

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Design of Advanced Solar Powered Water Pumping System with Mobile Control

Harshada Bhangre, Kaveri Gaikwad, Vaishnavi Bhoi, Shital Thakare

Department of Electronics Engineering, R.S.M Polytechnic College, Nashik, India

ABSTRACT:

This paper presents the design and implementation of an advanced solar-powered water pumping system controlled through a mobile application using an 8051 microcontroller and an ESP8266 Wi-Fi module. The system efficiently utilizes solar energy to operate a DC pump via a Maximum Power Point Tracking (MPPT) charge controller. Through Wi-Fi connectivity, the ESP8266 communicates with a mobile application built on the Blynk platform, enabling real-time monitoring and remote control. The proposed system automates irrigation and water management in rural and agricultural areas, reducing manual effort and dependence on grid electricity. The system is designed to pump 5000 liters of water per day from a 10-meter head using a 100W solar panel with MPPT and battery backup.

Keywords: Solar Energy, 8051 Microcontroller, ESP8266, IoT, MPPT, Water Pump, Blynk App, Renewable Energy, Automation.

1. Introduction:

The need for sustainable water pumping solutions has increased due to the depletion of fossil fuels and the rising cost of electricity. Solar energy offers a renewable and eco-friendly alternative for powering irrigation systems in rural areas. The integration of Internet of Things (IoT) technology enhances system performance by enabling remote monitoring and control through mobile applications. This project uses an 8051 microcontroller as the main control unit, connected to sensors, a relay driver, and the ESP8266 Wi-Fi module to enable real-time communication with the user via the Blynk mobile app. The system automates irrigation based on water levels, thus saving time, energy, and resources.

2. Methodology

The design and development of the Advanced Solar-Powered Water Pumping System with Mobile Control using 8051 Microcontroller aim to provide a sustainable, intelligent, and remotely operable solution for efficient water pumping, especially in rural and agricultural applications where conventional power supply is limited. The methodology followed for this project is divided into several stages: system design, component selection, circuit implementation, programming, and testing.

System Design Overview

The proposed system integrates renewable solar energy with microcontroller-based automation and GSM mobile communication. The solar photovoltaic panel is used to harness energy from sunlight, which is stored in a battery through a charge controller. The stored energy powers a DC water pump, which is controlled by an 8051 microcontroller. The user can control the operation of the pump remotely by sending an SMS command through a mobile phone, which is received by the GSM module connected to the microcontroller.

Hardware Methodology

The hardware section is the foundation of the proposed system. It includes the solar power unit, microcontroller circuit, relay driver, GSM module, and pump control system.

Relay Driver and Pump Control Circuit

The microcontroller output current is insufficient to drive the water pump directly. Hence, a relay driver circuit is used. The signal from the microcontroller triggers a transistor (BC547), which energizes the relay coil. The relay acts as an electromechanical switch that connects or disconnects the pump to the power supply.

2.1 Literature Review:

Several studies have explored solar-based water pumping systems using different microcontrollers and communication technologies. Earlier models used Arduino and GSM modules, which were limited by high cost and low data speed. The 8051 microcontroller, combined with the ESP8266 Wi-Fi module, provides a cost-effective and efficient alternative for IoT-based applications. Research indicates that using MPPT (Maximum Power Point Tracking) controllers increases solar panel efficiency by up to 25%, while IoT-based control systems improve reliability and convenience. Previous work has demonstrated that integrating smart control with renewable energy leads to optimized water management in agriculture.

Researchers have developed several approaches to enhance the efficiency and control of solar-powered water pumping systems. Early systems utilized direct DC coupling between solar panels and water pumps, which resulted in significant energy losses due to fluctuating solar irradiance. Later designs incorporated Maximum Power Point Tracking (MPPT) technology, which maximizes energy extraction from solar panels under variable weather conditions. Studies have shown that MPPT-based controllers can improve overall efficiency by 20–30% compared to fixed-voltage systems.

Initial implementations used Arduino and PIC microcontrollers for controlling solar pumps and monitoring system parameters. For example, Arduino-based systems provided basic automation features, while PIC microcontrollers offered more precision but required complex programming. However, these systems had limitations in scalability, connectivity, and data monitoring, as they lacked advanced wireless communication feature.

2.2 Review of Related Literature

In recent years, numerous studies have been conducted on solar-powered water pumping systems and their integration with microcontroller-based control units. Traditional solar pumping systems were mostly designed using simple DC motors and lead-acid batteries, which lacked smart monitoring and efficiency optimization. Researchers have since introduced microcontroller-based control systems, such as Arduino and PIC, to enhance automation and energy utilization.

According to previous works, systems employing Arduino microcontrollers and GSM modules enabled SMS-based pump control but suffered from high operational costs and limited feedback capability. To overcome these drawbacks, IoT-based monitoring systems using Wi-Fi and cloud integration have been developed, allowing real-time data access and control through mobile applications.

The use of Maximum Power Point Tracking (MPPT) technology in solar charge controllers has been shown to increase the efficiency of solar energy conversion by up to 20–30%, making it an essential component in advanced designs. Additionally, incorporating microcontrollers like the 8051 with ESP8266 Wi-Fi modules allows seamless communication between hardware and mobile applications such as Blynk, improving usability and system reliability.

Studies have also highlighted the benefits of using sensor-based automation, particularly for water level and voltage monitoring, to reduce energy waste and prevent pump dry-running conditions. These advancements demonstrate that the integration of IoT with solar-powered water pumping systems significantly enhances system performance, efficiency, and user convenience in agricultural and rural water management applications.

3.1 Block Diagram:

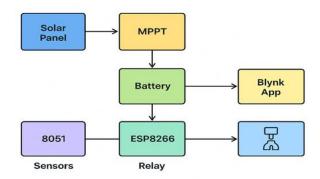


Fig 3.1: Block Diagram

Components and Operation:

- Solar Panel (100W): Converts sunlight into electrical energy.
- MPPT Charge Controller: Optimizes power extraction from the solar panel.
- Battery (12V): Stores energy for operation during low sunlight conditions.

- 8051 Microcontroller: Acts as the brain of the system; processes sensor data and controls the pump.
- ESP8266 Wi-Fi Module: Enables wireless communication with the mobile app.
- Relay Driver (ULN2003): Controls the switching of the DC pump.
- DC Water Pump: Pumps water from the source to the destination tank.
- Sensors: Measure voltage, current, and water levels.
- Blynk App: Provides a graphical interface for users to control and monitor the pump remotely.

3.2 Working Principle

The working principle of the Advanced Solar Powered Water Pumping System using 8051 Microcontroller is based on the efficient conversion of solar energy into electrical energy and its intelligent utilization for water pumping through automated and remote control mechanisms. The system integrates renewable energy harvesting, smart power management, and IoT-based monitoring to achieve energy efficiency and user convenience.

1. Solar Energy Conversion

The operation begins when sunlight falls on the solar photovoltaic (PV) panel, which converts solar radiation into direct current (DC) electricity. The output voltage and current from the solar panel vary according to the intensity of sunlight. This energy is passed to the MPPT (Maximum Power Point Tracking) charge controller, which ensures that the panel operates at its optimum voltage and current levels. The MPPT circuit continuously tracks and adjusts the operating point of the panel to extract maximum possible power, thereby improving the overall efficiency by 20–30%.

2. Energy Storage and Supply

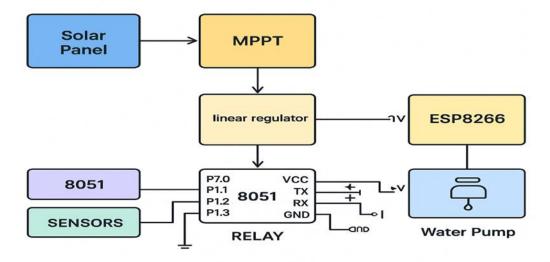
The regulated output from the MPPT charge controller is used to charge a 12V rechargeable battery. This battery acts as an energy reservoir, ensuring continuous operation of the system during cloudy conditions or nighttime. The stored energy from the battery is supplied to the control circuitry, including the 8051 microcontroller, sensors, and relay driver circuits. The pump also draws power from this battery when required.

3. Control and Sensing Mechanism

The 8051 microcontroller serves as the brain of the system. It receives input signals from multiple sensors that continuously monitor system parameters such as:

- Voltage Sensor: Measures the battery voltage to prevent overcharging or deep discharge.
- Current Sensor (ACS712): Monitors current drawn by the pump to detect overload or dry-run conditions.
- Water Level Sensors: Detect the water level in the source and storage tanks to prevent dry running and overflow.

The microcontroller processes these signals and takes intelligent control decisions. If the battery voltage is sufficient and the water level in the tank is below the threshold, the controller activates the relay driver circuit (ULN2003) to switch ON the DC water pump. When the upper level sensor in the tank is triggered (indicating full capacity), the microcontroller automatically switches OFF the pump to conserve energy and water.


4. IoT and Remote Operation

The ESP8266 Wi-Fi module provides wireless connectivity between the 8051 microcontroller and the Blynk mobile application. Through this mobile interface, users can:

- Monitor real-time data such as solar voltage, current, battery status, and water level.
- Manually turn the pump ON or OFF from any location with internet access.
- · Receive alerts or notifications about system conditions such as low battery, high tank level, or pump failure.

The communication between the ESP8266 and 8051 microcontroller is achieved using serial UART communication. The 8051 sends sensor data to the ESP8266, which then transmits it to the Blynk cloud platform for real-time visualization on the user's mobile device.

3.3 Circuit Diagram

Future Scope:

This system can be further enhanced by integrating additional sensors such as soil moisture or weather sensors for precision irrigation. Future versions can include GSM or LoRa modules for remote areas without internet access and implement AI-based data analytics for predictive maintenance and efficient water management.

Conclusion:

The proposed solar-powered water pumping system using the 8051 microcontroller and ESP8266 Wi-Fi module offers an efficient, eco-friendly, and cost-effective solution for water management in agricultural and rural applications. The combination of solar power, MPPT technology, and IoT-based control ensures optimized energy use and automation. The system reduces manual labor and dependence on grid electricity, promoting sustainable development.

Acknowledgment:

The authors would like to express their deep sense of gratitude to the Department of Electronics Engineering, R.S.M. Polytechnic College, Nashik, for providing the opportunity and necessary resources to carry out this project successfully. The authors are especially thankful to their respected guide and faculty members for their valuable guidance, technical assistance, and continuous encouragement throughout the design and development of this work.

Sincere thanks are also extended to the laboratory staff for their support during hardware testing and circuit implementation. The authors are grateful to their classmates and friends for their cooperation and constructive suggestions, which helped in improving the quality of this paper.