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ABSTRACT— 

Software testing is integral to software quality assurance. The presence of bad test design can introduce test smells, making tests less maintainable and less reliable. 

This paper presents a machine-learning approach meant to detect three common test smells: “Assertion Roulette”, “Eager Test”, and “Mystery Guest”. With 

synthetic dataset and features are extracted using Abstract Syntax Tree (AST). The Random Forest Classifier subsequently trained on extracted features performs 

classification of test cases. Experimental results show that the model accurately identifies smells, pinpointing textural patterns that lead to not-so-good design of 

tests. The results have certain implications on improving the quality of test by integrating automation in its smell detection, so that the manual effort is minimized 

and maintainability of the software is increased. Such an approach can be integrated into development workflows to provide testers and developers with cleaner, 

more reliable tests, thereby making the software robust. 
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1. INTRODUCTION 

Software testing is a critical component of the software development architecture as it relates to reliability, maintainability, and overall quality aspects of 

applications. Quality tests help developers examine and correct defects early on in the testing phase to minimize maintenance costs. Poorly structured test 

cases will create impetuous test-design smells that are counterproductive in maintaining test readability, maintainability, and debug efficiency. Test smells 

are patterns in test cases or test code indicating more or less glaring signs of a potential issue. While they do not make test cases fail immediately, they 

degrade the readiness of a test suite and make maintenance much harder. Among the most commonly used ones are the assertion roulette and eager test. 

The assertion roulette occurs when a test method has many assertions that are not adequately explained, making it difficult to know which one failed. 

Thus, it slows down the debugging process and can cause long delays in fixing the defect. Eager tests usually mean that a test is trying to verify too many 

functionalities in a single test method, thus violating the single-responsibility principle. This kind of test becomes very complex with maintenance and 

cumbersome in understanding, especially when it fails. The traditional methods of detecting test smells are based on manual inspection of the code by 

programmers, wherein the programmers analyse the test cases for recognizable issues. However, this process is not only tedious but rather prone to human 

errors in large code bases. Thus, an automated machine learning-based approach may foil those concerns and improve on the whole the quality of software 

testing. In this paper, the work proposes a Random Forest Classifier with high-frequency python’s AST features for automatic detection of test smells. 

Making use of AST allows extracting structural and semantic properties of test cases, which serve as features for the classifier. The model is trained on 

a noisy dataset allowing it to classify test smells. The results show that machine-learning techniques can be applied successfully in order to recognize test 

smells and reduce the effort needed in handling them as well as improving their quality. 

2. REVIEW OF LITERATURE 

In recent studies, there has been a changing tide from heuristic-based methods for the detection of test smells to machine learning methods. Valeria 

Pontill et al. [1] stated that detecting complex test smells using heuristics presents challenges. Yi Li et al. [2] demonstrated that machine learning, in both 

precision and recall, surpassed rule-based systems. In their study, Daniel Felipe Cruz et al. [3] produced remarkable improvements of F1 scores while 

adding continuous feedback in the test smell detection process. Pravin Singh Yadav et al. [4] validated the scalability and efficacy of Random Forest and 

Support Vector Machine (SVM) models in the detection of test smells. By contrast, Dongwen Zhang et al. [5] proposed SCSmell, a hybrid deep-learning 

method that pairs a three-layer stacking model with Borderline-SMOTE, and achieved a 10.38% accuracy boost in large-scale projects. Overall, these 

studies confirmed that machine learning has greatly improved the efficiency of the detection of test smells. 
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3. METHODOLOGY 

A. Dataset Generation:  

This involves using Python scripts to generate 10,000 synthetic datasets with certain key features; number of assertions, method length, and setup calls 

in order to imitate real testing scenarios for smells. Dataset is divided into training and testing sets using a 80:20 ratio, meaning 80% of the data is used 

for training the model, while 20% is reserved for testing Variations and probabilistic rules are used to establish the presence or absence of test smells. 

Different test smells like "Assertion Roulette" and "Eager Test" is introduced in accordance with some predetermined heuristics. This dataset will 

then be saved in CSV format for further processing and analysis. 

B. Feature Extraction: 

The Abstract Syntax Tree (AST) converts and extracts useful features from a given code. AST gives a representation of the test scripts, enabling the 

analysis of structure; hence, function definition, assertion statement, and setup/teardown calls can be identified. Traversing through the tree structure, 

features like the number of assertions, method size, and function complexity are determined. This will help in detecting patterns associated with test 

smells by analyzing syntactic structures rather than purely through textual analysis. The resulting features were converted into structured datasets to be 

used in further processing in machine learning models. 

#SAMPLE CODING 

test_code = """ 

def setup_function(): 

    print("Setting up the test.") 

def teardown_function(): 

    print("Tearing down the test.") 

def test_addition(): 

    assert 1 + 1 == 2 

    assert 2 + 2 == 4 

    print("Test addition passed.") 

def test_multiplication(): 

    assert 2 * 2 == 4 

    assert 3 * 3 == 9 

    print("Test multiplication passed.") 

def test_subtraction(): 

    assert 5 - 3 == 2 

    assert 10 - 5 == 5 

    print("Test subtraction passed.") 

C. Heuristic-Based Detection: 

 According to this technique, we need to apply some scripted checks in order to analyze predefined thresholds to classify test smells. This method works 

by setting heuristic conditions to signal potential test smells using statistical properties or metrics applicable to the test scripts. For instance, the heuristic 

says a test method suffers from "Assertion Roulette" if it has too many assertions that do not provide a descriptive message. Similarly, the name "Eager 

Test" is given when a test checks multiple functionalities instead of focusing on a single behavior capability. The heuristic rules form a heuristic baseline 

method for detection of test smells and are used ahead of machine learning models.. 

D. Machine Learning-Based Detection:  

Machine learning-based detection is focused on excessive classification for testing smells, which involves the Random Forest Classifier being trained 

on the given measures. This smelly area of the test is enhanced by identifying the observation from certain properties of test code, such as the number of 

assertions or method complexity. Hyperparameter tuning, or deciding on a specific set of parameters to run during the optimization of the classifier, is 

made to perform for the purpose of optimal running of the model. And after the training, it allows the processing of new test scripts and their automation 

detection, rendering the tests more maintainable. 
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E. Evaluation and Validation:  

Different metrics are used to evaluate how well the detection system performs: 

1) Accuracy 

This indicates how well is the system capable of making correct stimuli in classifying instances. This is the ratio of correctly predicted cases to all 

instances it evaluates, including true positive and true negative cases. Higher accuracy values indicate better performance for the system. This is a general 

measure of the overall success of the model. 

Formula: 

Accuracy = 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
 

Definitions: 

• True Positives (TP): The count of correctly identified test smells 

• True Negatives (TN): The count of instances correctly classified as non-test smells. 

 

• False Positives (FP): The wrongly identified test smells (Type I error). 

2) Precision 

Precision for evaluating the overall quality of findings is given by the formula. 

Formula 

Precision = 
𝑻𝑷

𝑻𝑷+𝑭𝑷
 

Definitions: 

• True Positives (TP): Correct instances of actual positive samples or class-instance test smells. 

• False Positives (FP): Instances that the classifier has wrongly predicted as positives. 

3) Recall 

Recall gives the proportion of actual test smells that were correctly identified. 

Formula: 

Recall = 
𝑻𝑷

𝑻𝑷+𝑭𝑵
 

Definitions: 

• True Positives (TP): The test smells that are correctly identified. 

• False Negatives (FN): The test smells that hit by the model. 

4) F1 Score 

The F1 score is precisely harmonic mean of precision and recall, enabling balance between the two. It is especially useful when there is an uneven 

distribution of class. 

Formula: 

F1 Score = 2×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
  

5) Confusion Matrix 

Confusion matrix refers to the table that is used for the description of the performance of classification algorithms, thereby giving a good representation 

of the model performance and providing good insight into the types of errors being committed. 

Confusion matrix in case of binary classification problem (Test Smell vs. Non-Test Smell) looks as below: 

 Predicted Test Smell Predicted Non-Test Smell 

Actual Test Smell True Positives(TP) False Negatives(FN) 

Actual Non-Test Smell False Positives(FP) True Negatives(TN) 

Table I Confusion matrix 
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4. RESULTS AND DISCUSSIONS 

A. Key Findings 

The analysis of the dataset, with 10,000 test cases containing various test smells, revealed that Assertion Roulette and Mystery Guest were the most 

frequent types of smells. A bar chart effectively represented the distribution of these test smells, with Assertion Roulette occurring in a great number of 

test cases. On the heuristic validation side, this detection process reached a high agreement of 95% with pre-labeled smells, confirming that the rules 

applied to detect heuristicarily were effective, in the course of testing. 

Random Forest classifier provided insight into the performance evaluation of the machine learning classification. It had an overall accuracy of 88% in 

all cases. More specifically, during testing on "Assertion Roulette" test smell detection, the precision was 0.94, recall 0.85, and the F1-Score at 0.89 

for negative class (non-detection). For the positive class (true detection), the precision was equals to 0.80, recall equal to 0.92, and the F1-Score equal 

to 0.86. These results indicate the moderate performance of the model concerning the identification of true positives while also attempting to mitigate 

false negatives in the case of test smell detection. The bar chart and the confusion matrix provided a good figure of the acceptable performance of the 

classifier in practical concordance. 

 

Fig 1 :Bar Chart for Distribution of Test Smells. 

 

Fig 2: Random Forest Classifier Performance. 

Random Forest classifier’s performance on detecting "Assertion Roulette" test smells, showing precision, recall, and F1-score for both classes (detected 

and non-detected). 

Metric Class 0(Not Detected) Class 1(Detected) Weighted Average 

Precision 0.94 0.80 0.89 

Recall 0.85 0.92 0.88 

F1-Score 0.890 0.86 0.88 

Support 1208 792 2000 
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Accuracy 88%   

Table II Classification Report 

Classification report for detecting "Assertion Roulette" test smell using the Random Forest classifier. Precision, recall, and F1-score metrics 

demonstrate the model’s effectiveness. 

B. Comparison of Performance 

1) Random Forest  

 

Fig 3: Confusion Matrix of Random Forest 

Accuracy: 0.8790 

Precision: 0.8047 

Recall: 0.9179 

F1-Score: 0.8573 

2) Decision Tree 

 

Fig 4: Confusion Matrix of Decision Tree 

Accuracy: 0.8290 

Precision: 0.7984 

Recall: 0.7601 
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F1-Score: 0.7788 

 

 

Fig 5: Performance Comparison of RF vs. DT 

On all important metrics, The Random Forest model can be proven that the outcome of this model is more suitable for test smell detection compare to 

Decision Tree. Random Forest achieved (87.90% versus 82.90%) accuracy and improved precision (80.42% versus 79.84%), thus indicating its 

correctness in detecting positive cases. More importantly, Random Forest considerably outperforms Decision Tree in recall (91.79% versus 76.01%), 

which casts more actual test smell detections while effectively limiting false negatives (65 versus 190). On the other hand, the Decision Tree perpetually 

lags in recall; although it has a somewhat better false positive rate, it still fails to obscure a broader number of actual test smells. Hence, Random Forest 

provides a very balanced model with a better F1 score (85.73% versus 77.88%) that balances precision with recall, thus being a better option for test 

smell detection. 

Here, the paper compare  two model and evaluated that the Random Forest performed well  and given better accuracy compared to Decision Tree . 

5. CONCLUSIONS 

This work shows how effective the combination of heuristic rules with machine learning can be used to detect test smells in software test cases. While 

heuristic detection was interpretable, machine learning, by means of the Random Forest classifier, improved detection accuracy at a higher degree. The 

model demonstrates an excellent capability to identify "Assertion Roulette" and reach an overall accuracy of 88% on a large synthetic dataset. 

Moreover, the heuristic detection demonstrated 95% agreement with the pre-labeled data, further supporting the reliability of the rules applied. 

Beyond the impressive results of this work, it has highlighted the necessity of real-world validation. While synthetic datasets create a controlled 

experimentation space, applying this framework to our actual test suites will set its practicality. In addition, even though single test smells have been 

focused on here, future work should evolve into applying multi-label classification to detect multiple test smells simultaneously. Such an application of 

deep learning would refine the accuracy in detection by learning complex patterns that are beyond the currently defined heuristics. 

A. Future Enhancement 

So, for future work, we will extend detection to other test smells such as "Redundant Setup" and "Flaky Tests." Improvements also include the 

incorporation of some deep learning techniques, such as recurrent or transformer-based models, for better classification. Deploying this framework to 

real test suites across various programming languages and testing frameworks will enhance its generalizability. Moreover, expanding the model into 

multiple test smells simultaneous detection is going to capture more fine-grained relationships between entities in the test code and thus makes it more 

effective. Furthermore, this approach can be a plugin in the IDE for real-time feedback to the developers during the testing process. 
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