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Periodic electric and magnetic modulation in low dimensional systems like graphene lead to novel features in transport properties. Depending upon 

modulation strength, new features arises in the band structure and oscillations in the Landau level spectrum. The periodic modulation generates a set of 

mini bands and gaps in the energy spectrum by changing the environment. So in this regard the Zeeman splitting introduces incremental features in the 

band structure and the Landau levels spectrum. In this paper, we find the influence of gap opening Zeeman term on the broadening of energy spectrum 

induced by a weak electric modulation. We illustrate that the Landau bandwidth oscillates with Landau level index. We also present that the presence of 

Shubinkove-de-Haas (SdH ) oscillations arise from jumps in the Fermi level index. We determine how strongly these oscillations are increased by the 

addition of the Zeeman term. 

1. Introduction 

For many years, the world of science has been fascinated by the exploration of quantum phenomena in two-dimensional (2D) systems. These types of 

systems have distinct electronic characteristics that make them apart from their three-dimensional counterparts, generating opportunities for new 

technological uses[1]. Zeeman splitting, or the splitting of energy levels in the presence of an external magnetic field, is one of the many fascinating 

phenomena seen in 2D systems and has a significant impact on the electrical characteristics and behavior of these materials[2]. The periodic modulation 

of 2D systems has been made possible by recent developments in material science, which further widens the range of potential magnetic and electronic 

configurations.The bandwidth, a critical factor that determines the material’s magnetic and electrical properties, is effected by this periodic modulation, 

which generates new opportunities for the electronic band structure. For the production of next-generation quantum technologies and[3] electrical devices 

, it is important to comprehend how bandwidth modulation and Zeeman splitting interact in regularly modulated 2D systems.The goal of this work is to 

measure the effect of Zeeman splitting on bandwidth in a two-dimensional modulated system. The main physics effecting the venture of magnetic fields 

with modulation periods will be outlined in this study using a combination of theoretical derivations and experiments.The complexity of these systems 

are better understood from the concepts of quantum mechanics through more research, which can lead to the exploration of fresh insights that can benefit 

creative applications in quantum computing, spintronics, and advanced material design. 

2. Model 

 Lets consider a monolayer of two dimensional graphene on which we apply magnetic field B perpendicularly to its plane[4].This monolayer graphene 

will show Zeeman splitting under the effect of external magnetic field. We also subject this graphene system to weak periodic electric modulation defined 

by 𝑉(𝑥) in the x-direction.The Hamiltonian comes to be [8],  

 �̂� = ℏ𝑣𝐹𝜎. (𝑝 + 𝑒𝐴) + Δ𝑧𝜎𝑧 + 𝑉(𝑥) (1) 

 Where 𝑝 is the momentum operator,𝜎 = 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 are pauli matrices,Δ𝑧 represents Zeeman splitting and 𝑣𝐹  which has approximate value of 106𝑚/𝑠 is 

the electron velocity in graphene. For unmodulated graphene 𝑉(𝑋) = 0 and [5] Landu gauge 𝐴 = (0, 𝐵𝑥, 0), we define the unperturbed Hamiltonian as: 

 �̂� = ℏ𝑣𝐹𝜎. (𝑝 + 𝑒𝐴) + Δ𝑧𝜎𝑧 (2) 

 By using  eigenvalue equation 𝐻𝜓=𝐸𝜓, we can find eigenvectors and eigenvalues  

 [

Δ𝑧 ℏ𝑣𝐹(𝑝𝑥 − 𝑖𝑝𝑦)

ℏ𝑣𝐹(𝑝𝑥 + 𝑖𝑝𝑦) −Δ𝑧 ] [
𝜙
𝜓 ] = 𝐸 [

𝜙
𝜓 ] (3) 

 In terms of 𝜙 and 𝜓 we get two coupled equations  

 
ℏ𝑣𝐹(𝑝𝑥 − 𝑖𝑝𝑦)𝜓 = (𝐸 − Δ𝑧)𝜙

ℏ𝑣𝐹(𝑝𝑥 + 𝑖𝑝𝑦)𝜙 = (𝐸 + Δ𝑧)𝜓
 (4) 
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 The Eq. (4) can be easily decoupled into two second order differential equations as;  

 

[
𝑑

𝑑𝑥2
−

(𝑥𝑜+𝑥)2

𝑙𝐵
4 ]𝜙 = −𝑎𝜙

[
𝑑

𝑑𝑥2
−

(𝑥𝑜+𝑥)2

𝑙𝐵
4 ]𝜓 = −𝑏𝜓

 (5) 

 Where a and b are constants defined as:  

 

𝑎 =
𝐸2−Δ𝑧

2

(ℏ𝑣𝐹)2
−

1

𝑙𝐵
2

𝑏 =
𝐸2−Δ𝑧

2

(ℏ𝑣𝐹)2
+

1

𝑙𝐵
2

 (6) 

 where 𝑙𝐵 = √
ℏ

𝑒𝐵
 is the magnetic length, and 𝑥0 = 𝑘𝑦𝑙𝐵

2  is the center of cyclotron orbit[5]. Thus normalized eigenfunctions Ψ(𝑥, 𝑦) for our hamiltonian 

as :  

 Ψ𝑛 , 𝑘𝑦 =
𝑒𝑖𝑘𝑦𝑦

√2𝐿𝑦𝑙𝐵
[
−𝑖Φ(𝑛−1)(

𝑥+𝑥𝑜

𝑙𝐵
)

     Φ𝑛      (
𝑥+𝑥𝑜

𝑙𝐵
)

] (7) 

Where Φ(𝑛−1)and Φ𝑛 represents harmonic oscillator wave functions. They can be written explicitly as:  

 Φ𝑛 =
𝑒−𝑥2

2

√2𝑛𝑛!√𝜋
�̂�𝑛 (8) 

 Where �̂�𝑛 is normalized Hermite polynomial with n being the Landau Level (LL) index. Here 𝐿𝑦 is the length of two dimensional graphene system in 

y-axis. . So for finding Energy eigen values we have:  

                               [
𝐸2−Δ𝑧

2

(ℏ𝑣𝐹)2
+

1

𝑙𝐵
2 ] 𝜓 = − [(

𝑑

𝑑𝑥
)2 −

(𝑥𝑜+𝑥)2

𝑙𝐵
4 ] 𝜓                       (9) 

We can write above equation as  

                                 
1

2
[

𝐸2−Δ𝑧
2

(ℏ𝑣𝐹)2
+

1

𝑙𝐵
2 ] 𝜓 =

1

2
[𝑝𝑥

2 +
(𝑥𝑜+𝑥)2

𝑙𝐵
4 ] 𝜓                       (10) 

Now if you compare left hand side of above  equation with quantized total energy of harmonic oscillator which is ℏ𝜔𝑐(𝑛 +
1

2
) then  

                                  ℏ𝜔𝑐(𝑛 +
1

2
) =

1

2𝑚
[

𝐸2−Δ𝑧
2

(ℏ𝑣𝐹)2
+

1

𝑙𝐵
2 ]                             (11) 

We arrive to the result given below for the energy eigenvalues: 

 𝐸𝑛 = √Δ𝑧
2 + 𝜔𝑔

2𝑛ℏ2 (12) 

 where 𝜔𝑔 = √
2𝑒𝐵𝑣𝐹

2

ℏ
 is cyclotron frequency of Dirac electrons in graphene.Figure 1 shows LLs spectrum as a function of magnetic field strength. In 

Figure 2, we show LLs spectrum[6] in the absence and presence of Zeeman splitting. The blue curves show the spectrum for Δ𝑧 ≠ 0 and orange curve 

represents spectrum for Δ𝑧 = 0. The spectrum shows the contribution of the splitting is enhanced in the presence of Δ𝑧  
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Figure 1: LLs as a function of magnetic field in the presence of Zeeman splitting. 

    

 

Figure 2: LLs in the presence and absence of Zeeman splitting.Blue curves show the spectrum for Δ𝑧 ≠ 0 and orange curve represents spectrum for Δ𝑧 =

0. The parameter chosen are Δ𝑧 = 3𝑚𝑒𝑉𝐵, 𝑣𝑓 = 3 × 105𝑚/𝑠 

3. Energy eigen values calculation 

 Next we focus our attention to the modulated potential 𝑉𝑥 which we approximate by the first Fourier component of periodic potential 𝑉(𝑥) = 𝑉𝑒cos𝑘𝑥, 

where 𝑘 =
2𝜋

𝑎
 and “a” being a modulation period. Here 𝑉𝑒 is the modulation constant amplitude also known as modulation strength .The modulation 
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potential 𝑉(𝑥) lifted the degeneracy of landau levels and the energy becomes dependent on position 𝑥𝑜 of guiding centre.Since modulation is weak(𝑉𝑒 <
< 𝐸𝐹),we use the standard first order perturbation theory to evaluate the energy eigenvalues of a weakly modulated graphene system such that;  

 Δ𝐸𝑛, 𝑘𝑦 = ∫
∞

−∞
𝑑𝑥 ∫

𝐿𝑦

0
𝑑𝑦Ψ𝑛

∗ , 𝑘𝑦(𝑥, 𝑦)𝑉(𝑥)Ψ𝑛 , 𝑘𝑦(𝑥, 𝑦) (13) 

Solve the above equation by using Eq. (7) and Eq. (8),we arrive at the expression:  

 
Δ𝐸𝑛, 𝑘𝑦 =

𝑉𝑒

2𝑙
∫

∞

−∞
𝑒−(

𝑥+𝑥𝑜

𝑙
)cos𝐾𝑥{

1

2𝑛𝑛!√𝜋
[𝐻𝑛(

𝑥+𝑥𝑜

𝑙
)]2

+
1

2𝑛−1(𝑛−1!)√𝜋
[𝐻𝑛−1(

𝑥+𝑥𝑜

𝑙
)]2}𝑑𝑥

 (14) 

 We can define new variable 𝑥′ = (
𝑥+𝑥𝑜

𝑙
) and after solving the above equation,we arrive at the following relation  

 
Δ𝐸𝑛, 𝑘𝑦 = 𝑉𝑒cos𝐾𝑥𝑜 ∫

∞

−∞
𝑒−𝑥′2

cos𝑙𝐾𝑥′{
1

2𝑛𝑛!√𝜋
[𝐻𝑛(𝑥′)]2

+
1

2𝑛−1(𝑛−1!)√𝜋
[𝐻𝑛−1(𝑥′)]2}𝑑𝑥′

 (15) 

The above integrals are of the following type;  

 ∫
∞

0
𝑒−𝑥2

cos(𝑏𝑥)[𝐻𝑛(𝑥)]2𝑑𝑥 = 2𝑛−1√𝜋𝑛! 𝑒
−𝑏2

4 𝐿𝑛(
𝑏2

2
) (16) 

 Hence solving second last equation ,we reach the following expression;  

 Δ𝐸𝑛,𝑘𝑦
= 𝑉𝑒cos𝑘𝑥𝑜𝑒

−𝑢

2 [
𝐿𝑛(𝑢)+𝐿𝑛−1(𝑢)

2
] (17) 

 Thus energy eigenvalues for weak electric modulation is  

 𝐸𝑛,𝑘𝑦
= 𝐸𝑛 + 𝑉𝑛,𝐵cos𝑘𝑥𝑜 (18) 

 Where 𝑉𝑛,𝐵 =
𝑉𝑒

2
𝑒−

𝑢

2[𝐿𝑛(𝑢) + 𝐿𝑛−1(𝑢)] is Landau bandwidth and both 𝐿𝑛−1(𝑢) and 𝐿𝑛 are Lauguerre polynomial,here 𝑢 =
𝑘2𝑙2

2
. As weak modulation 

having amplitude of 𝑉(𝑥) is much smaller than the cyclotron energy ℏ𝜔𝑔 is taken,so Landau levels mixing can be ignored at these weak 𝐵 fields.In this 

system,it is important to note that we have taken Fermi level to be moveup from Dirac point which explain this system related to n-doped graphene. As 
we know that,for the graphene which is undoped,the Fermi level is at Dirac point and density of electron in conduction band will become zero. However 

we can doped real graphene samples.We also observe the energy spectrum broadening which is induced by weak electric modulation is nonuniform.Now 

if we approximate cos𝑘𝑥𝑜 ≈ 1 then Figure 3 can present the total energy eigen values in the presence  and absence of zeeman splitting.  

 

Figure 3 : Energy eigen values in the presence of Electric Modulation.Blue curves show thespectrum for Δ𝑧 ≠ 0 and purple curve represents spectrum 

for Δ𝑧 = 0 

In Figure 3, we can see a splitting because of electrons magnetic moment interaction with external magnetic field. In the presence of Zeeman splitting 

term, we can observe the shift in energy levels . Landau bandwidth oscillates with Landau level index because Laguerre polynomials are oscillatory 

functios of 𝑛.So by using an asymptotic expression for 𝑛 >> 1 , 𝑉𝑛,𝐵 can be approximated at Fermi energy which is suitable for low magnetic field range 

and it is also coincide to present study,as  

 𝑉𝐵 = 𝑉𝑒√
2

𝜋𝑘𝑅𝑐
cos(𝑘𝑅𝑐 −

𝜋

4
) (19) 
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 Where 𝑅𝐶 = 𝑘𝐹𝑙2 is classical cyclotron orbit[7],𝑘𝐹 = √2𝜋𝑛𝑒 and 𝑛𝑒 is the electron number density.The above expressions shows that𝑉𝐵 oscillates with 

magnetic field,through 𝑅𝐶 and maxima of Landau bandwidth 2|𝑉𝐵| occurs at;  

 
2𝑅𝑐

𝑎
= 𝑖 +

1

4
(𝑖 = 1,2,3, . . . . . ) (20) 

 And bandwidth vanishes at;  

 
2𝑅𝑐

𝑎
= 𝑖 −

1

4
(𝑖 = 1,2,3, . . . . . ) (21) 

 Eq. (20) is called broad band condition while Eq. (21) is called as flat band condition.The origin of commensurability (Weiss) oscillations[8] are caused 

by the oscillations of Landau bandwidth 2|𝑉𝐵|. This Landau bandwidth are also responsible for phase of Shubnikov-de Haas (Sdh) oscillations[9] and 

amplitude modulation. So, the half Landau bandwidth of the Fermi energy of periodically modulated graphene as a magnetic field function is shown in 

Figure 4. 

 

Figure 4: The Landau level bandwidth in an electrically modulated graphene at Fermi energy as a function of magnetic field. 

The curve shows the exact numerical result of the bandwidth which is 𝑉𝑛,𝐵 =
𝑉𝑒

2
𝑒−

𝑢

2[𝐿𝑛(𝑢) + 𝐿𝑛−1(𝑢)] for 𝑛 = 𝑛𝐹.Here 𝑛𝐹 = (
𝐸𝐹

ℏ𝜔𝑔
)2 which gives the LL 

index at the Fermi energy. The jumps in the curves show the presence of Shubnikov-de Haas oscillations, and the integer 𝑛𝑓 varies discontinuously with 

magnetic field.  

4. Density of State 

 Here we introduced the Density of States(DOS) which can be expressed as �̂� function sum as ;  

 𝐷(𝐸) =
1

Ω∗
Σ𝑛,𝛼,𝑠�̂�(𝐸 − 𝐸𝑛𝛼𝑠) (22) 

 Where Ω ∗= 𝐿𝑋 ×𝑌
𝐿  is system area.For plotting DOS we take Gaussian broadening for LLs so Eq. (22) becomes;  

 𝐷(𝐸) =
1

𝐷𝑜

1

Γ̂√2𝜋
Σ𝑛,𝛼,𝑠exp[

𝐸−𝐸𝑛𝛼𝑠

2Γ̂2
] (23) 

 Where Γ̂ is the LLs broadening term due to disorder and 𝐷𝑜 =
1

2𝜋𝑙𝑏
.The impurity induced broadening in 2D materials which are proportional to √𝐵.We 

can obtain Fermi energy by using density of states from the following relation;  

 𝑛𝐶 = ∫
−∞

−∞
𝐷(𝐸)𝐹(𝐸)𝑑𝐸 =

1

𝐷𝑜
Σ𝑛,𝛼,𝑠𝐹(𝐸𝑛𝛼𝑠) (24) 

 Here 𝐷(𝐸) is termed as states density,𝐷𝑜 =
1

2𝜋𝑙𝑏
,here Fermi-Dirac function is 𝐹(𝐸𝑛𝛼𝑠) =

1

(1+𝑒𝛽(𝐸𝑛𝛼𝑠−𝐸)
, 𝛽 =

1

𝐾𝑏𝑇
 and 𝑛𝑐 is concentration of electron.We 

calculate the Fermi energy numerically as a function of magnetic field from Eq. (23), shown in Figure 5.  
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Figure 5: LLs with Fermi level(𝐸𝐹) as a function of magnetic field 

   In Figure 5,we draw LLs with Fermi level (𝐸𝐹) as a magnetic field function for 𝐵𝑖2𝑇𝑒3.The Fermi level vibrates between two consecutive LLs as 

strenght of magnetic field is increased.we notice an increase in amplitude of fluctuations with increasing 𝐵 strength as a result of increased LLs[10] 

splitting between consecutive n.The huge fluctuations in Fermi level at stronger magnetic field resulted from some LLs contributing keeping 𝑛𝑐 constant.  

Here Figure 6 represents states density as a function of magnetic field.DOS depicts SdH oscillations in the absence of gap opening terms for low magnetic 

field and huge splitting at higher 𝐵 values.In the presence of Zeeman splitting term,we notice SdH oscillations showing doubly split peaks at 1.4𝑇.This 

will happen because of doubly split landau levels in the spectrum.We also see that,in the presence of higher magnetic field oscillations amplitude decays 

rapidly.  

 

Figure 6: DOS as a function of magnetic field 
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