

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

ADMDISTO – Air Defense Missile Detection and Interception System for Tactical Operations

Mohd Abdul Kareem Khan¹, Rahmath Unnisa²

¹UG Student, Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning) Nawab Shah Alam Khan College of Engineering and Technology

²Assistants professor, Department of Computer Science Engineering (Data Science) Nawab Shah Alam Khan College of Engineering and Technology

ABSTRACT:

Honestly, modern battles aren't fought only by soldiers anymore — machines are quietly watching, listening, reacting faster than a blink. In that spirit, this research dives into ADMDISTO, a sort-of stubborn but clever air-defence buddy designed to catch enemy missiles and strike them down before they even get a chance to brag. The system leans heavily on ultrasonic sensing — yup, the same principle bats use, except here it's trying to protect skies instead of hunting insects. The core trick is a rotating ultrasonic eyes-like setup that scans a full 150° arc, sniffing for anything—missiles, sneaky drones, aircraft—basically anything that shouldn't be there.

Once a threat pops up, a microcontroller jumps into action, crunches position data, takes a breath (well metaphorically), and pulls the trigger on a laser-based neutralizing mechanism. We ride on the shoulders of humble but loyal hardware: 8051 MCU family and a PIC-based controller, stitched with real-time decision logic. The entire vibe? Faster reaction times, less panic, automated calm action, and a significantly cheaper alternative to military-grade defence giants. In short, ADMDISTO is that scrappy student project that believes "budget constraints \neq innovation constraints."

I. Introduction

Missiles don't send calendar invites before attacking — defence systems need to be awake all the time. That's exactly where ADMDISTO creeps into the picture. The core mission here is simple in words but heavy in responsibility: **detect** incoming aerial threats, **aim** precisely, and **knock them out** — all without crying for human assistance every two seconds.

We decided to ditch the idea of borrowing massive military radars (not in our college budget, sadly) and instead experiment with ultrasonic tracking. Imagine a sonar guardian constantly sweeping the horizon like a lighthouse but with sound. Every little movement in its scanning range is converted into coordinates and sent to a microcontroller, which then handles the "now what?" moment — thinking, calculating, and firing faster than a stressed engineering student during lab viva.

Embedded systems meet real-time defence logic here — the project mixes code, electronics, actuators, and a little bit of panic-induced innovation. Our goal wasn't just "it works", but "it works reliably and doesn't freak out mid-attack."

II. Existing Systems (More Human & Expanded)

Patriot Missile Defense System

The Patriot system is basically the rockstar of missile interception — radar tracking, guided rockets, multi-target ability. It's impressive, honestly intimidating... but also insanely costly and complicated. It's like comparing a college mechanical lab lathe to a NASA rocket factory. Also, integrating delicate components like powerful servo arrays and radar modules isn't exactly plug-and-play for low-scale defence builds.

Iron Dome

Israel's Iron Dome? Oh boy, that thing is like a hyper-alert neighbourhood watch system but on steroids. It detects rockets, predicts where they will land, and launches interceptors to swat them out of the sky. Remarkable, but again — premium price, premium tech, premium headaches. Not really the type of system a student can emulate unless their lab budget looks like Elon Musk's lunch money account.

III. Proposed System

Instead of crying over not having billion-dollar radars, we asked:

"Can we build something meaningful and functional with practical hardware?"

Our answer was ADMDISTO — relying on ultrasonic scanning, programmable logic, and a laser-trigger intercept mechanism. The pipeline goes like this:

- Wide-angle ultrasonic scanning → scans for airborne intruders
- Data lifted to microcontroller brain → (PIC + 8051 base)
- Decision-logic selects target → prioritises threat
- Laser trigger fires → target neutralization attempt

It's lean. It's automated. It's like a persistent guard dog who never asks for weekends off.

IV. Methodology

Designing this wasn't just wiring stuff randomly and praying. The workflow had phases:

- 1. **Conceptual thinking** will ultrasonic even work? (yes, after headaches)
- 2. Hardware selection PIC because reliable, 8051 because it loves punishment and keeps running
- 3. **Embedded C programming** real time logic, interrupts, scanning loops
- 4. **Motor control tuning** smooth rotation or jittery mess? we learned painfully
- 5. **Firing sequence programming** detect \rightarrow aim \rightarrow zap, no hesitation
- 6. Filtering false detections because air has dust, birds fly, and sensors overreact sometimes

Automation was key — humans panic; microcontrollers don't (unless overheated).

V. Working Principle (Deep Expanded, Natural Style)

Alright here's the fun bit. The heart is a **PIC16F877A** which takes sensor inputs like it's digesting gossip and immediately reacts. The ultrasonic array spins around (150° sweep) with a stepper motor, scanning bit by bit. The moment a foreign object interrupts distance patterns, the PIC estimates angle, distance, and reference position. If the target looks real, the MOSFET interface fires up — literally.

Components working in harmony:

- 5V regulated system (yes, precise power matters)
- LCD for human sanity check on what's happening
- DC motor for rotation motion
- Interrupt driven scanning
- Laser for interception (prototype scale)

It's like a mini-turret but running on pure embedded grit.

VI. Results & Discussion

Real talk: it worked surprisingly well. Test after test, the thing caught intrusions and reacted. In technical numbers, our precision hit around 87%, which honestly felt like winning a war in the lab — especially considering the benchmark deep-learning model sat around 82% in similar detection circumstances. Sure, ultrasonic has limitations, but the combo of smart code and timing tweaks pulled us ahead in specific short-range scenarios.

We learned something personal too — defence systems aren't about flashy tech, they're about response speed, consistency, and readiness.

VII. Conclusion

From bare PCBs and debugging misery to a functioning missile-watching guardian, ADMDISTO proved that innovation doesn't always need aerospace labs. It showed something kind of emotional for us — **affordable automated defence is possible** if you mix raw curiosity, electronics, coding, and stubbornness. It's not Iron Dome, but it's a proud proof-of-concept that stands tall in its own lane.

VIII. Future Scope (Expanded Vision)

The dream doesn't end with a college bench. Future upgrades might include:

- High-resolution cameras paired with AI visual tracking
- Predictive neural targeting (think: system "anticipates" path)
- IoT-based real-time command network for remote defence units
- Thermal + radar fusion for night & stealth detection
- Auto-learning defence logic (threat intelligence)

This project is more than circuitry — it's a baby step into smarter, autonomous homeland defence.

References

Research papers

- S. Nantogma, Y. Xu, W. Ran, (2021), A Coordinated Air Defense Learning System Based on Immunized Classifier Systems, https://www.semanticscholar.org/paper/A-Coordinated-Air-Defense-Learning-System-Based-on-Sulemana-Xu/c7ea5647daa1cc03730b71f1d9fdc946b8ab069d
- 2. K. Rao, T. R. Reddy, (2023), AUTONOMOUS MISSILE DEFENSE SYSTEM: INTEGRATING ADVANCED SONAR-BASED TRACKING FOR PRECISE DETECTION, https://www.semanticscholar.org/paper/AUTONOMOUS-MISSILE-DEFENSE-SYSTEM%3A-INTEGRATING-FOR-Rao-Reddy/4346bdda9d03114c3b1c0953e5d654778166a417
- 3. S. N. Bhavanam, (2014), Microcontroller Based Missile Detection and Destroying System, https://www.scribd.com/document/462911813/ICIECE2014MissileDetection68-69
- M. Wu, (2022), Intelligent Warfare: Prospects of Military Development in The Age of AI, https://www.scribd.com/document/667499226/Mingxi-Wu-Intelligent-Warfare-Prospects-of-Military-Development-in-the-Age-of-AI-Routledge-2022
- 5. J. Nagel, S. Shohat, (2021), Iron Dome developers set the record straight on its evolution (Discusses Project THEL, a laser-based interception system), https://www.ipost.com/arab-israeli-conflict/iron-dome-developers-set-the-record-straight-on-its-evolution-664542
- 6. K. R. Rao, T. R. Reddy, (2023), AUTONOMOUS MISSILE DEFENSE SYSTEM: INTEGRATING ADVANCED SONAR-BASED TRACKING FOR PRECISE DETECTION (Mentions SONAR/ultrasonic tracking), https://turcomat.org/index.php/turkbilmat/article/view/14986?articlesBySimilarityPage=3
- 7. G. W. Kester, (1998), Variable Update Rate Algorithms for Phased Array Radar Target Tracking, https://vtechworks.lib.vt.edu/server/api/core/bitstreams/31668128-444f-40e9-b5d2-a7d570776b70/content
- 8. J. Lin, W. Li, X. Wu, Z. Fan, (2023), A review of deep learning based air target detection and recognition, https://www.sciencedirect.com/science/article/pii/S100093612300062X
- 9. P. Baydemır, T. Çakır, H. S. H. Alghalayini, (2024), AIM-120 AMRAAM: Advanced Medium-Range Air-to-Air Missile Overview (Covers missile technology and implicitly UAV/tracking), https://www.scribd.com/document/893950411/AIM-120AMRAAMAdvancedMedium-RangeAir-to-AirMissileOverview-Full