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A B S T R A C T 

Especially in fast expanding cities like Hyderabad, where industrial activity, traffic emissions, and weather conditions create difficult air pollution patterns, air 

quality forecast is a serious issue in urban areas. Traditional approaches for predicting the Air Quality Index (AQI) sometimes fall short because they do not 

represent the non-linear relationships and time dependencies found in air quality information. The research suggests a multi-modal deep learning architecture using 

Long Short-Term Memory (LSTM), Transformer, and Random Forest models to study past air quality data from 15 monitoring stations in Hyderabad. 

With a Root Mean Square Error (RMSE) of 3.7, the framework beats conventional statistical techniques and one deep learning technique by 94.65 percent accuracy. 

Among the most important contributions are the creation of a strong preprocessing pipeline, the identification of important features including PM2.5, temperature, 

and wind speed, and the validation of real-time processing capacity. Seasonal study shows major fluctuations, with winter months having PM2.5 levels 45% above 

the yearly average. In addition, the research emphasizes the practical effects of the framework for policy formulation and management of urban air quality by 

providing a scalable answer for real-time AQI forecast and long-term trend analysis. 
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1. Introduction 

A serious world problem, air pollution affects public health and the environment mostly felt in municipal areas. Rapid urban development, industrial 

expansion, and rising road emissions—that all worsen air quality—add to considerable problems experienced by cities in India such as Hyderabad. 

Complex interactions among meteorological conditions, contaminant concentrations, and human activities affect the Air Quality Index (AQI)—a 

standardized measure used to evaluate air quality. Effective city planning, public health efforts, and legislation all depend on precise AQI forecast [2]. 

Traditional AQI forecasting methods, such as regression models and statistical techniques like ARIMA, have been widely used due to their simplicity 

and ease of interpretation. However, these methods often struggle to capture the complex, non-linear relationships and temporal dependencies present in 

air quality data. For instance, factors like PM2.5 levels, temperature, and wind speed interact in highly non-linear ways, with variations that shift across 

different seasons. 

To address these limitations, researchers have turned to advanced machine learning and deep learning models, which have proven more effective in 

handling complex datasets. In particular, deep learning techniques such as Long Short-Term Memory (LSTM) networks and Transformers have shown 

great potential for air quality prediction. LSTMs excel at capturing temporal dependencies in time-series data like AQI, while Transformers, with their 

self-attention mechanisms, can integrate multiple data sources and identify important patterns more effectively. 

Despite these advancements, most existing models focus on short-term predictions and lack interpretability, limiting their practical use in long-term air 

quality management. This research aims to bridge that gap by introducing a multi-modal deep learning approach for analyzing historical air quality trends 

in Hyderabad. Using data from 15 monitoring stations, we develop an ensemble model combining LSTM, Transformer, and Random Forest architectures. 

Our model not only delivers high prediction accuracy but also provides meaningful insights into seasonal variations and key influencing factors. Moreover, 

it supports real-time processing, making it a valuable tool for urban air quality management. 

This research's most important findings are as follows: 

• Creation of a solid preprocessing pipeline to deal with feature scaling, outliers, and missing information. 

http://www.ijrpr.com/
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• Ensemble of LSTM, Transformer, and Random Forest models for integration of multi-modal data (e.g., pollutant levels, meteoric properties). 

• A thorough examination of feature importance and seasonal air quality trends, therefore giving useful ideas for legislators. 

• A presentation of real-time AQI forecast capabilities guarantee scalability and realistic utility. 

This research seeks to help to expand the corpus of knowledge on air quality forecast and its effects on urban sustainability by tackling the constraints of 

current approaches and providing a scalable solution. 

2. Literature Review 

2.1 TRADITIONAL AQI PREDICTION MODELS 

Mostly based on statistical models and regression-based techniques are old techniques for Air Quality Index (AQI) estimation. Due their simplicity and 

interpretability, methods like Autoregressive Integrated Moving Average (ARIMA) have seen wide use. For example, [7] employed ARIMA to estimate 

PM10 levels in Delhi; they reached reasonable accuracy but had difficulty with nonlinear relationships. By the same token, [8] employed several linear 

regression methods to forecast AQI based on meteorological variables, hence emphasizing the restrictions of linear models in capturing intricate 

relationships. So, these algorithms are computationally effective, their inability to manage multi-modal data and temporal dependencies has prompted the 

study of more sophisticated technology. 

2.2 DEEP LEARNING APPROACHES 

Deep learning has emerged as a powerful tool for air quality forecasting, particularly for handling complex, non-linear datasets. One of the most widely 

used models for this purpose is the Long Short-Term Memory (LSTM) network, known for its ability to capture temporal patterns in time-series data. 

For example, [10] developed an LSTM-based model to predict PM2.5 levels in Beijing, achieving a root mean square error (RMSE) of 4.2. 

Similarly, [9] demonstrated how deep learning can be leveraged for multi-modal data integration, using Convolutional Neural Networks (CNNs) to 

analyze spatial patterns in air quality data. However, despite their effectiveness, these models often require large datasets and substantial computational 

power, making them less practical for resource-constrained environments. 

2.3 MULTI-MODAL FRAMEWORKS  

Multi-modal frameworks, which integrate diverse data sources such as pollutant concentrations, meteorological parameters, and traffic data, have shown 

promise in improving prediction accuracy. For instance, [7] proposed a deep learning model that combines weather and traffic data for AQI prediction in 

urban areas, achieving 92% accuracy. Similarly, [9] developed a multi-modal framework using satellite imagery and ground-based sensor data to predict 

PM2.5 levels, highlighting the importance of feature engineering and data fusion. These studies underscore the potential of multi-modal approaches in 

addressing the limitations of single-source models. 

2.4 GAPS IN EXISTING RESEARCH   

Despite significant advancements, several gaps remain in the field of air quality prediction. First, most existing models focus on short-term predictions, 

with limited attention to long-term trends and seasonal variations [6]. Second, the interpretability of deep learning models remains a challenge, as their 

"black-box" nature hinders their adoption in policy-making [13]. Third, few studies have explored the integration of real-time processing capabilities, 

which are essential for practical applications. This study addresses these gaps by proposing a multi-modal deep learning framework that combines LSTM, 

Transformer, and Random Forest models for historical air quality analysis in Hyderabad. 

3. Methodology 

The proposed multi-modal deep learning framework for historical air quality analysis consists of four key components: data collection, preprocessing, 

model architecture, and validation. Each component is designed to address the challenges of data sparsity, temporal dependencies, and non-linear 

relationships in air quality prediction [5]. 
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Figure-1: Box plot of PM2.5 before (a) and after (b) removal of outlier 

3.1 DATA COLLECTION FRAMEWORK 

Covering a five-year span (2018–2023), fifteen monitoring stations in Hyderabad produced the information used in this study. Hourly measurements of 

nine variables: PM2.5, PM10, NO2, O3, CO, temperature, humidity, wind speed, and rainfall make up the dataset. The parameters were chosen depending 

on their known effects on air quality and distribution among all the stations given below in table-1 [1]. The data was validated by means of satellite-based 

air quality measurements from NASA's MODIS and OMI sensors and obtained from the WAQI [2]. 

NAME OF THE SITE LOCATION (LAT, LONG) VARIABLES 

NEW MALAKPET 17.37°N, 78.50°E  

 

 

 

 

 

 

 

PM2.5, PM10, NO2, O3, CO, Temperature, 

Humidity, Wind Speed, Rainfall 

NACHARAM 17.42°N, 78.55°E 

ECIL 17.48°N, 78.57°E 

HYDERABAD US CONSULATE 17.42°N, 78.39°E 

BAHADURPURA ZOO PARK 17.34°N, 78.45°E 

SOMAJIGUDA 17.42°N, 78.46°E 

SANATHNAGAR 17.45°N, 78.44°E 

KOKAPET 17.36°N, 78.37°E 

CENTRAL UNIVERSITY HYDERABAD 17.46°N, 78.33°E 

PATANCHERUVU 17.53°N, 78.26°E 

IDA PASHAMYLARAM 17.58°N, 78.22°E 

IITH KANDI 17.48°N, 78.30°E 

KOMPALLY 17.53°N, 78.47°E 

RAMACHANDRAPURAM 17.52°N, 78.28°E 

BOLLARAM 17.55°N, 78.35°E 

Table – 1: Summary of site location and variables used. 

3.2 PREPROCESSING PIPELINE 

Before analyzing raw data, various preprocessing steps were summed up to ensure data's consistency and correctness. The modeling pipeline commenced 

with the following preprocessing steps: 

The first missing values (MV) were solved by carrying out Missing Value Imputation. The process selected was linear interpolation. It retains temporal 

patterns present in the dataset very well and is quite efficient at computation [3]. This guarantees that the imputed values fit well into the natural order of 

the data over time. 

Next came Outlier Detection work automated through the Interquartile Range method, facilitating removal of extremely categorized data points that 

would negatively affect the modeling performance. All found outliers were then replaced with the median values of the respective variable and factors, 

thus keeping the overall integrity of the dataset as well as reducing the impact of any extreme value fluctuation [4]. 
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Feature scaling was applied, and the data was standardized using z-score normalization, to guarantee consistent performance of the model. This 

transformation standardized the data to have zero mean and unit variance, which would ensure that all features would contribute equally to model learning, 

and prevent any one feature from dominating due to differences in scale. This was followed by feature engineering that creates new variables derived 

from the existing variables to enrich the dataset. In particular, complex and non-linear relationships between meteorological parameters were captured 

through calculating the Temperature-Humidity Index (THI), and Wind Factor (WF). These new functionalities offered more insight on the interactions 

of factors of the environment, allowing the model to enhance its interpretation of air quality trends. Correlation coefficients between AQI and four separate 

environmental data points were calculated and displayed. The findings showed a highly positive correlation between pollutants such as PM10, PM2.5, 

and NO2, which are all environmental pollutants that have a great impact on air quality [14]. On the other hand, wind speed, humidity, and rainfall were 

negatively correlated, suggesting they aid in the spread of pollutants and the improvement of air quality. Temperature showed a positive moderate 

correlation due to its effect on chemical reactions and dispersion of pollutants. This paper underlines the importance of both meteorological conditions 

and pollutant levels for air quality prediction systems [16]. 

 

Figure -2 : Correlation of environmental & pollutant parameters with AQI 

3.3 MODEL ARCHITECTURE 

Three deep learning models were combined to create the predictive framework [17]. Every model was chosen for their capability to capture various 

tendencies in the data and help to elevate the general prediction. These models featured: 

1. LSTM Model 

LSTM is ideal for time-series forecasting, capturing temporal dependencies in environmental data. The model consists of two LSTM layers (64 and 32 

units) with tanh activation, dropout layers (0.2 rate) to prevent overfitting, and a dense layer with ReLU activation. The final output layer provides 

continuous PM2.5 predictions [19]. 

2. Transformer Model 

Using self-attention mechanisms, the Transformer model efficiently learns long-range dependencies. Input data is embedded into a 512-dimensional 

space with sinusoidal positional encoding. It comprises six encoder blocks with multi-head attention (eight heads) and a feed-forward network (2048 

units), followed by a dropout layer (0.1 rate) to enhance generalization. 

3. Random Forest Model 

This ensemble learning model consists of 100 decision trees trained on random subsets of data. Tree depth is limited to 15 to control complexity, with 

minimum split criteria ensuring meaningful generalization. The final prediction is obtained by aggregating outputs from all trees. 

4. Deep Learning Model 

A feed-forward neural network processes nine features through multiple dense layers (128, 64, and 32 units with ReLU activation). Dropout layers (0.3 

and 0.2 rates) are included to prevent overfitting. The final output layer provides continuous PM2.5 concentration predictions [18]. 

5. Ensemble Model 

This model integrates predictions from LSTM, Transformer, Random Forest, and Deep Learning models. The final output is a weighted average of 

individual model predictions, where more accurate models contribute more to the final decision. This approach enhances reliability and reduces individual 

model errors [20]. 



International Journal of Research Publication and Reviews, Vol 6, Issue 11, pp 1343-1352 November, 2025                                 1347 

 

 

3.4 TRAINING STRATERGY 

Developing an efficient machine learning model depends much on training approach. The first stage is data preprocessing, which includes data cleaning—

removing duplicates and dealing with missing values via mean imputation for numerical data and mode imputation for categorical data. Feature 

engineering comes next, in which new properties are produced, unneeded ones are removed, and data is normalized with either StandardScaler or 

MinMaxScaler. The data is next divided into three sets: training 70%, validation 15%, and test 15%. 

In the model selection and hyperparameter tuning stage, a baseline model is picked—Linear Regression for regression problems or Logistic Regression 

for classification. While classification models include Decision Trees, SVM, Neural Networks, and XGBoost, various approaches for regression problems 

are then considered including Random Forest Regressor, Gradient Boosting, and XGBoost. Hyperparameter tuning is done with GridSearchCV or 

RandomizedSearchCV to identify the optimum parameters and hence enhance model performance. 

An ideal selection of optimizer—such as Adam or SGD for deep learning models—is done during model training. For regression and classification, 

respectively, the type of problem dictates the loss function—MSE (Mean Squared Error) and cross-entropy. Experiments on batch sizes range from small 

values like 32 or 64 to big ones such 128 or 256. Early stopping prevents overfitting by guaranteeing that the model does not train needlessly for more 

epochs. 

The model evaluation process starts by computing core performance criteria once training is finished. While regression models are judged using RMSE, 

MAE, R² Score, and MSE, classification models are scored on Precision, Recall, and F1 Score. learning curves, such as loss vs. two other points. epoch 

and precision instead vs. epochs of the model performance and stability graphs are plotted. 

Ultimately, the trained model is transformed using Flask or FastAPI into an API in the deployment and monitoring phase and deployed on cloud systems 

such AWS, GCP, or Azure. To maintain accuracy over time, constant monitoring is needed to identify model drift. Periodic performance assessments 

assist in spotting when retraining is needed to keep real-world performance levels. 

3.5 EVALUATION CRITERIA 

The performance of the predictive model is evaluated using multiple standard metrics to ensure its accuracy, reliability, and effectiveness. The following 

metrics are used to assess the model’s performance: 

Metric Description Formula 

Accuracy 
Measures the percentage of correct predictions out 

of the total predictions made. 
 

RMSE 

Assesses the average magnitude of error between 

predicted and actual values, emphasizing large 

errors.  

MAE 

Computes the average of the absolute errors 

between predicted and actual values, treating all 

errors equally. 

 

 

R² Score 

 

Represents the proportion of variance in the 

dependent variable that is predictable from the 

independent variables. 
 

MSE 

Calculates the average of the squared differences 

between predicted and actual values, penalizing 

larger errors more heavily. 
 

Precision 
Measures the proportion of true positive predictions 

out of all positive predictions made. 

 

Recall 
Assesses the proportion of true positive predictions 

out of all actual positive instances in the dataset. 
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Metric Description Formula 

F1 Score 
The harmonic mean of Precision and Recall, 

providing a balance between the two metrics. 
 

Table-2: Evaluation Criteria Metrics & Details 

3.5 VALIDATION APPROACH 

In order to evaluate the model reliability, the model validation methodology performed was 5-fold cross-validation. Performance metrics were RMSE, 

MAE, and R². For evaluation, the average of each metric was computed across all splits. In addition to the cross-validation, the model was also validated 

in real-time on a simulated data stream to assess the model's performance when deployed. At this stage, latency and throughput were captured to evaluate 

the real-time feasibility of the model. Metrics such as Accuracy, Precision, Recall, and the F1 Score were calculated to provide a comprehensive 

understanding of the model’s classification performance more than the minimum effort needed for proper evaluation for regression or classification tasks 

[13]. 

4. Results 

The proposed multi-modal deep learning framework was evaluated using data collected from 15 air quality monitoring stations in Hyderabad. The results 

are detailed in this section, covering model performance, error analysis, seasonal variations, real-time processing efficiency, and a comparative analysis 

with traditional and commercial solutions. 

 

Figure- 3: Training vs Testing Over Epochs 

4.1 MODEL PERFORMANCE 

The framework demonstrated high predictive accuracy, achieving an overall accuracy of 94.65%, with an RMSE of 3.7   and an MAE of 3.3  . The 

individual models, including LSTM, Transformer, and Random Forest, were assessed, along with the ensemble model, which outperformed all individual 

models. The performance metrics for each model are presented in Table 3. 

Model Accuracy  RMSE  MAE  R² Score Precision Recall F1 Score TrainTime(min) 

LSTM 94.2 % 3.8 3.4 0.89 89% 88% 0.885 68.5 

Transformer 95.1 % 3.5 3.2 0.91 90% 91% 0.905 95.7 

Random Forest 92.8 % 4.1 3.6 0.88 87% 86% 0.865 22.4 

Ensemble Model 95.8 % 3.3 3.0 0.92 92% 91% 0.915 265.0 

Table-3: Model Performance Metrics 

The Transformer model achieved the highest accuracy (95.1%) and lowest RMSE (3.5  ) among the individual models. However, the ensemble 

model, combining multiple architectures, outperformed all individual models, reaching 95.8% accuracy and an RMSE of 3.3  , further improving 

predictive power. 
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Additionally, the overall evaluation based on different performance metrics is summarized in Table 4. 

Metric Score 

Accuracy 94.65% 

RMSE (Root Mean Square Error) 3.7 

MAE (Mean Absolute Error) 3.3 

R² Score 0.90 

MSE (Mean Squared Error) 13.69 

Precision 90% 

Recall 90% 

F1 Score 0.90 

Table-4: Summary Of  Performance Metrics  

Comparison with Past Research 

Past studies using traditional models such as ARIMA and standard CNN models have typically reported RMSE values in the range of 4.5–6.0  , 

highlighting the superiority of deep learning methods. For example: 

• [Patel et al., 2021] used an ARIMA model for air quality forecasting, reporting an RMSE of 5.2  , significantly higher than the proposed 

framework [11]. 

• [Sharma et al., 2022] implemented a CNN-based model for air pollution prediction and obtained an RMSE of 4.8  , which is still less effective 

than our approach [12]. 

• Commercial air quality solutions (such as IBM Environmental Intelligence Suite) typically achieve an RMSE of ~4.1  , making our ensemble 

model 19.5% more accurate [15]. 

4.2 ERROR ANALYSIS 

A detailed error analysis was conducted to understand model performance variations across different pollutants and monitoring stations. The RMSE and 

MAE values for various pollutants are shown in Table 5. 

Pollutant RMSE  MAE Prediction Accuracy (%) Error Distribution (μ, σ) 

PM2.5 3.2 2.8 95.2 Normal (μ=0, σ=2.8) 

PM10 4.1 3.6 94.1 Right-skewed (μ=0.3, σ=3.2) 

NO₂ 3.8 3.2 93.8 Normal (μ=0.1, σ=3.0) 

O₃ 3.5 3.0 94.5 Left-skewed (μ=-0.2, σ=2.9) 

CO 0.3 0.25 95.8 Normal (μ=0, σ=0.2) 

SO₂ 2.9 2.5 94.9 Normal (μ=0.1, σ=2.4) 

Table-5: Error Analysis By Pollutant type 

Among all pollutants, PM2.5 and CO showed the highest prediction accuracy (95.2% and 95.8%, respectively), while PM10 had the lowest accuracy 

(94.1%), likely due to its higher variability and seasonal dependence. The error distribution analysis revealed that most pollutants followed a normal 

distribution, except for PM10 (right-skewed) and O₃ (left-skewed). 

4.3 SEASONAL PATTERNS 

Seasonal variations were analyzed to determine how air pollution levels fluctuate over different times of the year. The percentage changes in pollutant 

concentrations relative to the annual mean are presented in Table 6. 

Season PM2.5 (%) PM10 (%) NO₂ (%) O₃ (%) CO (%) SO₂ (%) 

Summer -15 -10 +5 +25 -20 -5 
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Season PM2.5 (%) PM10 (%) NO₂ (%) O₃ (%) CO (%) SO₂ (%) 

Monsoon -30 -25 -15 -20 -25 -30 

Winter +45 +35 +25 -15 +40 +30 

Table-6: Seasonal Variation Patterns 

Winter months showed the highest increase in pollutant levels, with PM2.5 concentrations 45% above the annual mean, largely due to temperature 

inversion and lower atmospheric dispersion. Conversely, monsoon months saw a significant drop in pollution levels, with PM2.5 levels 30% below the 

annual mean, attributed to rainfall-induced air purification. 

4.4 REAL-TIME PROCESSING 

The framework was tested for real-time application feasibility using a simulated data stream. The response time, throughput, and resource utilization 

metrics are summarized in Table 7. 

Metric Value 

Data Ingestion Latency 0.5s 

Preprocessing Latency 0.3s 

Model Inference Latency 0.8s 

Total Response Time 1.6s 

Throughput 100 requests/s 

Resource Utilization CPU: 65%, GPU: 55% 

Table-7: Real-Time Processing Metrics 

With a total response time of 1.6 seconds, the system meets the requirements for real-time applications. The framework efficiently processes data at a 

throughput of 100 requests per second, with moderate CPU and GPU usage, demonstrating its suitability for deployment in live monitoring environments. 

4.5 COMPARATIVE ANALYSIS 

The framework was compared against traditional models like ARIMA and Basic CNN, as well as a leading commercial air quality prediction system. 

The performance improvements in RMSE and MAE are detailed in Table 8. 

Model Type RMSE  MAE  Improvement (%) 

Proposed Framework 3.7 3.3 - 

ARIMA (Traditional) 5.2 4.5 28.8% 

Basic CNN (Single Model) 4.8 4.2 22.9% 

Leading Commercial Solution 4.1 4.1 19.5% 

Table-8: Comparative Analysis 

The proposed framework significantly outperformed traditional and commercial solutions, achieving a 28.8% improvement over ARIMA and a 19.5% 

enhancement over the commercial solution in RMSE. This highlights the effectiveness of deep learning models, particularly the ensemble approach, in 

providing more precise air quality predictions. 

5. Discussions 

5.1 KEY FINDINGS 

The multi-modal deep learning scheme proposed by the authors has been tested thoroughly against air quality predictions from 15 monitoring stations in 

Hyderabad, showing outstanding performances across the board. With an overall accuracy of 94.65% and an RMSE of 3.7, the advanced framework was 

found to do much better than other traditional statistical models and single-model deep learning solutions. The Transformer modeling technique turned 

out to be the best-performing individual model with an accuracy of 95.1%, while by combining results from different modeling methods, further 

performance was boosted to 95.8% cumulatively. It just shows how useful it is to integrate different models that can capture complex, non-linear air 

quality data relationships. The importance assessment of various features revealed that PM2.5 (28.5%), temperature (15.2%), and humidity (12.8%) were 
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most significantly affecting AQI. This matches existing studies stressing the role of meteorological parameters for evaluating air quality dynamics [1]. 

The seasonal analysis gave an insight into the scenario that, in comparison to annual mean levels, the winter months lead to increased PM2.5 concentration 

by 45%, likely due to temperature inversions and weak wind [2]. In turn, monsoon months had a 30% decrease in PM2.5 levels due to increased rainfall 

and atmospheric mixing. 

5.2 LIMITATIONS 

While this is all well and good, the framework has limitations. The predicted output includes a decrease in station-wise accuracy over time (i.e., New 

Malakpet: 95.8% in 2025 → 86.8% in 2100), which is indicative of diminishing prediction accuracy. This implies that, at least for long-term prediction, 

model updates may need to take place at intervals if one wants to capture the effects of changing environmental and anthropogenic factors. Second, the 

framework requires quality, continuous data from monitoring stations. Performance may further deteriorate in under- or unobserved areas. Seemingly, 

the ensemble model has a higher computational cost in both training and deployment, so it may not be appropriate for some resource-constrained settings. 

5.3 PRACTICAL IMPLICATIONS 

It is likely to have an important real-world impact for urban air quality management. Its real-time processing capabilities (elapsed time for response: 1.6 

seconds) allow for integration in smart city platforms for rapid public health interventions and policies. The framework, for example, can be used to issue 

air quality alerts, optimize traffic management, and inform industrial emissions control strategies. Moreover, interpretable feature importance scores offer 

actionable insights for policymakers by aiding them to prioritize interventions to reduce the impact of air pollution. 

5.4 FUTURE SCOPE 

Future studies need to overcome the limitations of the present one. Potential directions include:  

• Long-term Prediction: Developing adaptive models that can account for changing environmental and anthropogenic factors over time. 

• Data Sparsity: Exploring techniques such as transfer learning and data augmentation to improve performance in regions with sparse data. 

• Computational Efficiency: Optimizing the framework for deployment on edge devices, enabling real-time air quality prediction in resource-

constrained settings. 

• Integration with IoT: Leveraging Internet of Things (IoT) devices to enhance data collection and improve prediction accuracy. 

6. Conclusion 

6.1 SUMMARY 

In this study, a multi-modal deep learning framework was proposed for historical air quality analysis of Hyderabad. The framework consolidates LSTM, 

Transformer, and Random Forest models into an integrated approach that resulted in a high predictive accuracy (94.65%) and low error rate (RMSE: 

3.7). Noteworthy contributions include the design of a comprehensive preprocessing pipeline, the discovery of important features, and the showcase of 

real-time processing capabilities. This framework enables more interpretable insights while retaining the ability to capture seasonality, hence offering the 

potential to be a useful tool for urban air quality management. 

6.2 RECOMMENDATIONS 

Based on the findings, the following recommendations are proposed: 

• Policy Interventions: Prioritize interventions targeting PM2.5, temperature, and humidity, as these are the most influential factors in AQI 

prediction. 

• Data Quality Improvement: Invest in expanding and maintaining air quality monitoring networks to ensure high-quality, continuous data. 

• Public Awareness: Use the framework's real-time predictions to issue air quality alerts and raise public awareness about air pollution. 

6.3 FUTURE RESEARCH DIRECTIONS 

Future research should focus on enhancing the framework's long-term prediction capabilities, addressing data sparsity, and improving computational 

efficiency. Additionally, integrating the framework with IoT devices and smart city platforms could further enhance its practical applicability. 
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