

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Cost Optimization of Foundation on Low SBC Soil.

Mehabub Timmapur¹, Asfiya Topinkaati², Takhib Mulla³, Rehan Hangal⁴, Prof. Anand Bankad⁵

^{1,2,3,4} UG Student, Dept. of Civil Engineering, S. G. Balekundri Institute of Technology, Belagavi Visvesvaraya Technological University, Belagavi Karnataka, India

⁵Professor Civil Engineering, S. G. Balekundri Institute of Technology, Belagavi Visvesvaraya Technological University, Belagavi Karnataka, India

ABSTRACT:

This study investigates foundation design cost optimization techniques in regions with poor soil bearing capacity (SBC). The study highlights how crucial it is to choose the right foundation types and building methods to maximize stability and reduce expenses. The study finds important elements impacting each option's cost-effectiveness by thoroughly examining several foundation systems, including as shallow and deep foundations. The performance of various foundations under various soil conditions is assessed using empirical data and sophisticated modelling approaches. The results offer practical advice on how to choose materials, alter designs, and build methods that can drastically lower foundation costs without sacrificing structural soundness or safety. This study advances the subject of geotechnical engineering by providing recommendations for professionals dealing with low sbc of soil on foundation.

Keywords: Low SBC soil, cost optimization, rectangular footing

1.Introduction:

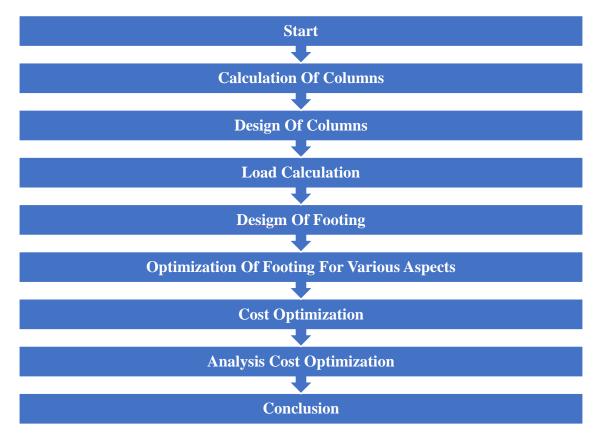
The Soil bearing Capacity is the main fundamental in the project conduction our project includes a calculation of loads acting on foundation and foundation design with required size and strengths

Basically the soil bearing capacity refers to the maximum load per unit area without undergoing any shear failure or excessive settlement.

In areas with low SBC Soil the ground is less capable of sustaining with the load. In this type of soil following methods used to construct the buildings

- 1. Soil Stabilization
- 2. Pile Foundation
- 3. Combined footing
- 4. Rectangular footings
- 5. Square Footings

The Projects based on the variations of foundation size, which deals with the cost optimization of the foundation with various size and various types of characteristics Compressive Strength (Fck) and yield strength (Fy) also the project deals with following characteristics of soil;


- 1. High compressibility
- 2. Low shear strength
- 3. Variable moisture content
- 4. Instability

2.Objectives of the study:

- 1. Minimize foundation costs: Reduce the cost of foundation construction while ensuring the structural integrity and safety of the building.
- 2. Maximize foundation efficiency: Optimize foundation design to achieve the required bearing capacity while minimizing material usage and excavation.
- 3. Improve foundation stability: Ensure the foundation can withstand various loads and stresses, including those imposed by low SBC soil.

- 4. **Reduce settlement and movement:** Minimize foundation settlement and movement to prevent damage to the structure and adjacent buildings.
- 5. Enhance durability and lifespan: Optimize foundation design and materials to extend its lifespan and reduce maintenance costs.
- 6. Comply with regulatory requirements: Ensure the foundation design meets local building codes, regulations, and standards.
- 7. structural system to reduce loads on the foundation and minimize material usage.
- 8. Foundation type selection: Choose the most suitable foundation type (e.g., shallow, deep, or pile foundation) for the specific site conditions.

3. Methodology:

4. Experimental results:

	Size Of Column LXB		400		400	Sq.MM		
	Axial Service Load	P=	400		2000	-		
	Safe Bearing Capaci					kn/m2		
	Fck	=				N/mm2		
		-				HYSD BA		_
	Fe				500		483	
STEP 1	LOAD CALCULATION	1						
	Axial Load on Colum	n P=			2000	Kn		
	Ultimate Load				3000			
	Self Weight Of footir	ng And Backfill			200			
	total load				5200			
STEP 2	SIZE OF FOOTING							
	TOTAL LOAD ON FOO	DTING			5200	KN		
	CONSIDER SQUARE							
	FOOTING	L=B						
	AREA OF FOOTING B				52	M2		
		SBC			52			
	SIZE OF FOOTING	L=B			4.900			
	ADOPT SIZE=	L=			10.61			
		B=			4.90			
	Area Provided	0-				Sq.mt		
STEP 3		SURE OF ULTIMATE LOAD						
	ULTIMATE LOAD			3000				
	AREA PROVIDED A	=		51.99				
	SOIL PRESSURE q	u		100.02	Kn/M2			
	Soil Pressure = $\frac{total}{are}$	factored load						
	are	a provided		0.1000	N/MM2			
STEP 4	CHECK FOR ONE WAY SH	EAR						
	TO DETERMINE THE DEPT	н						
	qu=				N/MM2			
	SIZE OF FOOTING	B=		10.61				
		L=		4.90	M			
	SIZE OF COLUMN	4.90		10.61				
	FACTORED SHEAR FORCE	(Vul)=		245				<u>490</u> .
	factored shear (VuL)	$=\frac{qu*B}{2}*(B-C1-2d)$	2	600000		73516	=	4309.8
		4 =						
	Soil Pressure q		10	0.100	N/M2			
		FROM IS 456:2000 TAB	LE 19	0.20	NI /N 4N 4D			
	L	DESIGN SHEAR STRENGHT (Cc)= ONE WAY RESISTENCE=		0.36 3819.6	N/MM2			
		UNE WAT RESISTENCE=		4310				
			2	4310 501979				
	d	=	2		MM			
		- '=			MM			
		=			MM			

STEP 5		PUNC	HING SHEAR	(TWO WAY S	HEAR CHE	CKING)						
			tored Shear				c1	+ d +	d))	9	9040901	N
										9040	.900894	KN
										(1.0 P)		
		PUN	CHING TWO	WAY SH	EAR RE	SISTE	NC	E = F	(STC	(b0 * d))	
			RE CRITICAL PERIM						3923			
		K1		=					3925			
		T		=					-	N/MM2		
		VC2						25	45679		N	
									2546		KN	
		VC2>V	/U2	DEPTH IS SAF	E							
		DECLO		45.1.7								
STEP 6			IN OF REINFORCE				-			0	u	
		ULTIN		COLUMIN				ultimate	e mome	nt (mu) = q	$\overline{-} * B * (B$	- C1) * 2
										1	,	
				Mu=				124057	74.929			
				Mu=				1240.5	74929	Kn-M		
								fy * as	t			
		ulti	mate moment (mu) = 0.87	* f y * as	t * d(1)	\overline{b}	* d * f	(ck)	41147	9602.21	
		Ast Re	a						20265	mm2		
		ASUNG	•									
STEP 7		DEPT	H CALCULATION	ultimate_m	oment (n	(u) = 0	87	* f y * (ist * e	$t(1-\frac{f}{h})$	v * ast)
											a * fck	
								483.64	69546 484			
				therefore dre	= ne				0.484			
					- 4				0.101			
STEP 8		DESIG	IN PARAMETERS									
			#	ASSUMING					14	MM DIA E	BARS	
			#	AREA OF SIN	IGLE BARS=	A=			154	MM2		
			#	NUMBER OF	BARS				132			
						=						
			#	ACTUAL AST	-			16	597 85	MM2		
				SPACING=				75.849		IVIIVIZ		
										C/C		
STEP 9		DAD									i	
31EF 3			ALCULATION			10.636	м					
			HT OF BAR		12.8	6824691						
			L WEIGTHT OF									
		BAR			1698	3.608593	Kg					
		.										
STEP 10			ALCULATION			4.926	Ν.4					
			HT OF BAR		5.95	4.920 9851852						
			L WEIGTHT OF		5.55							
		BAR			452.	0496948	Kg					
SL.NO	PARTIC	ULAR	LENGTH	BREADTH	DEPTH	VOLUME	=	UNIT	RATE/ UNIT	TOTAL AMOUNT	REMARKS	FOR 4 COLUMN
3LINU		TION	4.90	4.90	0.48	11.62084	1	CUBIC	500	5,810.42		
1	EXCAVA		4.50			11.0200	· .	METED				
	CONCRET FOUNDATIO	E AND	10.61	4.90	0.48	25.16267		METER CUBIC METER	3000	75,488.03		TOTAL PRICE

SBC	200					
Fch						
fy	415					
LOAD	1000	1500	2000	2500		
Size	13 sqm	19.5 sqmt	26sqm	32.5sqm		
Depth	620mm	778mm	486mm	964mm		
Steel	560kg	943kg	1331kg	1740kg		
Amount	65,693.00	1,12,317.25	1,60,427.14	2,10,790.76		

SBC	150 20					
Fck						
fy	415					
LOAD	1000	1500	2000	2500		
Size	17.33sqm	26sgm	34.66sqm	43.33sqm		
Depth	626mm	737mm	805mm	851mm		
Steel	1043kg	1048kg	1800kg	2192kg		
Amount	1,09,825.72	1,56,770.38	2,06,372.49	2,56,273.21		

SBC		100						
Fck	2	20						
fy	415							
LOAD	1000	1500	2000	2500				
Size	26sqm	39sqmt	5Zsqm	65sqm				
Depth	556mm	610mm	640mm	660mm				
Steel	1259kg	1640kg	2054kg	2452kg				
Amount	1,32,962.20	1,82,161.72	2,34,028.38	2,84,787.67				

SBC		50						
Fck		20)					
fy	10 10	415						
LOAD	1000	1500	2000	2500				
Size	52.02sqm	78.0sgm	164.05qm	130.02				
Depth	413mm	529mm	640mm	704mm				
Steel	790.56kg	583.63kg	464.73kg	418.91kg				
Amount	1,78,152.60	2,60,580.00	3,76,896.00	4,93,897.00				

SBC	200						
Fck		34	0				
fy							
LOAD	1000	1500	2000	2500			
Size	13sqm	19.5sqmt	26sqm	32.5sqm			
Depth	620mm	778mm	886mm	964mm			
Steel	922kg	1299kg	1714kg	2140kg			
Amount	98,118.88	1,46,931.71	2,00,073.34	2,54,722.56			

SBC		150						
Fck		30						
TY	50.50 million	\$00						
LOAD	1000	1500	2000	2500				
Size	17.33sqm	26sqmt	34.66sqm	43.33sgm				
Depth	626mm	73.7 mm	805mm	#51mm				
Steel	1066kg	1471kg	1905kg	2334kg				
Amount	1.16.020.64	1,69,105,40	2.25.090.62	2,81,776.79				

SBC	100							
Fck		30						
fy	500							
LOAD	1000	1500	2000	2500				
Size	26qm	39 sqmt	52sqm	65sgm				
Depth	556mm	610mm	640mm	659mm				
Steel	1282kg	1711kg	2151kg	2601kg				
Amount	1,40,115.85	1,96,227,82	2.53.378.45	3.11,409.93				

SBC		50					
fick		34)				
fy	500						
LOAD	1000	1500	2000	2500			
Size	52.025qm	78.035gm	104.4sgm	129.96sqm			
Depth	529 mm	571mm	595mm	610mm			
Steel	497.98kg	477.05kg	466.63kg	460.10kg			
Amount	2,06,173.52	2,96,037.83	3,88,329.76	4,79,826.90			

SBC	200						
Fck	25 250						
fy							
LOAD	1000	1500	2000	2500			
Size	13.sqm	19.5sgmt	26sqm	32.5sgm			
Depth	620mm	778mm	886mm	964mm			
Steel	888kg	3121kg	1398kg	1698kg			
Amount	74,018.00	96,096,50	1,21,206.45	1,48,319.12			

SBC	150 25					
Fck						
fy	250					
LOAD	1000	1500	2000	2500		
Size	17.33sqm	26sqmt	34.66sqm	43.33sqm		
Depth	626mm	737mm	805mm	851mm		
Steel	1017kg	1282kg	1576kg	1884kg		
Amount	85,907.05	1,10,215.27	1,36,861.00	1,64,773.35		

SBC	100 25 250			
Fck				
fy				
LOAD	1000	1500	2000	2500
Size	263qm	39sqmt	52sqm	mpe 60
Depth	556mm	610mm	640 mm	659mm
Steel	1250kg	1535kg	1849kg	2158kg
Amount	1.05,583.84	1,31,573.16	1,60,011.98	1.87,963.48

SBC	50 25 250			
Fck				
fy				
LOAD	1000	1500	2000	2500
Size	52.025qm	78.03sqm	104.045qm	129.965qm
Depth	496mm	571mm	595mm	610mm
Steel	778.31kg	674.15kg	659.47kg	650.23kg
Amount	1,41,672.00	1,99,930.00	2,52,006.00	3,03,634.44

58C	200			
Fck				
fy		550		
LOAD	1000	1500	2000	2500
Size	17.33sqm	26sqmt	34.66sqm	43,33sqm
Depth	626mm	737mm	805 mm	851mm
Steel	1066*g	1471kg	1905kg	2334kg
Amount	1,16,020,64	1,69,105.40	2,25,090.62	2,81,776.79

58C	150				
Fck					
Fy	1.000 MARK	550			
LOAD	1000	1500	2000	2500	
Size	17.33sqm	26sqmt	34.66sqm	43.33sqm	
Depth	626mm	73.7mm	805mm	#51mm	
Steel	1066kg	1471kg	1905kg	2334kg	
Amount	1.16.020.64	1.69,105,40	2.25.090.62	2.81.776.79	

SBC	100 35			
Fck				
fy		550		
LOAD	1000	1500	2000	2500
Size	26qm	39sqmt	52.sgm	65sqm
Depth	556mm	610mm	640mm	659mm
Steel	1282kg	1711kg	2151kg	2601kg
Amount	1,40,115.85	1,96,227,82	2,53,378.45	3,11,409.93

SBC	ck 35			
fck				
fy				
LOAD	1000	1500	2000	2500
Size	52.025gm	78.03 sqmt	104.04sqm	129.96sqm
Depth	529mm	571mm	595 mm	610mm
Steel	474.75kg	454.80kg	444.87kg	438.64kg
Amount	2,16,586.88	3,13,419.30	4,11,311.46	5,09,000.80

5. Conclusion

- Cost optimization of foundations on soils with low Safe Bearing Capacity (SBC) requires a strategic approach that balances safety, performance, and budget.
- The most effective solutions include employing soil improvement techniques, such as stabilization or compaction, which can enhance the SBC and allow for more economical foundation designs.
- Additionally, opting for deep foundations, like piles, can bypass weak surface soils and transfer loads to more stable strata, reducing the need for extensive soil modifications.

- Optimized foundation designs, such as mat or raft foundations, help distribute loads over a larger area, minimizing stress on the soil while controlling material costs.
- Thorough geotechnical investigations are essential to determine the most appropriate approach, preventing over-engineering and unnecessary expenses.
- By combining these methods, substantial cost savings can be achieved without compromising the structural integrity or safety of the foundation.