C. Attention Mechanism 

The Attention Mechanism concept emerged from insights gained from human visual processing. In 2014, Mnih et al. observed that even with the 
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utilization of multiple GPUs and prior knowledge for image data processing, convolutional neural networks (CNNs) still necessitated prolonged training 

durations. This idea was subsequently combined with human visual observations to apply the attention mechanism in image recognition, validating its 

effectiveness. This represented the first incorporation of the attention mechanism into deep learning. The concept was later adapted for use in natural 

language processing (NLP). In 2017, Google Research unveiled the Transformer model, which is based on the attention concept and achieved outstanding 

results, significantly impacting the NLP landscape. Similarly, the field of computer vision (CV) saw the introduction of various innovative attention 

models. Hu et al. presented the SENet (Squeeze-and-Excitation Network), which integrates attention mechanisms within feature channels. SENet 

autonomously determines the importance of different channels, utilizing this knowledge to enhance significant features while diminishing the influence 

of less relevant ones for the task at hand. The SE attention mechanism module is illustrated in Fig. 3 (a). However, SENet does not address the feature 

space dimension. In response, Woo et al.developed the convolutional block attention module (CBAM), which combines the attention mechanism across 

both feature channels and feature space dimensions, thereby improving network performance without a significant increase in parameter count. A 

schematic representation of this module can be found in Fig. 3 (b). Nonetheless, the earlier attention mechanisms displayed increased complexity, resulting 

in more intricate models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. - Transformer models in CV: (a) Schematic of the proposed attention-augmented convolutional architecture; (b) Substitution of 

attention for convolution in ResNet with kernel size k=3; (c) Pioneering alternative to CNN for the DETR model. 

In the realm of PCB defect detection, the identification of defects is often challenged by their minute size, which renders conventional methods inadequate. 

Recently, the Transformer model has emerged as a more effective solution due to its enhanced sensitivity to small targets and intricate defects across 

various environments. Consequently, the application of the Transformer model in PCB defect detection holds the promise of significantly improving 

performance. 

E. Summary 

This section explores the essential principles of deep learning, including Convolutional Neural Networks (CNNs), attention mechanisms, and the 

Transformer model. Although CNNs were developed in the previous century, they only began to flourish over a decade ago, driven by advancements in 

computational capabilities and the availability of extensive labeled datasets. This progress has led to remarkable achievements across multiple fields, 

establishing CNNs as vital components in PCB defect detection and machine vision. The attention mechanism serves as a flexible module that can be 

effectively integrated into both CNNs and Transformers. Its primary function is to enable the model to focus on significant features while ignoring 

irrelevant background information, thereby improving the detection of PCB defects. The Transformer model, a deep learning architecture based on the 

self-attention mechanism, has experienced rapid advancement despite its relatively recent introduction, thanks to extensive research by numerous scholars. 

It has been widely adopted in various tasks within Natural Language Processing (NLP) and Computer Vision (CV), yielding exceptional results. The 

potential for further advancements in the Transformer model is unmistakable. 

2. PCB Defect Detection Method Utilizing Deep Learning : 

In the field of PCB defect detection, detection algorithms are primarily divided into two main categories: two-stage algorithms and single-stage algorithms. 

In addition to the previously mentioned CNN-based approaches, a new category of PCB defect detection algorithms utilizing Transformers has emerged. 

Prominent examples of two-stage algorithms include Region CNN (R-CNN), Fast Region CNN (Fast R-CNN), Faster Region CNN (Faster R-CNN), and 

Mask Region CNN (Mask R-CNN), among others. These methodologies divide the PCB defect detection process into two distinct phases: the first phase 

involves region proposal (RP), which generates pre-defined boxes that may contain the objects of interest; the second phase entails sample classification 

using CNNs. 

The R-CNN algorithm initiates the process by producing a series of candidate regions (Region Proposals) from the input image. It then extracts features 

from these regions using CNNs and sends the extracted features to classifiers and bounding box regressors for object detection. Although it achieves high 

accuracy, the algorithm's speed is hindered by the necessity of performing separate CNN feature extraction for each candidate region. The structure of 

this algorithm is illustrated in Fig. 6 (a). An enhanced version, Faster R-CNN, incorporates a region proposal network (RPN), which is a learnable network 
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aimed at expediting the generation of candidate regions. Faster R-CNN effectively combines the RPN with subsequent classifiers and bounding box 

regressors, creating a comprehensive end-to-end target detection network. This integration allows for the simultaneous generation of candidate regions 

and feature extraction within a single network, thereby significantly improving detection speed. The configuration of Faster R-CNN is depicted in Fig. 6 

(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. 

Traditional target detection algorithms: (a) Flowchart of R-CNN; (b) Fundamental structure of faster R-CNN; (c) Core process of the YOLO algorithm; 

(d) Network architecture schematic of the SSD algorithm. 

The category of single-stage algorithms includes notable examples such as the Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO). 

These approaches redefine the detection of PCB defects as a regression task. The YOLO algorithm offers a unique approach by framing target detection 

as a regression problem. It achieves this by dividing the input image into a grid and simultaneously predicting both class labels and bounding box 

parameters for multiple targets within each grid cell. YOLO's method of target detection relies on single-shot forward propagation, which contributes to 

its remarkable speed. However, it may be less effective in identifying smaller targets. The architecture of YOLO is illustrated in Fig. 6 (c). Similarly, the 

SSD algorithm is categorized as a single-stage target detection method. Like YOLO, it predicts target classes and bounding boxes concurrently on feature 

maps at various scales, accommodating different target sizes through multiple anchor boxes of varying dimensions. This design allows SSD to perform 

well in detecting small and multi-scale targets, as shown in Fig. 6 (d). Although SSD operates at a slightly slower pace compared to YOLO, it may provide 

improved accuracy in certain scenarios. 

When comparing two-stage and single-stage algorithms, the former tends to offer greater accuracy but is more time-consuming, making it less suitable 

for real-time detection applications. In contrast, single-stage algorithms are faster but generally exhibit lower accuracy. Additionally, transformer-based 

algorithms for PCB target detection have emerged, which, unlike traditional convolutional neural networks (CNNs), leverage transformer architecture. 

These methods demonstrate excellent detection accuracy; however, they are characterized by slower detection speeds, higher computational resource 

requirements for training, and a need for substantial data support. 

A. Enhanced One-Stage Algorithm 

To tackle the challenges of inadequate stability and low precision in PCB defect detection models, Xin et al. [71] proposed an advanced YOLOv4 model. 

This model integrates a mosaic data augmentation technique during the input phase and substitutes the leaky rectified linear unit (Leaky-ReLU) activation 

function in the network's backbone with the Mish activation function. Furthermore, the detection images undergo automatic segmentation based on the 

average dimensions of labeled boxes, thereby increasing the probability of capturing the target within the anchor frame. In a similar vein, to confront the 

difficulties of identifying small defects against intricate backgrounds in PCBs, Zhang et al. developed a lightweight single-stage defect detection network. 

This network employs a dual attention mechanism alongside a path-aggregation feature pyramid network (PAFPN) to improve the detection of minor 

defects. The lightweight backbone neural network MobileNetV2 replaces ResNet101, significantly decreasing the number of model parameters. A dual 

attention mechanism is incorporated to facilitate effective feature extraction, which is further enhanced by replacing the feature pyramid network (FPN) 

with PAFPN in the neck of the model. This refined model not only reduces inference time and parameter count but also improves detection accuracy. 

Jiang et al. introduced modifications to the SSD network model, implementing coordinated attention in the shallow network to better manage positional 

information, especially for smaller targets. Li et al. developed a dataset for PCB assembly scene object detection, addressing issues related to anchor 

frame size. They conducted a comprehensive analysis of effective receptive fields (ERF) across the output layers, establishing ERF ranges and proposing 

ERF-based anchor frame assignment rules to mitigate anchor frame size challenges. Additionally, they designed an enhanced atrous spatial pyramid 

pooling (ASPP). 

The training process is affected by the scarcity of labeled PCB defect samples, leading to the influence of unlabeled samples. To tackle this issue, Wan 

et al. proposed a defect detection method known as the data-expanding strategy (DE-SSD), which was assessed using YOLOv5 with both labeled and 

unlabeled samples. This method lessens the dependence on labeled data by leveraging both types of samples. Additionally, a data-expanding strategy is 

suggested to alleviate the effects of unlabeled samples. This improvement is particularly noticeable with smaller datasets; however, its effectiveness tends 

to decrease as the volume of data increases. In a separate investigation, Wu et al. introduced GSC YOLOv5, a deep learning detection technique that 
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combines a lightweight network with a dual-attention mechanism. This revised algorithm utilizes lightweight Ghost Conv and Ghost Bottleneck 

structures, leading to a significant reduction in the model's parameter count and floating-point operations. Moreover, the incorporation of SE and CBAM 

modules into the network enhances both accuracy and detection speed. To address issues related to detection efficiency, memory usage, and sensitivity 

to minor defects, Xuan et al. implemented a novel cross stage partial network darknet (CSPDarkNet) as the backbone for YOLOX. This updated backbone 

features multiple inverted residual blocks and integrates coordinated attention into the architecture, greatly enhancing the model's ability to identify small 

PCB defects. Importantly, this modified model is lighter and more appropriate for deployment on embedded systems. Zhao et al. [84] further advanced 

YOLOv5 by incorporating adaptively spatial feature fusion (ASFF) for feature integration, allowing for the adaptive fusion of different levels of feature 

information across various spaces. They also introduced a global attention mechanism (GAM) to improve the model's information extraction capabilities. 

Zheng and his team presented an advanced fully convolutional neural network (CNN) by incorporating successive convolutional modules into the 

MobileNetV2 framework. This enhancement, along with an optimized skip connection, results in improved detection speed and accuracy when compared 

to the VGG-16 and ResNet-50 models. Lim and his associates created an innovative multi-scale feature pyramid network utilizing YOLOv5, specifically 

targeting the detection of tiny PCB defects by harnessing contextual information. The network also employs the CIoU loss function to accurately assess 

spatial parameters, effectively pinpointing the precise locations of these defects. Yu and his collaborators developed a lightweight and efficient network 

designed for the identification of small PCB defects. They introduced a diagonal feature pyramid (DFP) within the backbone network, facilitating low-

cost fusion of extensive feature maps, which enhances the detection of these subtle imperfections. Furthermore, they established a multi-scale necking 

network to address defects of varying sizes and implemented an adaptive localization loss function to improve the model's capability to identify these 

small-scale flaws. 

In conclusion, the previously discussed research has achieved notable progress in the domain of PCB defect detection through the utilization of one-stage 

algorithms. This progress includes a range of innovative strategies, such as attention mechanisms, data augmentation techniques, and advanced backbone 

networks. These methodologies have been extensively applied to PCB defect detection from images, resulting in remarkable improvements in various 

aspects, including accuracy and detection speed. A comparative evaluation of these one-stage algorithms against certain alternative methods, highlighting 

their advantages and drawbacks, is detailed in Table 2. It is important to recognize, however, that one-stage algorithms are not without their challenges. 

These challenges include the potential for reduced performance when faced with complex and diverse defect scenarios, a significant dependence on 

limited sample data, and the need for further advancements to effectively address variations in dimensions, angles, and lighting conditions. The outcomes 

of PCB defect detection utilizing four distinct algorithms are illustrated in Fig. 7. 

TABLE 2 A Comparison of Strength and Boundedness in One-Stage CNN Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7. - Results of PCB defect detection using four different algorithms: (a) (b) Printed circuit boards defect detection method based on 

improved fully convolutional networks; (c) (d) Printed circuit board quality detection method integrating lightweight network and dual 

attention mechanism. 
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FIGURE 7. 

Results of PCB defect detection using four different algorithms: (a) (b) Printed circuit boards defect detection method based on improved fully 

convolutional networks [87]; (c) (d) Printed circuit board quality detection method integrating lightweight network and dual attention 

mechanism. 

B. Based Two-Stage Algorithm 

Although the single-stage algorithm provides quicker performance, the two-stage algorithm significantly surpasses it in detection accuracy. To facilitate 

PCB defect detection through machine vision, Li et al. proposed a faster-RCNN algorithm based on VGG16, which integrates data expansion and RGB 

data enhancement techniques. In response to the difficulties associated with identifying minute defects, which are particularly challenging to generate 

and detect in practical applications, Ding et al. [8] developed the tiny defect detection network (TDD-net). This network utilizes a K-means algorithm to 

create suitable anchor frames, improves inter-feature map relationships, and applies online hard example mining (OHEM) to enhance region of interest 

(ROI) predictions. To overcome the constraints of traditional defect detection methods that are template-dependent and computationally intensive, Hu et 

al. [92] introduced an algorithm based on Faster RCNN and Feature Pyramid Network (FPN). This approach initially employs ResNet50 with feature 

pyramids as its backbone and subsequently incorporates generative adversarial region proposal networks (GARPN) [93] to improve the accuracy of 

anchor frame predictions. In the same year, Li et al. presented a feature pyramid-based network that integrates an SE module into ResNet-101 to boost 

the network's expressive capabilities, introduces a top-down structure to enhance overall feature levels, and utilizes ROI Align instead of ROI Pooling to 

reduce the effects of dislocations on the detection of small object defects. 

In conclusion, an examination of studies centered on two-stage algorithms reveals a scarcity of scholarly contributions in comparison to those dedicated 

to one-stage algorithms. Nevertheless, it is clear that two-stage algorithms provide considerable benefits regarding detection accuracy. Table 3 illustrates 

a comparison of two-stage algorithms, outlining the methodologies used along with their respective strengths and weaknesses. Recently, one-stage 

algorithms have gained prominence to satisfy the demands for real-time detection speeds. However, the disparity in detection accuracy when juxtaposed 

with two-stage algorithms is minimal. Consequently, there is a limited number of researchers concentrating on this area. Despite this, the application of 

two-stage algorithms remains a prudent option for particular tasks that require high detection accuracy and customized datasets, even when rapid detection 

speed is not a priority. Figure 8 displays the outcomes of PCB defect detection utilizing four distinct algorithms. 

TABLE 3 A Comparison of Strength and Boundedness in Two-Stage CNN Algorithms 

 

 

 

 

 

 

 

 

TABLE 4 A Comparison of Strength and Boundedness in Transformer Algorithms 
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C. Transformer-Based Algorithm 

The Transformer architecture has shown considerable effectiveness in both computer vision (CV) and natural language processing (NLP). However, it 

faces certain challenges when applied to visual inspection tasks, particularly those that involve strict time limitations and specific equipment requirements. 

These challenges have contributed to a limited body of research focused on the use of Transformers for detecting defects in printed circuit boards (PCBs). 

Despite these obstacles, various studies have begun to explore solutions aimed at harnessing the full capabilities of Transformers in PCB defect detection. 

By overcoming the inherent limitations of the Transformer and applying it effectively in PCB inspection tasks, it is expected to provide a more efficient 

and precise approach for industrial manufacturing. 

An et al. proposed a label robust and patch correlation enhanced Vision Transformer (LPViT). Their research introduces a novel ViT model based on 

LPViT principles, emphasizing robustness while effectively utilizing various regions of the PCB image in relation to one another. To improve the mutual 

understanding among different image areas, certain blocks are randomly masked or replaced. The model is ultimately trained using a label smoothing 

technique, which enhances its robustness. In a separate study, Chen utilized an advanced clustering algorithm to create suitable anchor frames specifically 

designed for the PCB defective dataset. This study transitioned from using convolutional neural networks (CNNs) to employing a shifted window 

transformer (Swin-Transformer) for feature extraction. Furthermore, the order of channels in the feature map was modified to allow the network to 

prioritize more significant information effectively. Additionally, both convolutional and attention mechanisms were incorporated to improve the network's 

feature extraction capabilities. Yang et al. presented an enhanced version of the YOLOv7 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9. - Results of PCB defect detection using four different algorithms: (a) (b) LPViT; (c) (d) Transformer-YOLO. 

Transformers have been rarely utilized in the detection of defects on printed circuit boards (PCBs); however, advancements in computer vision and 

computational power have led to the development of various transformer models. In 2021, Liu et al. trained a Swin Transformer V2 model, which 

comprises three billion parameters, and introduced techniques such as post-normalization and scaled cosine attention. This methodology achieved state-
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of-the-art (SOTA) results across a range of visual tasks. As of 2023, the Swin Transformer V2 backbone network remains a focal point of extensive 

research, showcasing remarkable performance and further propelling the advancement of large visual models. 

Current Vision Transformers (ViTs) have not effectively utilized features across different scales, which are essential for visual data. To tackle this issue, 

Wang et al. introduced the Crossformer in 2021, which features a cross-scale embedding layer (CEL) and long-short distance attention (LSDA). In 2023, 

they improved the Crossformer by implementing a progressive group size (PGS) and an amplitude cooling layer (ACL) to address challenges related to 

the expansion of self-attention maps and amplitude surges. Due to the absence of prior image information, ViTs tend to underperform in dense prediction 

tasks. To counter this, Chen et al. proposed the ViT-adapter in 2022, an auxiliary network that does not require pre-training, allowing the fundamental 

ViT model to adjust to downstream dense prediction tasks without any changes to its architecture. This significantly enhanced the model's performance 

in such tasks. 

These innovative transformer models, tailored for large visual models, effectively leverage features at various scales and excel in dense prediction tasks, 

which are also critical in transformer-based PCB defect detection. We assert that these advanced transformer models and their methodologies can be 

effectively applied to PCB defect detection tasks, thereby improving the performance of existing models. 

D. Summary 

This section provides an overview of one-stage, two-stage, and transformer-based algorithms. One-stage algorithms are noted for their high detection 

accuracy and speed, making them suitable for enterprises requiring real-time detection of PCB defects. However, their effectiveness may be compromised 

in more complex defect situations. Conversely, the two-stage algorithm, while slower, is particularly adept at identifying intricate defects due to its 

enhanced accuracy, which has led to its prevalent use in factories for PCB defect detection. The transformer-based algorithm, which differs structurally 

from the other types, has also shown promising results in detecting PCB defects and performing various industrial tasks. Despite having a large number 

of parameters, it meets the demands of factories for PCB defect detection. Additionally, the transformer model has demonstrated strong performance in 

other fields, suggesting significant potential for future advancements. 

3. Evaluation Metrics, PCB Defect Datasets, and Comparative Findings : 

A. Evaluation Metrics 

In tasks related to PCB defect detection, it is essential to evaluate the accuracy of algorithmic localization, which quantifies the difference between the 

bounding box predicted by the algorithm and the actual bounding box of the target. A commonly utilized metric for assessing positional accuracy is the 

intersection over union (IoU). This metric is defined as the ratio of the area of intersection between the predicted frame and the actual frame to the area 

of their union. Specifically, as illustrated in Fig. 10 below, the intersection refers to the area where the two frames overlap, while the union represents the 

total area covered by both frames. The degree of overlap between the predicted outcomes and the actual annotations is calculated using the intersection 

and union ratios, which aids in evaluating the algorithm's positional accuracy as shown in formula (1). In practical applications, the threshold for the 

intersection ratio is typically set at 0.5. If the intersection ratio between the predicted frame and the actual labeled frame exceeds this threshold, the 

algorithm is considered to have accurately identified the target's location. Adjusting the intersection ratio threshold allows for modifications in the 

algorithm's positional accuracy and false negative rate. It is important to note that different tasks may require the establishment of distinct thresholds. 

IoU=A∩BA∪B(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. - IoU schematic diagram: (a) Red represents the intersection region [8]; (b) Yellow represents union region [8]. 

Equation (1) indicates that a higher Intersection over Union (IoU) value reflects a closer alignment between the predicted object region and the actual 

region, thereby enhancing the accuracy of detection outcomes. Specifically, an IoU value of 1 denotes complete overlap between the actual object area 

and the predicted area, while a value of 0 signifies no overlap at all. Nevertheless, there are situations where IoU may not accurately represent positional 

precision. For example, in the three images depicted in Fig. 11, despite the calculated IoUs for these images (Fig. 11 (c)) being identical, it is clear that 

the third image demonstrates superior quality. As a result, various improved iterations of IoU have been developed, including GIoU, DIoU, CIoU, EIoU, 

α IoU, and SIoU. GIoU addresses the challenge of gradient backpropagation for IoU's two frames when there is no intersection. On the other hand, DIoU 

incorporates both the predicted and actual frames, enhancing GIoU by considering the centroid distance and the distance between the minimum enclosing 

frames, while also factoring in aspect ratio relationships. However, it does not resolve the issue of actual distance. To address this, EIoU substitutes 

DIoU’s aspect ratio with the actual differences in width and height, along with their respective confidence levels. In 2021, α IoU was introduced, which 
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utilizes a single parameter α, resulting in improved performance compared to other IoUs. The presence of multiple angles at equidistant points affects the 

actual loss, prompting the introduction of SIoU in 2022 to mitigate the impact of angles. Currently, a modified version of IoU is exclusively used in the 

loss function, while IoU continues to serve as the benchmark for evaluation metrics. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11. - IoU limitations (while the IoU values are equal for the three images, it’s noticeable that image (a) [8] and image (b) [8] exhibit 

lower accuracy. Image(c) demonstrates superior accuracy [8].) 

The categorization of detection outcomes in target detection tasks is divided into four distinct categories: predicted values that correspond with positive 

examples are classified as P (Positive), those that correspond with negative examples are classified as N (Negative), values that match true values are 

designated as T (True), and values that contradict true values are labeled as F (False). Once classified, the data can be structured into a confusion matrix, 

resulting in four unique combination types. 

As illustrated in Fig. 12, TP indicates the number of accurately detected targets, which includes instances where the predicted positive sample corresponds 

with the true positive sample. TN represents the number of correctly identified background instances, where the predicted negative sample aligns with 

the true negative sample. FP refers to the number of incorrectly detected targets, characterized by instances where the predicted positive sample does not 

match the true negative sample. Lastly, FN accounts for the number of targets that were missed, indicating cases where the predicted negative sample 

does not align with the true positive sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12. - Schematic diagram of the recognition result. 

Assessing the performance of algorithms can be enhanced through a thorough enumeration and comparison of predictions across various categories. 

Notable evaluation metrics include Accuracy (Acc), Precision, Recall, F1 Score, Average Precision, mean Average Precision (mAP), mAPSmall, 

mAPmedium, mAPlarge, and Frames Per Second (FPS). 

1) Accuracy 

The accuracy metric indicates the ratio of correctly classified instances to the total number of instances, thereby reflecting the model's effectiveness in 

categorizing input data. The corresponding formula is represented in Equation (2). 

Acc = (TP + TN) / (TP + FN + FP + TN) 

2) Precision 

Precision measures the proportion of true positive predictions relative to the total number of positive predictions made by the model. The formula is 

represented in Equation (3). 

Precision = TP / (TP + FP) 

 

3) Recall 

Recall, often referred to as the true positive rate, quantifies the ratio of correctly identified positive instances to the actual number of positive instances. 

The formula is illustrated in Equation (4). 
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Recall = TP / (TP + FN) 

4) F1 Score 

The F1 score serves as a harmonic mean of precision and recall, effectively balancing the model's accuracy with its ability to identify positive instances. 

The formula is represented in Equation (5). 

F1 = 2TP / (2TP + FP + FN) 

5) Average Precision 

Among the commonly utilized evaluation metrics, Precision and Recall are vital for assessing model performance. However, it is important to note the 

inverse relationship between these two metrics: an increase in Precision typically leads to a decrease in Recall, and vice versa. To mitigate this issue, the 

Average Precision (AP) metric is introduced to provide a more holistic evaluation of the model's performance. 

The term "average precision" refers to the mean value derived from the integration of accuracy rates across various thresholds, covering a recall spectrum 

from 0 to 1. For each category, a precision-recall curve is generated, which allows for the calculation of the area under this curve, known as the AP value. 

Therefore, the average precision of a model is defined as the mean of the AP values across all categories, resulting in the mean average precision (mAP). 

This metric is widely recognized as one of the most significant performance indicators in target detection, measuring a model's effectiveness in recognizing 

multiple target categories. 

The methodologies for calculating mAP metrics differ. Specifically, AP0.5 indicates the average accuracy when the intersection-over-union (IoU) 

threshold is greater than 50%, while AP0.5:0.95 reflects the average accuracy when the IoU threshold varies from 50% to 95% in increments of 5%. In 

practical target detection scenarios, models are often required to identify targets from various categories, which necessitates the computation of AP values 

for each category and their subsequent averaging to obtain the mAP metric. 

In summary, the mean average precision (mAP) is an essential metric for evaluating the performance of target detection models. By integrating model 

accuracy and recall, mAP provides valuable insights into a model's capability to detect a wide array of target categories. Consequently, this analysis 

utilizes mAP0.5:0.95 and mAP@0.5 (AP0.5) as the primary metrics for evaluation. The formula is illustrated in Equation (6). 

AP=∫10P(R)dr,mAP=1N∑(i=1)NAPi(6) 

6) mAPSmall, mAPmedium, and mAPlarge 

These three metrics represent the average accuracies for objects of varying sizes. Specifically, mAPSmall is associated with objects that have an area 

smaller than 32×32 pixels, mAPmedium applies to objects with an area between 32×32 pixels and 96×96 pixels, and mAPlarge pertains to objects 

exceeding 96×96 pixels in area. These metrics offer a comprehensive understanding of the algorithm's detection accuracy across small, medium, and 

large objects. 

7) FPS 

FPS is a metric used to evaluate inference speed, indicating the number of images that can be processed per second on particular hardware. It is an 

important measure for assessing model performance and its suitability for real-time applications. By calculating the model's ability to process images 

within a second, one can evaluate its real-time performance. Higher FPS values indicate the model's capability for faster image processing, thus improving 

real-time inference efficiency. This characteristic is vital for various applications that require quick response times, such as real-time video analysis, 

autonomous driving systems, and real-time object recognition. As a result, researchers and developers aim to improve the FPS value of their models. 

B. PCB Defect Datasets  

In the existing literature on PCB defect detection, numerous studies rely on proprietary datasets. Consequently, this subsection aims to present several 

publicly accessible datasets, which offer distinct advantages over proprietary alternatives. Public datasets not only enhance credibility but also establish 

more precise baselines. Furthermore, they promote reproducibility of experiments among researchers. These publicly available datasets provide 

researchers with dependable standards and benchmarks, enabling effective performance comparisons and advancements in methodologies. Additionally, 

they create a wider platform for innovation and collaboration within the research community. The currently available datasets include PCB Defect, PCB 

Defect-Augmented [8], DEEP PCB [115], HRIPCB [116], and Micro-PCB, among others. These datasets feature diverse characteristics, including various 

defect types, quantities of images, and environmental conditions. Models trained on different datasets demonstrate varying levels of accuracy and are 

tailored for specific scenarios. Comprehensive details regarding the publicly accessible PCB defect detection datasets can be found in Table 5. 

TABLE 5 Overview of PCB Datasets 
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TABLE 6 Multiple Result Comparison of the Above Reference Algorithm Used in PCB Defect Detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Summary 

This section delineates the evaluation metrics relevant to PCB defect detection, examines publicly available datasets, and contrasts these metrics with the 

algorithms presented in section II. Evaluation metrics enable an analysis of a model's advantages and limitations, where a higher frames per second (FPS) 

indicates quicker model inference, an increased mean Average Precision (mAP) and mAP@0.5 denote enhanced accuracy, and a lower parameter count 

signifies a more efficient model. In the context of PCB defect detection datasets, our focus is on several public collections that vary in size from over a 

thousand to more than 10,000 images. These publicly available datasets establish a benchmark, facilitate performance comparisons among models, and 

contribute to advancements in PCB defect detection through their superior quality. In our comparative analysis, we detail the backbone, FPS, mAP, 

mAP@0.5, parameters, recall, and the dataset utilized in each study for every model. By leveraging this information, we generate a series of statistical 

charts that offer a clear depiction of each model's strengths and weaknesses. However, it is important to note that the use of different datasets means these 

comparative results do not provide a definitive judgment on the models' performance 
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