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ABSTRACT

This study covered the development of machine learning (ML) and deep learning (DL)-based model designed to revolutionize cancer care in Nigeria by
addressing core challenges. The model integrates patient-specific clinical data, histopathology images, and multi-omics data (genomics, proteomics, and
metabolomics) to achieve three key objectives: early cancer detection, personalized treatment planning, and outcome prediction. Results from the study evaluated
the performance of various artificial intelligence (AI) models applied to cancer detection, therapy response prediction, survival forecasting and real-world
diagnostic applications. A Random Forest model demonstrated exceptional performance on a clinical dataset with an accuracy of 92%, precision of 91%, recall of
90%, and an F1-score of 90.5%, highlighting its balanced ability to distinguish between cancerous and non-cancerous cases. Similarly, a Convolutional Neural
Network (CNN) trained on diagnostic imaging data achieved a validation accuracy of 94.2% and an area under the curve (AUC) of 0.96, showcasing its reliability
in cancer diagnostics. A Multi-Omics Integration Model employing a Dense Neural Network (DNN) achieved 89.5% accuracy, 88% sensitivity, and 91%
specificity, effectively predicting therapy responses using genomic and proteomic datasets. The Survival Prediction Model, utilizing a Survival Regression
framework, achieved a concordance index (C-index) of 82% with a low error rate of 12%, underscoring its robustness in forecasting treatment outcomes. In a
real-world pilot study at a Nigerian hospital, an Al-based diagnostic framework significantly outperformed traditional methods, reducing diagnosis time from 2
weeks to 2 days and improving diagnostic accuracy from 78% to 94%. Feedback from oncologists reflected an 88% satisfaction rate, showing the clinical
viability of Al systems in resource-constrained settings. These findings underscore the transformative potential of Al in enhancing cancer care, particularly in

developing countries.
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1. Introduction

Cancer remains one of the most significant health challenges in Nigeria, with an alarming rise in incidence and mortality rates (WHO, 2021).
According to the International Agency for Research on Cancer (2020), Nigeria records approximately 78,000 new cancer cases and 66,000 cancer-
related deaths annually. The most common types include breast cancer, cervical cancer, prostate cancer, and liver cancer. Despite these staggering
statistics, the country faces significant gaps in cancer care, including delayed diagnoses, lack of personalized treatment plans, and poor outcome
prediction, leading to suboptimal survival rates (IARC, 2022). Addressing these challenges requires innovative solutions that go beyond traditional
approaches, and machine learning (ML) and deep learning (DL) algorithms hold the potential to transform cancer care in Nigeria.

The application of ML and DL in cancer treatment has gained significant traction globally in recent years. ML and DL, subfields of artificial
intelligence (Al), are designed to analyze large datasets, identify patterns, and make predictions. These technologies have shown remarkable success in
medical imaging, genomics, and personalized medicine, enabling healthcare providers to detect cancers early, optimize treatment plans, and predict
patient outcomes. For instance, Ardila et al. (2019) developed a convolutional neural network (CNN)-based model for lung cancer detection, achieving
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an area under the curve (AUC) of 0.944, a milestone that highlights the potential of Al in diagnostics. Similarly, advancements in integrating multi-
omics data through ML models, as demonstrated by Liao et al. (2020), have enabled the prediction of therapeutic responses and the formulation of
effective treatment strategies.

1.1 Challenges in Cancer Care in Nigeria

The current landscape of cancer care in Nigeria presents unique challenges that necessitate the adoption of advanced Al solutions. One of the primary
challenges is the late presentation of cancer cases. Studies reveal that over 70% of cancer patients in Nigeria present at advanced stages of the disease
(Globocan, 2020). This is primarily due to a lack of awareness, inadequate screening programs, and limited access to diagnostic facilities. Additionally,
the country faces a shortage of oncologists and specialized healthcare providers especially in the field of medical physics, with approximately one
oncologist per 1.5 million people (National Cancer Control Plan, 2018). This severe shortage of human resources significantly hampers timely and
effective treatment delivery.

Another critical challenge is the lack of infrastructure for personalized cancer treatment. Precision oncology, which involves tailoring treatments based
on the genetic and molecular profiles of individual tumors, remains underdeveloped in Nigeria (Onyeka et al., 2019). This gap is compounded by the
absence of high-throughput sequencing facilities and limited access to molecular diagnostic tools. Furthermore, the high cost of cancer treatment and
limited health insurance coverage make it inaccessible to a large portion of the population, leading to poor outcomes and high mortality rates.

Lastly, there is a significant gap in data collection and utilization for cancer research and care. Reliable data on cancer incidence, treatment responses,
and outcomes are essential for effective planning and decision-making (Oche et al., 2020). However, the lack of robust cancer registries and fragmented
healthcare systems in Nigeria hinder data-driven approaches to cancer care. These challenges underscore the need for innovative solutions that can
overcome resource constraints and provide scalable, effective, and affordable cancer care (Uche and Adebayo, 2023).

1.2 The Role of Machine Learning and Deep Learning in Cancer Care

Machine learning and deep learning algorithms have shown great promise in addressing the challenges of cancer care. These technologies can analyze
vast amounts of data from diverse sources, including medical imaging, histopathology, genomics, and clinical records, to provide actionable insights
(Liu et al., 2019). In cancer detection, ML models have been successfully applied to medical imaging modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and mammography. For example, a study by McKinney et al. (2020) demonstrated that DL algorithms could
outperform radiologists in detecting breast cancer in mammograms, with reduced false positives and false negatives.

In the context of personalized treatment, ML models can integrate multi-omics data, including genomics, proteomics, and metabolomics, to predict
therapeutic responses and identify optimal treatment combinations. This approach has been particularly useful in guiding precision oncology, as
demonstrated by Liao ef al. (2020), who utilized ML models to predict patient responses to cancer immunotherapy based on tumor-specific biomarkers.
Furthermore, DL models have been used to analyze histopathology images to predict tumor aggressiveness, aiding clinicians in treatment planning.

Predictive analytics is another critical application of ML and DL in cancer care. These algorithms can forecast treatment outcomes, such as survival
rates and the likelihood of recurrence, enabling clinicians to make informed decisions. For example, Wang et al. (2021) developed a DL-based
prognostic model for breast cancer patients, achieving high accuracy in predicting disease-free survival and overall survival. By integrating these
capabilities, ML and DL can transform cancer care from reactive to proactive, improving patient outcomes and optimizing resource utilization (Litjens
etal.,2019)

1.3 Adapting Al Solutions to the Nigerian Context

While the potential of ML and DL in cancer care is evident, implementing these technologies in Nigeria requires careful consideration of the local
context (Akinola et al., 2020). One of the key factors is the availability of data. Developing robust ML and DL models requires large, high-quality
datasets, which are currently limited in Nigeria. Collaborative efforts between healthcare providers, research institutions, and government agencies are
essential to establish comprehensive cancer registries and facilitate data sharing (Olaniyi and Ayoade, 2022).

Another critical factor is the adaptation of Al models to local populations. Most ML and DL models are trained on datasets from high-income countries,
which may not fully represent the genetic, environmental, and cultural factors affecting cancer patients in Nigeria. Developing locally trained models
that account for these unique factors is crucial for ensuring accuracy and reliability (Alabi and Faduyile, 2022). Additionally, efforts should be made to
address ethical concerns, including data privacy, informed consent, and algorithmic bias, to build trust and promote the adoption of Al technologies in
healthcare.

Capacity building is also essential for the successful implementation of Al solutions in Nigeria. Training healthcare professionals and researchers in Al
and data science will empower them to develop, deploy, and utilize these technologies effectively. Furthermore, partnerships with international
organizations and technology companies can provide access to resources, expertise, and infrastructure needed for Al-driven cancer care.
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1.4 The Vision for Revolutionizing Cancer Treatment in Nigeria

This study aims to leverage ML and DL algorithms to revolutionize cancer treatment in Nigeria through a comprehensive Al-powered framework. The
proposed model integrates clinical, imaging, and molecular data to achieve three objectives: early cancer detection, personalized treatment planning,
and outcome prediction. By addressing the unique challenges of cancer care in Nigeria, this approach seeks to reduce diagnostic delays, optimize
treatment strategies, and improve survival rates.

The implementation of this framework will involve collaboration with local healthcare providers, government agencies, and international partners. Pilot
projects will be conducted in tertiary hospitals to validate the model's performance and scalability. Additionally, efforts will be made to establish public
awareness campaigns to promote early cancer detection and encourage participation in Al-driven healthcare initiatives.

By harnessing the power of ML and DL, this study envisions a future where cancer care in Nigeria is accessible, efficient, and effective. This
transformative approach has the potential to set a benchmark for other low- and middle-income countries, demonstrating the impact of Al in addressing
global health challenges.

2. Related Work

The integration of machine learning (ML) and deep learning (DL) algorithms in cancer care has shown significant advancements globally, paving the
way for innovative solutions to challenges in diagnosis, treatment, and outcome prediction. This section reviews relevant studies and contributions in
the field, focusing on applications of ML and DL in cancer detection, treatment personalization, and therapeutic outcome forecasting, particularly in
resource-constrained settings like Nigeria.

2.1 Machine Learning and Deep Learning in Cancer Detection

Recent advancements in ML and DL have revolutionized cancer detection by improving the accuracy and efficiency of diagnostic processes. For
instance, Ardila et al. (2019) developed a convolutional neural network (CNN)-based model for detecting lung cancer from low-dose computed
tomography (CT) scans. Their model achieved an area under the curve (AUC) of 0.944, demonstrating its diagnostic potential in identifying early-stage
lung cancer. Similarly, McKinney ef al. (2020) demonstrated that DL algorithms could outperform radiologists in detecting breast cancer from
mammograms, achieving reduced false positives and false negatives. These studies highlight the potential of DL algorithms to supplement traditional
diagnostic methods, especially in countries like Nigeria, where access to skilled radiologists is limited.

2.2 Personalized Treatment Planning Using Al

Al-driven personalized treatment planning has gained traction as a key application of ML and DL in oncology. Liao et al. (2020) demonstrated the use
of ML models to integrate multi-omics data—including genomics, proteomics, and metabolomics—to predict therapeutic responses and suggest
optimal treatment combinations for individual patients. Such models enable precision oncology, allowing treatments to be tailored to the unique
molecular profile of a patient's tumor. In a similar vein, Ching ef al. (2018) proposed a DL framework for predicting the effectiveness of cancer drugs
using genomic data, providing a foundation for personalized medicine in cancer care. These studies underscore the importance of Al in optimizing
treatment strategies and reducing trial-and-error approaches in therapy.

2.3 Predicting Treatment Outcomes with AI

Predictive analytics powered by ML and DL has shown promise in forecasting treatment outcomes and disease progression in cancer patients. For
example, Wang et al. (2021) developed a DL-based model to predict disease-free survival and overall survival in breast cancer patients using clinical
and histopathological data. Their model achieved high accuracy, enabling clinicians to identify patients at higher risk of recurrence and adjust treatment
strategies accordingly. Similarly, Esteva et al. (2017) employed DL algorithms to analyze skin lesion images, accurately classifying malignant and
benign lesions, and predicting patient prognosis. These tools can be instrumental in improving patient outcomes in Nigeria by enabling proactive and
data-driven decision-making.

2.4 Al Applications in Resource-Constrained Settings

While ML and DL applications in oncology have predominantly been developed in high-resource settings, their adaptation to low-resource
environments, such as Nigeria, is gaining attention. Adebayo et al. (2020) explored the feasibility of using Al to address gaps in cancer care in sub-
Saharan Africa. Their study emphasized the need for locally relevant datasets, capacity building, and infrastructure development to ensure the
successful implementation of Al-driven solutions. Additionally, Rajpurkar ef al. (2018) demonstrated the utility of DL algorithms in diagnosing
diseases using portable imaging devices, which could be adapted for remote and developing regions.
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2.5 Gaps in Current Research

While significant progress has been made, there remain critical gaps in existing Al-based cancer care systems. Few studies have implemented fully
integrated, multi-model approaches that simultaneously address diagnosis, personalized treatment planning and predictive outcome assessment in a
cohesive framework. Furthermore, issues of data privacy, algorithmic bias, and ethical considerations remain major concerns in the deployment of Al
systems in clinical settings. The research approach seeks to address these gaps by developing a modular, unified Al system tailored to each stage of
cancer care, leveraging distinct datasets and robust algorithms to maximize patient benefit.

3. Methodology

This study carried out a comprehensive integration of machine learning (ML) and deep learning (DL) algorithms to revolutionize cancer treatment in
Nigeria. The methodology focuses on developing an Al-powered framework for cancer detection, treatment planning, and outcome prediction, tailored

to address the unique challenges of Nigeria's healthcare system.
3.1 Data Collection and Preprocessing
3.1.1 Data Sources
®  (linical Data: Patient demographics, medical histories, and clinical records collected from tertiary hospitals and cancer care centers in
Nigeria.

®  Imaging Data: Diagnostic imaging data, including computed tomography (CT) scans, mammograms, and magnetic resonance imaging
(MRI), sourced from local hospitals and diagnostic labs.

®  Genomic and Molecular Data: Multi-omics datasets, including genomics, proteomics, and metabolomics, gathered from global open-

access repositories and local collaborations with research institutions.

®  Histopathology Data: Digitized histopathology slides annotated by pathologists.
3.1.2 Data Preprocessing

®  Data cleaning: Removal of incomplete, duplicate, and irrelevant records.
®  Data normalization: Standardizing imaging and molecular data for consistency across datasets.
e  Data augmentation: Applying techniques such as rotation, flipping, and scaling to imaging datasets to increase sample diversity.
®  Data labelling: Annotating datasets with expert input to ensure high-quality ground truth labels.
3.2 Model Development
3.2.1 Machine Learning for Cancer Detection
®  Algorithms: Supervised ML algorithms such as Random Forest, Support Vector Machines (SVM), and Gradient Boosting are employed for
initial cancer detection based on clinical and imaging data.
®  Feature Selection: Feature engineering methods, such as principal component analysis (PCA), are used to identify the most relevant
predictors for cancer diagnosis.
3.2.2 Deep Learning for Image Analysis
®  Convolutional Neural Networks (CNNs): CNN architectures like ResNet and EfficientNet are utilized for analyzing diagnostic images and
histopathology slides to detect cancerous lesions.

®  Transfer Learning: Pre-trained models are fine-tuned using local datasets to improve performance and adapt to Nigeria-specific cancer

types.

® 3D Imaging Models: 3D CNNs are developed for analyzing volumetric imaging data, such as CT and MRI scans, to enhance diagnostic

accuracy.



International Journal of Research Publication and Reviews, Vol 6, no 2, pp 1160-1170 February 2025 1164

3.2.3 Multi-Omics Data Integration

®  Frameworks: Integrative ML frameworks, such as XGBoost and Multi-Omics AutoML, are employed to combine genomic, proteomic, and
metabolomic data for precision medicine.

®  Outcome Prediction Models: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks are used to predict
therapeutic responses and disease progression based on longitudinal data.

3.3 Model Training and Validation
3.3.1 Training Process

®  Training Sets: Datasets are split into training, validation, and test sets using an 80-10-10 ratio.
®  Optimization: Hyperparameter tuning is performed using grid search and Bayesian optimization techniques.

®  Cross-validation: K-fold cross-validation is employed to ensure robust model performance.
3.3.2 Validation and Testing

®  Performance Metrics: Metrics such as accuracy, precision, recall, Fl-score, and area under the curve (AUC) are used to evaluate model

performance.

e  External Validation: Models are validated on independent datasets from different Nigerian healthcare facilities to assess generalizability.
3.4 Implementation Framework
3.4.1 Deployment

®  (Cloud-Based Platform: Al models are deployed on cloud-based platforms to enable scalability and remote accessibility for healthcare
providers.

®  Integration with Health Systems: Models are integrated with existing hospital information systems (HIS) to streamline workflows and
support clinical decision-making.

3.5 Ethical Considerations

®  Data Privacy: Compliance with data protection regulations, including anonymization of patient data.

®  Bias Mitigation: Regular audits are conducted to identify and address algorithmic biases to ensure equitable healthcare delivery.
3.6 Pilot Study

A pilot implementation is conducted in two tertiary hospitals in Nigeria to validate the proposed framework. Key activities include:
®  (Collecting real-world data to assess model performance.
®  Gathering feedback from clinicians and stakeholders to refine the Al system.

®  Measuring the impact of the system on diagnostic accuracy, treatment effectiveness, and patient outcomes.
3.7 Evaluation Metrics

The success of the proposed framework is evaluated using the following criteria:
L] Accuracy of Cancer Detection: Comparison with human experts and existing diagnostic methods.
®  Treatment Effectiveness: Improvement in patient survival rates and quality of life.
®  Scalability: Ability to handle large datasets and operate in resource-limited settings.

®  User Satisfaction: Feedback from healthcare providers and patients.
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4. Results
4.1. Cancer Detection Accuracy

a. Machine Learning Models (Random Forest):

This bar chart in Figure 1 showcases the performance of a Random Forest machine learning model used for cancer detection. The model's evaluation
metrics—Accuracy, Precision, Recall, and F1-Score—are derived from a clinical dataset containing patient demographics, cancer history, and tumor

biomarker information. Here is a detailed analysis of the results:
Metrics Overview:
1.  Accuracy (92%):

e This indicates that 92% of the total predictions made by the model are correct. It demonstrates the model’s overall effectiveness

in distinguishing between cancerous and non-cancerous cases.
e A high accuracy suggests the model performs well on the given dataset, balancing both positive and negative classes.
2.  Precision (91%):

. Precision is the percentage of correctly identified cancer cases (true positives) out of all predicted cancer cases (true positives +

false positives).

. A precision of 91% implies that the model is highly reliable in minimizing false alarms, i.e., reducing the chances of incorrectly

classifying non-cancer cases as cancer.
3.  Recall (90%):

. Recall measures the percentage of actual cancer cases correctly identified by the model (true positives out of true positives +

false negatives).

. With a recall of 90%, the model demonstrates strong sensitivity, meaning it successfully identifies the majority of cancer cases,

although there is still a small portion it may miss.
4.  F1-Score (90.50%):

. The F1-Score is the harmonic mean of Precision and Recall, balancing these two metrics. It reflects the model's robustness in

handling both false positives and false negatives.

. An F1-Score of 90.50% confirms that the model achieves a balanced performance, suitable for scenarios where both precision

and recall are critical.
Implications of the Results:

®  The high accuracy, precision and recall suggest that the Random Forest model is well-suited for cancer detection on this clinical dataset. It

effectively identifies true cancer cases while minimizing errors.

L] The slight drop in Recall compared to Precision indicates the model may prioritize reducing false positives slightly more than capturing all

true positives. This trade-off might be beneficial in scenarios where overdiagnosis is less detrimental than underdiagnosis.

Performance of Cancer Detection using
Random Forest Machine Learning Algorithms
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92%
92%
91% B Accuracy
91% 91% Precision
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Accuracy Precision Recall F1 - Score

M Seriesl 92% 91% 90% 90.50%
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Figure 1 Performance of cancer detection using random forest machine learning
4.2 Deep Learning Models (CNN):

Visualization: Heatmaps generated by Grad-CAM highlight regions of interest in CT scans corresponding to tumor areas.

This bar chart in Figure 2 presents the performance evaluation of a Deep Learning Convolutional Neural Network (CNN) model for cancer detection
using diagnostic imaging data, such as CT scans of lung and breast cancer cases. Two metrics, Validation Accuracy and Area Under the Curve

(AUC), are depicted to assess the model's predictive power.
Metrics Overview:
1. Validation Accuracy (94.20%):
e  Validation Accuracy refers to the proportion of correctly predicted cancer cases during the model's validation phase.

e A validation accuracy of 94.20% indicates the CNN model performs exceptionally well in distinguishing between cancerous and

non-cancerous CT scan images.

e This high accuracy suggests that the model has effectively learned features from the diagnostic imaging dataset and is reliable

during testing.
2. Area Under the Curve (AUC = 0.96):

e AUC is a metric derived from the Receiver Operating Characteristic (ROC) curve. It measures the model's ability to differentiate

between positive (cancerous) and negative (non-cancerous) cases.

e  An AUC of 0.96 is outstanding, indicating that the CNN model has near-perfect discrimination capability. This means it rarely

misclassifies cancerous cases as non-cancerous or vice versa.
Implications of the Results:

®  The high validation accuracy (94.20%) combined with a strong AUC score (0.96) demonstrates the CNN model's effectiveness in
processing complex imaging data and detecting cancer with remarkable precision.

®  These results highlight the potential of deep learning techniques like CNNs for improving early cancer detection in diagnostic imaging,

making it a valuable tool for healthcare applications.

Performance of Cancer
Detection using Deep Learning
CNN

M Validation Accuracy

B Area under cover

94.20%

Figure 2: Performance of cancer detection using deep learning
4.3 Treatment Planning Performance: Multi-Omics Integration Model (Dense Neural Network):

This bar chart in Figure 3 illustrates the performance of a Multi-Omics Integration Model, specifically a Dense Neural Network (DNN), for predicting
therapy responses based on genomic and proteomic datasets. Three key performance metrics are presented: Accuracy, Sensitivity, and Specificity.
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Metrics Overview:
1. Accuracy (89.50%):

e Accuracy measures the overall effectiveness of the model in correctly predicting therapy responses, including both positive and

negative outcomes.

e  With an accuracy of 89.50%, the model demonstrates strong reliability in integrating genomic and proteomic data to make

precise predictions.
2. Sensitivity (88%):
. Sensitivity, or the true positive rate, indicates the model’s ability to correctly identify patients who will respond to therapy.
e A sensitivity of 88% shows that the model is highly capable of detecting true responders but might occasionally miss some.
3. Specificity (91%):
. Specificity, or the true negative rate, reflects the model’s ability to correctly identify patients who will not respond to therapy.

. With a specificity of 91%, the model effectively minimizes false-positive predictions, ensuring non-responders are accurately

classified.
Implications of the Results:

®  The high specificity (91%) implies that the model excels at ruling out non-responders, making it particularly useful for avoiding unnecessary

or ineffective therapies.

®  The good sensitivity (88%) ensures that a majority of true responders are identified, though there is room for improvement to minimize false

negatives.

®  An overall accuracy of 89.50% highlights the model's capacity to integrate complex genomic and proteomic datasets and deliver reliable

predictions.
Strengths:

®  The use of multi-omics data enables the model to capture a holistic view of the biological factors influencing therapy responses, increasing

prediction reliability.

®  The Dense Neural Network architecture is well-suited for handling the high-dimensional data typical of genomics and proteomics.

Treatment Planning Performance

91.50% 91%
91.00%

90.50%

90.00% 89.50%

89.50%
89.00% M Accuracy

88.50% 88% W Sensitivity
88.00% B Specificity

87.50%
87.00%
86.50%

Accuracy Sensitivity Specificity
M Seriesl 89.50% 88% 91%

Figure 3: Treatment planning performance of Multi-Omics Integration Model
4.4 Treatment Outcome Prediction

The bar chart in Figure 4 presents the performance results of the Survival Prediction Model using a Survival Regression Model to predict treatment

outcomes. The analysis of the chart is as follows:

Key Metrics
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1. Concordance Index (C-Index):
e Achieved 0.82 (82%), indicating the model’s effectiveness in ranking survival times correctly.

e Interpretation: A concordance index of 0.82 shows strong predictive ability. The model can distinguish between patients with
different survival probabilities accurately.

2.  Error Rate:
. Recorded an error rate of 12%, representing the proportion of incorrect predictions made by the model.
e Interpretation: A relatively low error rate reflects the model’s reliability and robustness in forecasting treatment outcomes.
Insights from the Chart

®  High Concordance Index: The significant height of the concordance index bar compared to the error rate highlights the model’s strong
ability to predict survival outcomes.

®  Low Error Rate: The error rate is sufficiently low, suggesting the model is well-tuned and minimizes incorrect predictions.

®  Balanced Model Performance: The combined metrics demonstrate that the model is effective and practical for real-world application in
predicting patient outcomes.

Implications for Cancer Treatment in Nigeria
1. Personalized Treatment Planning:

e  With a high concordance index, this model can effectively guide clinicians in identifying patients at higher risk and tailoring
treatments accordingly.

2. Reliable Decision Support:
e The low error rate ensures that clinicians can trust the system to provide accurate survival probability rankings.
3. Scalability for Implementation:

. Such robust metrics make this model suitable for deployment in Nigerian healthcare systems to revolutionize cancer treatment.

Treatment outcome prediction

0.9 0.82
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

B Concordance index

M Error rate

12%

Concordance index Error rate

Figure 4: Treatment outcome prediction Performance of Survival Prediction Model
4.5. Real-World Pilot Study

The analysis of this result in Figure 5 highlights the performance of an Al-based method compared to traditional diagnostic methods in a real-world
pilot study conducted at a Nigerian hospital. The study focused on cancer patients, including those with breast, lung, and cervical cancers, leveraging a
cloud-based framework for deployment.

Key Insights:

1. Reduction in Diagnosis Time:
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e  Traditional Method: Average diagnosis time was 2 weeks, reflecting the standard manual process duration.

e  Al-Based Method: Reduced the diagnosis time to 2 days, indicating a significant improvement in efficiency due to the
automation and computational speed of the Al system.

2. Improvement in Diagnosis Accuracy:
. Traditional Method: Accuracy stood at 78%, which aligns with general diagnostic performance in manual interpretations.

e  Al-Based Method: Demonstrated a 94% accuracy rate, showcasing its superior ability to detect cancers accurately by integrating

advanced algorithms and data-driven insights.
3.  Feedback from Oncologists:

e  Al-Based Method: Matches the satisfaction rate at 88%, indicating that despite its novelty, the Al method meets clinical

expectations and offers results that oncologists find dependable.
Implications:

®  Time Efficiency: The drastic reduction in diagnosis time could facilitate earlier interventions, potentially improving treatment outcomes and

survival rates.

®  Higher Accuracy: The enhanced precision of the Al-based method reduces the risk of false positives and false negatives, improving patient

trust and care.

®  Acceptance by Oncologists: Comparable feedback levels suggest that the Al solution is a viable alternative to traditional methods and could

see broader adoption if integrated into existing workflows.

This pilot study demonstrates the transformative potential of Al-based methods in healthcare, particularly in resource-limited settings, by improving

diagnostic efficiency and accuracy while maintaining clinical acceptance.

Real World Pilot Study

2.5 2 2days
2
Li T I 88%
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Figure 5: Real world pilot study
Integration with Healthcare Systems:
e Conducted at a major Nigerian hospital using a cloud-based framework for deployment.
. Patient Sample: 500 cancer patients (breast, lung, cervical cancers).
. Results:
"  Reduction in Diagnostic Time: From 3 weeks to 2 days.
"  Improvement in Diagnostic Accuracy: From 78% (traditional methods) to 94% (Al-based methods).

=" Feedback from Oncologists: 88% of clinicians reported improved confidence in diagnostic and treatment decisions.
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5.0 Discussion

1. Significance of Al in Detection:
e  Machine learning models were highly effective at detecting cancer using structured clinical data.

. Deep learning models provided state-of-the-art performance in imaging analysis, offering better sensitivity compared to
traditional radiology.

2. Improved Treatment Personalization:

. Multi-omics integration allowed the system to predict the most effective treatment options, supporting oncologists in decision-

making.
3. Scalability in Nigeria:

. Deploying these systems in Nigerian hospitals reduced diagnostic and treatment planning timelines, addressing critical gaps in

healthcare delivery.
4. Challenges:
o Insufficient availability of locally curated datasets.
. High computational costs for deep learning model training and deployment.
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