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ABSTRACT : 

 Fins are typically tiny extended surfaces found on the external region of devices and equipment. Their primary purpose is to enhance the rate of heat transfer to 

or out of a device or an object by adjusting convective heat transfer coefficient. They are available in different shapes and configurations depending on the 

required applications: there are straight fins which may be rectangular, triangular and trapezoidal; curved fins such as convex fins; radial fins; annular fins and pin 

fins, to mention a few. The alteration in convective heat transfer coefficient is made possible by adjusting such parameters as surface area of the body, the 

material which the body is made of, the geometry of the body, characteristics of fluid flowing across the material, and so on.  Research findings also show that it 

is more cost effective, economical, easy and less time consuming to alter the shape of the device then to increase heat transfer coefficient of the body. In this 

research, various configurations of fins will be presented; differential transform method will be employed to provide a semi-analytical solution to the general heat 

equation; geometries of fins are obtained using SOLIDWORKs; with the aid of MATLAB, temperature distributions are obtained for each geometry under 

varying conditions of thermal conductivity, radiation and internal heat source in turns. The results are then presented and discussed for further recommendation. 
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1.0 INTRODUCTION : 

Fins can be described as a form of elongation on outer surfaces of materials, equipment, devices or machines. Their sole aim is to improve the heat 

transfer through an appliance by increasing convection. They present a more suitable and economical solution to the process of enhancing heat transfer 

and are thus globally utilized in wide range of devices or equipment. In addition, they help to rapidly get heat transfer to or from a body. Increasing heat 

transfer rate can be achieved in two ways as earlier mentioned (increasing h or increasing As).  Since h depends on several parameters increasing h may 

be costly as it may require the fitting of pumps/fan, or adjusting power or size of the pump/fan which is of unarguably a costly solution. Increasing As 

is found to the cheap and economical process comparatively. In this research, temperature distribution through fins of various geometries is obtained for 

varying conditions of thermal conductivity, internal heat source and radiation. The nonlinear heat equation will be solved with the aid of a semi-

analytical method (differential transform method), the thermal conductivity of the material is assumed to be variable, the material is being subjected to 

internal heat generation coupled with the effect of radiation at the boundary. 

The concept of internal heat generation in fins was studied by Minkler and Rouleau (1960), they were among the pioneer researchers who obtained fin 

temperature distribution and heat removal rate as a function of some dimensionless parameters, they expressed the internal heat generation in 

dimensionless form using non-dimensionalization techniques. Another early work on fins was carried out by Starner and Mcmanus (1963), they carried 

out an experiment to investigate the thermal performance of rectangular fin arrays. In the experiment, a number of fin arrays (four sets) were scrutinized 

to figure out the effect of free heat convection parameters. Three different types of arrays (vertical, inclined and horizontal) are positioned with guard 

and main heaters in order to reduce the strength of the net heat loss, it was gathered that inclined arrays show the lowest heat transfer rate compared to 

vertical and horizontal arrays. They were also able to successfully predict the effect of fin height and spacing on heat transfer performance. In yet 

another ASME journal. 

One of the concrete mathematical approach to solving fin problems was contained in the work of Zhou (1986) who used DTM (a near-analytical 

method) to solve the initial value problems in electrical circuits to obtain definite nth derivative values. Two-dimensional DTM used to solve the 

differential equation was developed by Chen and Ho (1999).   
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 Sobamowo (2017) investigated the effect of internal heat generation and temperature-dependent heat conduction. Heat transfer and temperature 

distribution in circular convective radiative porous fins of different shapes were analyzed by Pasha (2018). In recent years, thermal enhancement flow 

problems have been analyzed by a few authors. The differential transform method was applied by Pasha. et al (2018), in the study of heat flow though 

some selected longitudinal fins under unsteady conditions of heat transfer. The thermal conductivity was assumed to vary with temperature. Variable 

thermal behavior of straight fins was discussed by Ndlovu and Moitsheki (2020). Sowmya et al. (2021) examined the heat performance in longitudinal 

fins with a heat source due to natural convection. Shi (2021) studied the bioconvection flow of magneto-cross nanofluid containing gyrostatic 

microorganisms with activation energy. Sabu et al. (2021) fathomed the significance of nanoparticles’ shape and thermohydrodynamic slip constraints 

on MHD alumina-water nanoliquid flows over a rotating heated disk. Karus et al. (2022) gave a concise generic review of fins. Using the above 

concepts, Gireesha and Sowmya (2022) dealt with fin complications with heat distribution in an inclined fin. Electric filaments or nuclear reactors may 

generate electric current when exposed to temperature thereby causing internal heat generation in some systems. The nonlinearity of this process makes 

it rigorous or almost impossible to solve analytically. It can thus be solved using numerical or semi-analytical methods.  

The solution for a system of differential equations by the DTM was expounded by Fatma (2004). Fatma (2003) proved that DTM is better to solve a 

nonlinear problem than the Taylor series method. The DTM has been applied to various problems in applied mathematics and physics such as systems 

of differential equations as shown in the work of Kanth (2008). Fallo et al. (2018) applied the 3D DTM for the first time to study heat transfer in a 

cylindrical spine fin with variable thermal properties. Chiba et al. (2014) solved the one-dimensional phase change problem in a slab of finite thickness 

using the DTM. The finite Taylor series and the repetition described by the modified equations obtained from the original equation applying differential 

transformation operations can be utilized to assess the approximating solution. More recently, Ananth et al. (2022) used DTM to solve a problem 

analogous to what is contained in this thesis.  A review of the above literature shows no attempt has been made to analyze the heat transfer for the 

above-considered profiles except for the work of Ananth et al (2022). This thesis gives a vivid approach to how the DTM was applied to solve a similar 

problem by Ananth et al and other researchers. 

3.0 METHODOLOGY : 

The differential transform method will be applied to solving the heat equation coupled with the following stated assumptions: 

• Temperature depends of x and remains constant over time 

• Temperature variation due to fin thickness is neglected 

• Steady condition of temperature and heat flow. 

• Dynamic equilibrium between solid and fluid 

• Thermal conductivity varies with temperature 

The basic governing equation is also non-dimensionalized prior to the application of DTM as presented below: 
𝑑

𝑑𝑥
[𝑘(𝑇) × 𝑃(𝑥)

𝑑𝑇

𝑑𝑥
] − 𝜀𝜎(𝑇4 − 𝑇𝑎

4) − ℎ(𝑇 − 𝑇𝑎) + 𝑄
∗ = 0                                       (3.00) 

𝑊ℎ𝑒𝑟𝑒 𝑘(𝑇) = 𝑘𝑎[1 + 𝜔(𝑇 − 𝑇𝑎)], 𝜔 𝑏𝑒𝑖𝑛𝑔 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝑇𝑎 𝑖𝑠 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑃(𝑥) = 𝑏𝜏𝑥 ,   𝜏𝑥 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑜𝑓 𝑓𝑖𝑛 

𝐹𝑜𝑟 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑖𝑛 𝜏𝑥 = 𝑏𝜏𝑏 = 𝐴𝑏,   𝑏 = 𝑔𝑖𝑟𝑡ℎ 𝑎𝑛𝑑 𝜏𝑏 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑎𝑙𝑜𝑛𝑔 𝑓𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 

𝜀𝜎(𝑇4 − 𝑇𝑎
4) = 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎  

ℎ(𝑇 − 𝑇𝑎) = 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 

𝑄∗ = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚. 

 Boundary conditions 
𝑑𝑇(0)

𝑑𝑥
= 0 𝑎𝑛𝑑 𝑇(𝐿) = 𝑇𝑏 

The first term in Equ. (3.02) can be simplified using product rule as follows: 

𝑑

𝑑𝑥
[𝑘𝑎[1 + 𝜔(𝑇 − 𝑇𝑎)] × 𝑏𝜏𝑏

𝑑𝑇

𝑑𝑥
]= 𝑘𝑎𝐴𝑏

𝑑

𝑑𝑥
[[1 + 𝜔(𝑇 − 𝑇𝑎)] ×

𝑑𝑇

𝑑𝑥
] 

𝑑

𝑑𝑥
[[1 + 𝜔(𝑇 − 𝑇𝑎)] ×

𝑑𝑇

𝑑𝑥
] =

𝑑2𝑇

𝑑𝑥2
[1 + 𝜔(𝑇 − 𝑇𝑎)] +

𝑑

𝑑𝑇
[1 + 𝜔(𝑇 − 𝑇𝑎)]

𝑑𝑇

𝑑𝑥
×
𝑑𝑇

𝑑𝑥
 𝑂𝑅 

 
𝑑2𝑇

𝑑𝑥2
[1 + 𝜔(𝑇 − 𝑇𝑎)] +

𝑑

𝑑𝑇
[1 + 𝜔(𝑇 − 𝑇𝑎)] (

𝑑𝑇

𝑑𝑥
)
2

𝑂𝑅 
𝑑2𝑇

𝑑𝑥2
[1 + 𝜔(𝑇 − 𝑇𝑎)] + 𝜔 (

𝑑𝑇

𝑑𝑥
)
2

  

Now Equation 3.00  becomes 

𝑘𝑎𝐴𝑏
𝑑2𝑇

𝑑𝑥2
[1 + 𝜔(𝑇 − 𝑇𝑎)] +

𝑑

𝑑𝑇
[1 + 𝜔(𝑇 − 𝑇𝑎)] (

𝑑𝑇

𝑑𝑥
)
2
+ 𝜀𝜎(𝑇4 − 𝑇𝑎

4) +  ℎ(𝑇 − 𝑇𝑎) + 𝑄
∗ =

0                                                                                                                                     3.01 

                                                                                                                                          

Introducing the dimensionless parameters  
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𝜃 =
𝑇

𝑇𝑏
  
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑇 = 𝜃𝑇𝑏;   𝜃𝑎 =

𝑇𝑎
𝑇𝑏
 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑇𝑎 = 𝜃𝑎𝑇𝑏;    𝑋 =

𝑥

𝐿
 
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑥 = 𝑋𝐿;   𝐵 =

𝜀𝜎𝐿2𝑇𝑏
3

𝐴𝑏𝑘𝑎
;   

𝐴2 =
ℎ𝐿2

𝐴𝑏𝑘𝑎
;     𝜙 =

𝐿2𝑄∗

𝐴𝑏𝑘𝑎𝑇𝑏
. 

𝑘𝑎𝐴𝑏
𝑑2(𝜃𝑇𝑏)

𝑑(𝑋𝐿)2
[1 + 𝜔𝑇𝑏(𝜃 − 𝜃𝑎)] + 𝜔 (

𝑑𝜃𝑇𝑏

𝑑𝑋𝐿
)
2
+ 𝜀𝜎𝑇𝑏

4(𝜃4 − 𝜃𝑎
4) +  ℎ𝑇𝑏(𝜃 − 𝜃𝑎) + 𝑄

∗ = 0 

𝑘𝑎𝐴𝑏𝑇𝑏

𝐿2
𝑑2𝜃

𝑑𝑋2
+
𝜔𝑘𝑎𝐴𝑏𝑇𝑏

2

𝐿2
(𝜃 − 𝜃𝑎)

𝑑2𝜃

𝑑𝑋2
+ 

𝜔𝑇𝑏
2

𝐿2
(
𝑑𝜃

𝑑𝑋
)
2
 + 𝜀𝜎𝑇𝑏

4(𝜃4 − 𝜃𝑎
4) +  ℎ𝑇𝑏(𝜃 − 𝜃𝑎) + 𝑄

∗ = 0  

Dividing through by  
𝑘𝑎𝐴𝑏𝑇𝑏

𝐿2
 and introducing the dimensionless constants we have: 

𝛼 (
𝑑𝜃

𝑑𝑋
)
2

+
𝑑2𝜃

𝑑𝑋2
+ 𝛼𝜃

𝑑2𝜃

𝑑𝑋2
− 𝛼𝜃𝑎

𝑑2𝜃

𝑑𝑋2
− 𝐴2𝜃 + 𝐴2𝜃𝑎 − 𝐵𝜃

4 + 𝐵𝜃𝑎
4 +𝜙 = 0 

Applying the properties of differential transform we have: 

𝑑2𝜃

𝑑𝑋2
= (𝑛 + 1)(𝑛 + 2)𝑊(𝑛 + 2);   𝜃

𝑑2𝜃

𝑑𝑋2
= ∑ 𝑊(𝑚)(𝑛 − 𝑚 + 1)(𝑛 − 𝑚 + 2)𝑊(𝑛 − 𝑚 + 2);   

𝑛

𝑚=0

 

(
𝑑𝜃

𝑑𝑋
)
2

= ∑(𝑚 + 1)𝑊(𝑚 + 1)(𝑛 − 𝑚 + 1)

𝑛

𝑚=0

𝑊(𝑛 −𝑚 + 1);   𝜃4 = ∑ ∑ ∑ 𝑊(𝑚)𝑊(𝑛 − 𝑚)𝑊(𝑚 − 𝑝)𝑊(𝑝 − 𝑞)

𝑚−𝑝

𝑞=0

𝑛−𝑚

𝑝=0

𝑛

𝑚=0

 

Now putting the transforms in the non-dimensionalized differential equation we have: 

(𝑛 + 1)(𝑛 + 2)𝑊(𝑛 + 2) + 𝛼 ∑(𝑚 + 1)𝑊(𝑚 + 1)(𝑛 −𝑚 + 1)

𝑛

𝑚=0

𝑊(𝑛 −𝑚 + 1)

+ 𝛼 ∑ 𝑊(𝑚)(𝑛 −𝑚 + 1)(𝑛 −𝑚 + 2)𝑊(𝑛 −𝑚 + 2) − 𝛼𝜃𝑎(𝑛 + 1)(𝑛 + 2)𝑊(𝑛 + 2) − 𝐴
2𝑊(𝑛)

𝑛

𝑚=0

+ 𝐵  ∑ ∑ ∑ 𝑊(𝑚)𝑊(𝑛 −𝑚)𝑊(𝑚 − 𝑝)𝑊(𝑝 − 𝑞)

𝑚−𝑝

𝑞=0

𝑛−𝑚

𝑝=0

𝑛

𝑚=0

+ (𝐵𝜃𝑎
4 + 𝐴2𝜃𝑎 + 𝜙)𝛿(𝑚)

= 0                                                                                                                                               (3.04)                   

𝑊ℎ𝑒𝑟𝑒 𝛿(𝑚) = {
1, 𝑚 = 𝑛
0, 𝑛 ≠ 𝑚

  

Boundary conditions are W(1) = 0,    ∑ W(m) = 1∞
𝑛=0   𝑎𝑛𝑑 𝑊(0) = 𝑏 

When n=0, Equation 3.04 becomes 

𝑊(2) =
−𝜙+𝑏𝐴2+𝑏4𝐵−𝐴2𝜃𝑎−𝐵𝜃𝑎

4

2(1+𝑏𝛽−𝛽𝜃𝑎)
                                                                             (3.03) 

𝑊(3) = 0, 

𝑊(4) =
𝐴2𝑊(2)−6𝛽𝑊(2)2

12(1+𝑏𝛼−𝛼𝜃𝑎)
                                                                                                 (3.04) 

𝑊(5) = 0 

𝑊(6) =
𝑊(4)−30𝛽𝑊(2)𝑊(4)

30((1+𝑏𝛼−𝛼𝜃𝑎))
                                                                                           (3.05) 

𝑊(7) = 0… 

Writing out the solution up to k=7 we have: 

𝜃(𝑋) = ∑𝑊(𝐾)𝑋𝐾 = 𝑏 +𝑊(2)𝑋2 +𝑊(4)𝑋4 +𝑊(6)𝑋6
7

𝑘=0

 

Hence 𝜃(𝑋) = 𝑏 +
−𝜙+𝑏𝐴2+𝑏4𝐵−𝐴2𝜃𝑎−𝐵𝜃𝑎

4

2(1+𝑏𝛼−𝛼𝜃𝑎)
𝑋2 +

𝐴2𝑊(2)−6𝛼𝑊(2)2

12(1+𝑏𝛼−𝛼𝜃𝑎)
𝑋4 +

𝑊(4)−30𝛼𝑊(2)𝑊(4)

30((1+𝑏𝛼−𝛼𝜃𝑎))
𝑋6 +⋯  5 

Exponential Profile 

𝜏(𝑥) = 𝜏𝑏𝑒
𝑏(
𝑥

𝐿
)
………

𝑥

𝐿
= 𝑋 

𝜏(𝑥) = 𝜏𝑏𝑒
𝑏𝑋 ………𝜏𝑏 = 𝐴𝑏  

𝜏(𝑥) = 𝐴𝑏𝑒
𝑎𝑋 
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𝑑

𝑑𝑥
[𝑘𝑎[1 + 𝜔(𝑇 − 𝑇𝑎)]𝐴𝑏𝑒

𝑏𝑋 ×
𝑑𝑇

𝑑𝑥
]= 𝑘𝑎𝐴𝑏

𝑑

𝑑𝑥
[[1 + 𝜔(𝑇 − 𝑇𝑎)]𝑒

𝑏𝑋 ×
𝑑𝑇

𝑑𝑥
] 

𝑑

𝑑𝑥
[[1 + 𝜔(𝑇 − 𝑇𝑎)]𝑒

𝑎𝑋 ×
𝑑𝑇

𝑑𝑥
] = 𝑒𝑎𝑋

𝑑2𝑇

𝑑𝑥2
[1 + 𝜔(𝑇 − 𝑇𝑎)] +

𝑑

𝑑𝑇
𝑒𝑎𝑋[1 + 𝜔(𝑇 − 𝑇𝑎)]

𝑑𝑇

𝑑𝑥
×
𝑑𝑇

𝑑𝑥
+

𝑑

𝑑𝑥
𝑒𝑏𝑋[1 + 𝜔(𝑇 − 𝑇𝑎)]

𝑑𝑇

𝑑𝑥
  𝑂𝑅  

 𝑒𝑎𝑋
𝑑2𝑇

𝑑𝑥2
[1 + 𝜔(𝑇 − 𝑇𝑎)] + 𝑒

𝑎𝑋
𝑑

𝑑𝑇
[1 + 𝜔(𝑇 − 𝑇𝑎)] (

𝑑𝑇

𝑑𝑥
)
2

+ 𝑏𝑒𝑏𝑋[1 + 𝜔(𝑇 − 𝑇𝑎)] 

Introducing dimensionless parameters and simplifying the differential equation becomes: 

𝑒𝑏𝑋
𝑑2𝜃

𝑑𝑋2
[1 + 𝜔(𝜃 − 𝜃𝑎)] + 𝑒

𝑏𝑋𝜔(
𝑑𝜃

𝑑𝑋
)
2

+ 𝑏𝑒𝑏𝑋[1 + 𝜔(𝜃 − 𝜃𝑎)]
𝑑𝜃

𝑑𝑋
− 𝐵(𝜃4 − 𝜃𝑎

4) − 𝐴2(𝜃 − 𝜃𝑎) + 𝜙 = 0 

The equation thus becomes: 

𝑒𝑏𝑋𝜃′′ + 𝜔𝜃𝑒𝑎𝑋𝜃′′ −𝜔𝜃𝑎𝑒
𝑏𝑋𝜃′′ + 𝜔𝑒𝑏𝑋(𝜃′)2 + 𝑏𝑒𝑏𝑋𝜃′ + 𝑏𝜔𝑒𝑏𝑋𝜃′ − 𝑏𝜃𝑎𝑒

𝑏𝑋𝜃′ − 𝐵𝜃4 + 𝐵𝜃𝑎
4 − 𝐴2𝜃 + 𝐴𝜃𝑎 + 𝜙

= 0                                                                                                                                                                  

Applying differential transform to all terms we have: 

∑
𝑏𝑚

𝑚!
𝑛
𝑚=0 (𝑛 −𝑚 + 1)(𝑛 −𝑚 + 2)𝑊(𝑛 −𝑚 + 2) + 𝛼 ∑

𝑏𝑚

𝑚!
𝑛
𝑚=0 ∑ 𝑊(𝑚)(𝑛 −𝑚 − 𝑝 + 1)𝑛−𝑚

𝑝=0 (𝑛 − 𝑚 − 𝑝 + 2)𝑊(𝑛 −𝑚 − 𝑝 +

2) − 𝛼𝜃𝑎 ∑
𝑏𝑚

𝑚!
𝑛
𝑚=0 (𝑛 − 𝑚 + 1)(𝑛 − 𝑚 + 2)𝑊(𝑛 −𝑚 + 2) + 𝑏∑

𝑏𝑚

𝑚!
 𝑛

𝑚=0 (𝑛 −𝑚 + 1)𝑊(𝑛 −𝑚 + 1) +

𝑏𝛼 ∑
𝑎𝑚

𝑚!
𝑛
𝑚=0 ∑ 𝑊(𝑚)(𝑛 − 𝑚 − 𝑝 + 1)𝑛−𝑚

𝑝=0 𝑊(𝑛 −𝑚 − 𝑝 + 1) − 𝑏𝛼𝜃𝑎 ∑
𝑏𝑚

𝑚!
𝑛
𝑚=0 ∑ (𝑛 −𝑚 − 𝑝 + 1)𝑛−𝑚

𝑝=0 𝑊(𝑛 −𝑚 − 𝑝 + 1) +

𝛼 ∑
𝑏𝑚

𝑚!
𝑛
𝑚=0 ∑ (𝑚 + 1)𝑊(𝑚 + 1)𝑛−𝑚

𝑝=0 (𝑛 − 𝑚 − 𝑝 + 1)𝑊(𝑛 − 𝑚 − 𝑝 + 1) + 𝐵∑ ∑ ∑ 𝑊(𝑚)
𝑚−𝑝
𝑟=0 𝑊(𝑛 −𝑚)𝑛−𝑚

𝑝=0
𝑛
𝑚=0 𝑊(𝑚 −

𝑝)𝑊(𝑝 − 𝑟) + 𝐴2𝑊(𝑛) + (𝐵𝜃𝑎
4 +𝑁2𝜃𝑎 +𝜙)𝛿(𝑚) = 0                                                                                                                              (3.06) 

Upon applying the boundary conditions evoked: the following solutions are obtained: 

𝑊(2) =
−𝜙+𝑏𝐴2+𝑏4𝐵−𝐴2𝜃𝑎−𝐵𝜃𝑎

4

2(1+𝑏𝛼−𝛼𝜃𝑎)
                                                                                       (3.07) 

𝑊(3) =
−2𝑏𝑊(2)−𝑏𝛼𝑊(2)−𝑏2𝛼𝑊(2)+2𝑎𝛼𝜃𝑎𝑊(2)

3(1+𝑏𝛼−𝛼𝜃𝑎)
                                                     (3.08) 

𝑊(4)

=
−3𝑏2𝑊(2) + 𝐴2𝑊(2) − 2𝑏𝛼𝑊(2) + 3𝑏2𝛼𝜃𝑎𝑊(2) − 4𝑏𝛼𝜃𝑎𝑊(2)

2 − 𝑏2𝛼𝑊(2)2 − 9𝑏𝑊(3) − 6𝑏𝛼𝑊(3) − 3𝑏2𝛼𝑊(3) + 9𝑏𝛼𝜃𝑎𝑊(3) +⋯

12(1 + 𝑏𝛼 − 𝛼𝜃𝑎)
 

Hence: 

 

𝜃(𝑋) = 𝑊(0) +𝑊(1)𝑋 +𝑊(2)𝑋2 +𝑊(3)𝑋3 +𝑊(4)𝑋4 +⋯ 

𝜃(𝑋) = 𝑏 +
−𝜙+𝑏𝐴2+𝑏4𝐵−𝐴2𝜃𝑎−𝐵𝜃𝑎

4

2(1+𝑏𝛼−𝛼𝜃𝑎)
𝑋2 +

−2𝑏𝑊(2)−𝑏𝛼𝑊(2)−𝑏2𝛼𝑊(2)+2𝑎𝛼𝜃𝑎𝑊(2)

3(1+𝑏𝛼−𝛼𝜃𝑎)
𝑋3 +

−3𝑏2𝑊(2)+𝐴2𝑊(2)−2𝑏𝛼𝑊(2)+3𝑏2𝛼𝜃𝑎𝑊(2)−4𝑏𝛼𝜃𝑎𝑊(2)
2−𝑏2𝛼𝑊(2)2−9𝑏𝑊(3)−6𝑏𝛼𝑊(3)−3𝑏2𝛼𝑊(3)+9𝑏𝛼𝜃𝑎𝑊(3)+⋯

12(1+𝑏𝛼−𝛼𝜃𝑎)
  

𝑋4                                                                                                                                                 (3.09) 

Triangular Fin 

According to Ikram Ullah et al, neglecting porosity, the governing equation is given as: 

𝑋 𝜃′′ + 𝜃′ + 𝑋 𝑃𝑒 𝜃′ − (𝐴2 + 𝐵)𝜃 − 𝐴2𝜃𝑎 + 𝐵𝜃𝑠 + 𝑄𝑋 = 0 

Where Pe = peclet number as given by literature; A = conduction-convection constant; B = convection-radiation constant; the radiation effect is 

modified by writing:      

The boundary conditions are: 

1. At x = L, T = 𝑇𝑏 (fin base temperature) 

2. At x = 0, 
𝑑𝑇

𝑑𝑥
= 1 

Equ. 3.13 becomes: 

𝑊(𝑚 + 1) =
1

𝑚(𝑚+1)2
[(𝐴2 + 𝐵)𝑊(𝑚) − 𝑃𝑒∑ 𝛿(𝑛

𝑚=0 𝑚− 1)(𝑛 − 𝑚 + 1)𝑊(𝑛 − 𝑚 + 1) − 𝜙∑ 𝛿𝑛
𝑚=0 (𝑚 − 1)) − (𝐴2𝜃𝑎 +

𝐵𝜃𝑠)𝛿(𝑚)]                                                                                                             (3.14) 

From the boundary conditions W(1) = 0 and W(0) = a, We have the following solutions: 
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𝑊(2) =
𝜙

6
                                                                                                                                  (3.10) 

𝑊(3) =
1

12
[(−2𝑃𝑒 + 𝐴2 + 𝐵)

𝜙

6
− 𝜙] =

(−2𝑃𝑒 + 𝐴2 + 𝐵 − 6)𝜙

72
 

𝑊(4) =
1

20
[𝐴2 + 𝐵 − 3𝑃𝑒𝑊(3) − 𝜙] 

𝑊(5) =
1

30
[𝐴2 + 𝐵 − 4𝑃𝑒𝑊(4) − 𝜙] 

The complete solution is therefore: 

𝜃(𝑋) =  ∑ 𝑊(𝑚)

𝑛

𝑚=0

𝑋𝑚 

𝜃(𝑋) = 𝑊(0) +𝑊(1)𝑋 +𝑊(2)𝑋2 +𝑊(3)𝑋3 +𝑊(4)𝑋4 +𝑊(5)𝑋5 +⋯ 

𝜃(𝑋) = 𝑝 +𝑊(2)𝑋2 +𝑊(3)𝑋3 +𝑊(4)𝑋4 +𝑊(5)𝑋5 +⋯ 

Using the boundary condition 𝜃(1) = 0,  when X = 1, 𝜃 = 0 

𝑝 +
𝜙

6
+
(−2𝑃𝑒 + 𝐴2 + 𝐵 − 6)𝜙

72
+
1

20
[𝐴2 + 𝐵 − 3𝑃𝑒𝑊(3) − 𝜙] +

1

30
[𝐴2 + 𝐵 − 4𝑃𝑒𝑊(4) − 𝜙] = 0 

Using MATLAB, for A = 0.80, B = 0.30, 𝜙 = 0.25, Pe = 0.15…….The constant p is obtained as 0.96144. 

Putting the value of p in the series solution, we have: 

𝜃(𝑋) = 0.96144 +𝑊(2)𝑋2 +𝑊(3)𝑋3 +𝑊(4)𝑋4 +𝑊(5)𝑋5 +⋯             (3.11) 

The temperature distribution can thus be obtained for known values of A, B, 𝜙 and Pe. 

 

Trapezoidal fins 

The DTM coupled with pade approximant as proposed by Jayaprakash et al. (2021) will be applied in this analysis. The thermal conductivity is 

assumed to vary in accordance with power law. The same governing equation is used as with the case of rectangular fins but the thermal conductivity k 

and the convective heat transfer coefficient h are non-linear with respect to temperature as 

shown:                                                                                                                                        

𝑘(𝑇) = 𝑘𝑟 (
𝑇−𝑇𝑟

𝑇𝑏−𝑇𝑟
)
𝑛

        (3.12) 

𝑊ℎ𝑒𝑟𝑒 𝑇𝑟 = 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑜𝑟 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 

 𝑘𝑟 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑢𝑛𝑑𝑒𝑟 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

ℎ(𝑇) =  ℎ𝑟 (
𝑇−𝑇𝑟

𝑇𝑏−𝑇𝑟
)
𝑝
                                                                                                 (3.13) 

It should be noted that n and p are positive numbers. If n and p are equal to zero, linearity arises in the sense that the thermal 

conductivity and convective heat transfer coefficient each vary linearly with temperature. 

 

Figure1.3 Trapezoidal Fin….M.C Jayaprakash et al. 

According to Aziz et al. (2009), the one dimensional heat equation which governs heat transfer through a trapezoidal fin is given by: 
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𝑑

𝑑𝑥
[𝑘∗(𝑇) 𝑡(𝑥)

𝑑𝑇

𝑑𝑥
] + 𝜌𝑐𝑝𝑡(𝑥)𝑈

𝑑𝑇

𝑑𝑥
+ 𝑞(𝑇)𝑡(𝑥) = ℎ∗(𝑇)(𝑇 − 𝑇𝑎) + 𝜎𝜀

∗(𝑇4 − 𝑇𝑎
4)                        

     (3.14) 

In Equ. 3.19 above: 

k * (T) = variable thermal conductivity in (W/mK) 

t (x) = local semi fin thickness (m) = (𝑡𝑏 + 𝛿
∗ [(

𝑥

𝐿
) − 1])                              (3.15) 

tb = semi-base thickness, 𝛿∗= semi-offset(m) 

U = velocity at which the fin is moving (m/s) 

x = axial distance(m) ;  L = length of the fin(m) ;   q(T) = internal heat generated per unit volume(W/m3) 

𝑞(𝑇) =  𝑞0[1 + 𝜈(𝑇 − 𝑇𝑎)]         (3.16) 

Note: The internal heat generated per unit volume varies linearly with temperature  

The following dimensionless parameters are invoked into Equ. 3.14 

𝜃 =
𝑇 − 𝑇𝑎
𝑇𝑏 − 𝑇𝑎

;      𝛽 = 𝜑(𝑇𝑏 − 𝑇𝑎);    𝛾 = 𝜈(𝑇𝑏 − 𝑇𝑎);   𝑋 =
𝑥

𝐿
;   𝑁𝑎 =

ℎ𝑏𝐿
2

𝑘𝑎𝑡𝑏
; 

 𝑁𝑟 =
𝜎𝜖∗𝐿2(𝑇𝑏 − 𝑇𝑎)

3

𝑘𝑎𝑡𝑏
;    𝑃𝑒 =

𝜌𝑐𝑝𝑈𝐿

𝑘𝑎
;  𝑁𝑡 =

𝑇𝑎
𝑇𝑏 − 𝑇𝑎

;    𝑄 =
𝐿2𝑞𝑜
𝑇𝑏 − 𝑇𝑎

;   𝐶 =
𝛿∗

𝑡𝑏
 

Now, substituting t (x) and dimensionless parameters in Equ. 3.14 then applying differential transform, we have: 

W (0) = p and W(1) = 0. We have: 

𝑊(2) = −
𝑝4𝑁𝑟+4𝑝

3𝑁𝑟𝑁𝑡+6𝑝
2𝑁𝑟𝑁𝑡

2+4𝑝𝑁𝑟𝑁𝑡
3−𝑝𝑄𝛾+𝑝𝑁𝑐+𝐶𝑄−𝑄

2𝐵(𝐶−1)
  

𝑊(3) = −
2𝑝5𝐶𝑁𝑟+8𝑝

4𝐶𝑁𝑟𝑁𝑡+12𝑝
3𝐶𝑁𝑟𝑁𝑡

3+8𝑝2𝐶𝑁𝑟𝑁𝑡
3−𝑝2𝐶𝑄𝛾+2𝑝2𝐶𝑁𝑐+𝑝𝐶

2𝑄−𝑝𝐶𝑄

6𝐵2(𝐶−1)2
  

And so on… 

Hence: 

𝜃(𝑋) = 𝑊(0)𝑋0 +𝑊(1)𝑋1 +𝑊(2)𝑋2 +𝑊(3)𝑋3 +⋯ 

𝜃(𝑋) = 𝑝 − (
𝑝4𝑁𝑟+4𝑝

3𝑁𝑟𝑁𝑡+6𝑝
2𝑁𝑟𝑁𝑡

2+4𝑝𝑁𝑟𝑁𝑡
3−𝑝𝑄𝛾+𝑝𝑁𝑐+𝐶𝑄−𝑄

2𝑝(𝐶−1)
)𝑋2 −

(
2𝑝5𝐶𝑁𝑟+8𝑝

4𝐶𝑁𝑟𝑁𝑡+12𝑝
3𝐶𝑁𝑟𝑁𝑡

3+8𝑝2𝐶𝑁𝑟𝑁𝑡
3−𝑝2𝐶𝑄𝛾+2𝑝2𝐶𝑁𝑐+𝑝𝐶

2𝑄−𝑝𝐶𝑄

6𝑝2(𝐶−1)2
)𝑋3 +⋯        (3.17) 

The value of p can be obtained using pade approximant an approximate value of p is 0.9929. Now using assumed values of 0.91, 0.92, 

0.15, 0.35, 0.98 and 0.95 for parameters 𝑁𝑟, 𝑁𝑐 𝑁𝑡, C, Q and 𝛾 respectively. We have: 

𝜃(𝑋) = 0.9929 + 3.755𝑋2 − 0.4385𝑋3 +⋯              (3.18) 

When Nr is raised to 1.5 and other parameter fixed, Equ. 3.25 becomes: 

𝜃(𝑋) = 0.9929 + 1.29𝑋2 − 0.7013𝑋3 +⋯               (3.19) 

Convex Fins 

Referring to Equation 25 with 𝜏(𝑥) = 𝐴𝑏 (
𝑥

𝐿
)

1

2
. Upon substituting and introducing dimensionless constants the equation becomes 

𝛽 (
𝑑𝜃

𝑑𝑋
)
2
+ [1 + 𝛽(𝜃 − 𝜃𝑎)]

𝑑2𝜃

𝑑𝑋2
− 4𝐵𝑋(𝜃4 − 𝜃𝑎

4) − 4𝑋𝐴2(𝜃 − 𝜃𝑎) + 4𝜙𝑋 = 0                     (3.20) 

After applying differential transform and invoking the boundary conditions we have: 

 

𝑊(0) = 𝑑;    𝑊(1) = 0    (𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

𝑊(2) = 𝑊(4) = 𝑊(5) = 𝑊(7) = 𝑊(8) = 0 

𝑊(3) =
2(𝜙 − 𝑑𝐴2 + 𝑑𝐴2𝜃𝑎 + 𝑎𝐵𝜃𝑎

4)

3(1 + 𝑑𝛽 − 𝛽𝜃𝑎)
 

𝑊(6) =
4([𝐴2 − 4𝐴2𝜃𝑎 − 4𝐵𝜃𝑎

4]𝑊(3) − 15𝛽𝑊(3)2)

30(1 + 𝑑𝛽 − 𝛽 𝜃𝑎)
 

The dimensionless temperature profile is thus given as: 

𝜃(𝑋) = 𝑑 +𝑊(3)𝑋3 +𝑊(6)𝑋6 +⋯ 
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𝜃(𝑋) = 𝑑 + (
2(𝜙 − 𝑑𝐴2 + 𝑑𝐴2𝜃𝑎 + 𝑎𝐵𝜃𝑎

4)

3(1 + 𝑑𝛽 − 𝛽𝜃𝑎)
)𝑋3 + (

4([𝐴2 − 4𝐴2𝜃𝑎 − 4𝐵𝜃𝑎
4]𝑊(3) − 15𝛽𝑊(3)2)

30(1 + 𝑑𝛽 − 𝛽 𝜃𝑎)
) 𝑋6

+⋯                                  (3.29) 

Using guess values of 0.2, 0.85, 0.90, 0.45 and 0.20 for the dimensionless parameters 𝜙, 𝐴, 𝐵, 𝛽 𝑎𝑛𝑑 𝜃𝑎 respectively, the value of constant d is obtained 

by invoking the boundary condition 𝜃(1) = 1. Using MATLAB, the only real solution of d is 0.5626. 

 3.0 RESULTS AND DISCUSSIONS : 

The results of the profiles obtained by varying each parameter in turn are presented in this chapter. Fig. 4.0 shows the result obtained for assumed 

random values of A, B, 𝛽, 𝜃𝑎 and 𝜙. 

• In fig 4.01 – 4.03, all other parameters are fixed with 𝛽 varied (0.1, 0.5 and 1.0). 

• In fig 4.04 and 4.05, all other parameters are fixed while convection term A varies (1.50 and 2.00) 

• In fig 4.06 and 4.07, only the radiation term B is varied (6.00 and 15.00) 

• In Fig 4.08 – 4.10, the heat source term varies (0.10, 0.20 and 0.30) 

• In fig 4.11 – 4.13, 𝜃𝑎varies (0.10, 0.20 and 0.80) 

 

The figures are arranged from left to right in the following manner: 

Figure 4.00 (Profile of fins for A = 0.98, B = 1.00, 𝛽= 0.40, 𝜃𝑎 = 0.60 and 𝜙 = 0.42) 

Figure 4.01 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.60 and 𝜙 = 0.42) 

Figure 4.02 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.50, 𝜃𝑎 = 0.30 and 𝜙 = 0.42) 

Figure 4.03 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 1.0, 𝜃𝑎 = 0.30 and 𝜙 = 0.42) 

Figure 4.04 (Profile of fins for A = 1.50, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.42) 

Figure 4.05 (Profile of fins for A = 2.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.42) 

Figure 4.06 (Profile of fins for A = 1.00, B = 6.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.42) 

Figure 4.07 (Profile of fins for A = 1.00, B = 15.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.42) 

Figure 4.08 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.1) 

Figure 4.09 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.2) 

Figure 4.10 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.30 and 𝜙 = 0.3) 

Figure 4.11 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.10 and 𝜙 = 0.420) 

Figure 4.12 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.20 and 𝜙 = 0.420) 

Figure 4.13 (Profile of fins for A = 1.00, B = 1.00, 𝛽= 0.10, 𝜃𝑎 = 0.80 and 𝜙 = 0.420) 

Figure 4.14 (Profile of trapezoidal fin for Nr = 0.91, Nt = 0.15, 𝛾= 0.950, 𝑄 = 0.980, 𝐶 = 0.35 and Nc = 0.92) 
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From the results obtained so far it is evident that: 

• The heating style gets more enhanced as the parameter A gets raised. For constant values of other parameters, an increase in A improves the 

thermal performance of all the profiles with the triangular profile showing a comparatively better performance (though going through only a 

slight temperature change across the length of the fin). The thermal profile obtained from ANSYS also show similar result. 

• There is a steady decrease in the temperature profile of the fin as the radiation parameter (B) increases. This may be attributed to the loss of 

temperature to the surrounding by radiation effect. 

• As 𝜃𝑎 increases, the temperature of the surrounding air increases, this in turn alters the rate at which heat is transmitted to the surface until 

the value of 𝜃𝑎 attains a particular value. 

• The internal heat generation term, 𝜙 also enhance the fin temperature. This may be due to the fact that larger heat dissipation triggers the fin 

to release more heat to the environment. 

Table 4.0 below also shows a comparison between recent research results endemic to the present work. From the table it is evident that the accuracy of 

differential transform method is much higher than that of variational iteration method (VIM), adomian decomposition method (ADM), homotopic 

perturbation method (HPM), galerkin method of weighted residual (GMWR) and variation of parameter method (VOP). 

It should be noted that the parameters used are A = 1.0, B = 0.0, 𝜙 = 0.0 and 𝛽 = 0.0 

 

X Exact 

Solution 

ADM 

Arglanturk et al. 

(2016) 

HPM 

Pranab et al. 

(2018) 

VIM 

Languri et al. 

(2018) 

GMWR 

Sobamowo 

(2015) 

DTM 

Ananth et al. 

(2022) 

DTM 

(This work) 

0.0 0.6480541 0.6480541 0.6480540 0.6480541 0.6480540 0.6480541 0.6480541 

0.1 0.6512970 0.6512970 0.6512970 0.6512970 0.6512970 0.6512970 0.6512970 

0.2 0.6610588 0.6610588 0.6610590 0.6610590 0.6610590 0.6610588 0.6610588 

0.3 0.6774361 0.6774361 0.6774361 0.6774360 0.6774360 0.6774360 0.6774361 

0.4 0.7005940 0.7005940 0.7005940 0.7005940 0.7005940 0.7005940 0.7005940 

0.5 0.7307630 0.7307631 0.7307631 0.7307630 0.7307630 0.7307630 0.7307632 

0.6 0.7682460 0.7682460 0.7682460 0.7682460 0.7682460 0.7682460 0.7682460 

0.7 0.8134180 0.8134180 0.8134180 0.8134180 0.8134180 0.8134180 0.8134180 

0.8 0.8667310 0.8667310 0.8667310 0.8667310 0.8667310 0.8667310 0.8667310 
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0.9 0.9287180 0.9287182 0.9287181 0.9287180 0.9287180 0.9287180 0.9287181 

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

1.0000 

Table 4.0: Temperature distribution through a rectangular fin as obtained by researchers 

The temperature profile obtained from MATLAB is also found to be much similar to the profile obtained by researchers. 

CONCLUSION AND RECOMMENDATION : 

In this research, temperature distribution in fins subjected to variable thermal conductivity, radiation at boundary and internal heat generation is carried 

out for five different configurations of longitudinal fins (rectangular, triangular, convex, trapezoidal and exponential). The heat transfer model is solved 

by differential transform method and the results are compared with the ones obtained by other researchers. The results are found to be of considerable 

similarity to what is found in literature, this shows that differential transform method is an efficient semi analytical approach to solving differential 

equations in nonlinear form. When compared to HPM and ADM, its syntax is lucid enough to grasp and the solution to the ODE can be obtained faster. 

I therefore recommend that researchers apply the differential transform method for the analysis of fins of other geometries (radial, inclined, etc.) as it 

minimizes the lead time required to obtain final results and also truncates errors obtained by HPM, ADM and other numerical methods   

 

REFERENCES : 

 

1. Afsharpanah F, Ajarostaghi S. S. M and Arici M. (2022). Parametric Study of Phase Change Time Reduction in Shell and Tube Ice Storage 

System with Anchor-type Fin Design. International Communication in Heat and Mass Transfer, 137, 106281. 

2. Ananth P. V, Hanumgowda B. N, Varma S. V. K, Zidan A. M, Alauouri M. K, C. S. K Raju, N. A Shah and P. Junsawang (2022). 

Dynamics of Heat Transfer Analysis of Convective-Radiative fins with Variable Thermal Conductivity and Heat Generation Using 

Differential Transform Method. Journal of Mathematics, 10(20), 3814. 

3. Chiba R. A. (2014). A Series Solution for Heat Conduction Problem with Phase Change in a Finite Slab. Journal of Applied Science, 

684293. 

4. Dermartini et al. (2004). Numerical and Experimental Analysis of the Turbulent Flow Through Channels With Baffle Plates. Society Of 

Mechanical Science and Engineering, 28, 233-241. 

5. Din Z. U, Ali A, Khan Z. A and Zaman G. (2023). Investigation of Moving Trapezoidal and Exponential Fins with Multiple Non-linearities. 

Ain Shams Engineering Journal, 14(5), 101959. 

6. Fallo N, Moitsheki R. J, Makinde O. D. (2018). Analysis of Heat Transfer in a Cylindrical Spine Fin with Variable Thermal Properties. 

Defect Diffus Forum, 387, 10-22. 

7. John R. Welling and C. B, Wooldridge. (1965) Free Convection Heat transfer from Vertical Fins. ASME Journal of Heat and Mass transfer, 

87(4), 439-444. 

8. Khater A. H, Temsah R. S, Hassan M. M. (2008). Chebyshev Collocation Method for Burger’s Type equations. Journal of Computational 

and Applied math, 222, 333-350. 

9. Kraus A. D, Aziz A, Welty J. R. (2002). Extended Surface Heat Transfer. John Wiley, NJ, USA. 

10. Languri E.M, Ganji  D. D.  Jamshidi N. (2008). Variational Iteration and Homotropy Perturbation Method for Fin Efficiency of Convective 

Straight Fins with Temperature Dependent Thermal Conductivity. Proceedings of the 5th WSEAS International Conference on Fluid 

Mechanics, Acapulo, Mexico, 25, 25-27. 

11. Majhi et al. (2020). A New Approach for Determining Fin Performance of an Annular Discc with Internal Heat Generation. Advances In 

Mechanical Engineering, 20, 1033-1043. 

12. Moradi. A, Ahmadiaka. H. (2010). Analytical Solution For Different Profiles of Fin with Temperature Dependent Thermal properties. 

Hindawi Publishig Corporation, Mathematical Problems In Engineering, 15, 568263. 

13. Ndlovu P. L. and Moitsheki. R. J. (2020). Steady State Heat Transfer Analysis in a Moving Rectangular Porous Fin. Propulsion and Power 

Research, 9(2), 188- 

14. Sabu et al. (2021). Significance of Nanoparticles’ Shape and Thermo-Hydrodynamic Slip Constraints on MHD alumina-water nanofluid 

flowing over a rotating disc: Passive Control Approach. International Community of Heat and Mass Transfer, 129, 1105711.  

15. Sajjan K, Shah N. A, Ahammad N. A, Raju C. S. K, Kumar M. D and Weera W. (2022). Nonlinear Boussinesq and Rosseland 

Approximations on 3D flow in an Interruption of Termary Nanoparticles with Various Shapes of Densities and Conductivity Properties. 

AIMS math, 7(10), 18416-18449. 

16. Shah N. A, Wakif A, El-Zahar E. R, Ahmad S and Yook S. (2022). Numerical Simulation of a Thermally Enhanced EMHD flow of a 

Heterogeneous Micropolar Mixture Comprising (60%)- Ethylene-Glycol (EG), (40%)- Water and CuO Nanomaterials: Case Study. Thermal 

Engineering, 35, 102046. 

17. Sobamowo G. M, Kamiyo O. M, Salami M. O and Yinusa A. A. (2019). Exploration of the Effects of Fin Geometry and Material Properties 

on Thermal Performance of Convective-Radiative Moving Fins. Engineering and Applied Science Letter, 2(3), 14-29.  

18. Sobamowo M. G, L. jayesimi, J. F Oyetoro. (2017). Heat transfer study in a convective-radiative fin with temperature dependent thermal 

conductivity and magnetic field using variation of parameter. Journal of Applied Mathematics and Computational Mechanics, 16(3), 85-96. 



    International Journal of Research Publication and Reviews, Vol (6), Issue (2), February (2025), Page – 01-11                           11 

 

19. Sobamowo. M. G. (2016). Thermal Analysis of Longitudinal Fin with Temperature Dependent Thermal Properties and Internal Heat 

Generation using Galerkin’s Method of Weighted Residuals. Applied Thermal Engineering, 99, 1316-1330 

20. Sowmya et al. (2021). Thermal distribution through a moving longitudinal fin with variable temperature dependent thermal properties using 

DTM-pade approximant, 28(21), 101097. 

 

 

 

 

 

 

 

 

 


