
International Journal of Research Publication and Reviews, Vol (6), Issue (11), November (2025), Page – 1108-1112                          

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

A General Formula for The Sum of Squares in Arithmetic Sequences 

Nelson Muhati  

Department of Mathematics, Kibabii University, 1699-50200, Bungoma, Kenya 

A B S T R A C T 

This paper presents a general formula for computing the sum of squares of terms in an arithmetic sequence with arbitrary first term, common difference and number 

of terms. While existing formulas for sums of squares typically apply only to natural numbers, the proposed formula extends to all real numbers, including negative, 

rational and decimal values. The derivation uses the method of finite differences systematically examining sequences with common differences of 1 through 5 to 

identify patterns which are then generalized. This work provides a unified approach applicable to diverse computational contexts. 
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1. Introduction 

An arithmetic sequence is a sequence of numbers where consecutive terms differ by a constant value called the common difference. For an arithmetic 

sequence with first term a and common difference d, the sum of the first n terms is given by: 

Formula 1.1: 

Sₙ = (n/2) [2a + (n-1) d] 

The problem of finding sums of squares has a rich historical context. The classical formula for the sum of squares of the first n natural numbers, Σᵢ₌₁ⁿ i² 

= n(n+1) (2n+1)/6, has been known since ancient times and appears in numerous mathematical texts. However, extending this result to arbitrary arithmetic 

sequences presents additional challenges that have attracted scholarly attention over centuries. This paper extends existing results to develop a general 

formula applicable to arithmetic sequences with any real-valued first term and common difference using the method of finite differences as a systematic 

derivation tool. 

Notation: 

a = first term of the sequence 

d = common difference 

n = number of terms 

Σᵢ₌₁ⁿ [a + (i-1) d] ² = sum of squares of the first n terms 

2. Literature Review 

The study of sums of squares in arithmetic sequences has evolved significantly over the centuries with contributions from diverse mathematical traditions. 

2.1. Historical Development 

Early work on sums of squares dates back to ancient Indian mathematics. Mahavira's Ganita Sara Sangraha (circa 850 CE) contained formulas for 

computing sums of squares in arithmetic progressions, though these formulas were computationally complex (Mahavira, 1912). Later, in the 14th century, 

Narayana Pandita developed alternative formulations that were somewhat more manageable (Narayana Pandita, 1942). In medieval Europe, Fibonacci's 

Liber Abaci (1202) presented rules for computing sums of squares, though his methods primarily applied to sequences of natural numbers and certain 

special cases involving odd integers and specific multiples (Fibonacci, 1202). 

 

2.2. Classical Results 

The fundamental formula for the sum of squares of the first n natural numbers has been extensively studied and proven through various methods. The 

standard formula Σᵢ₌₁ⁿ i² = n(n+1) (2n+1)/6 provides the foundation for more general investigations (Burton, 2010). 

For arithmetic sequences with specific properties, specialized formulas exist. The sum of squares of n odd numbers is given by: n(2n+1) (2n-1)/3 while 

the sum of squares of n even numbers is expressed as 2n(n+1) (2n+1)/3. 

http://www.ijrpr.com/
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2.3. Modern Approaches 

Recent work has employed various mathematical techniques to derive general formulas: 

Method of Finite Differences: The finite differences method provides a systematic approach for finding polynomial formulas for sums, based on the 

principle that if successive differences eventually become constant, the sum can be expressed as a polynomial (Brousseau, 1968) (Graham, Knuth & 

Patashnik, 1994). This method has been particularly effective for sequences whose cumulative sums follows polynomial patterns. 

Geometric and Algebraic Methods: Apostol and Mnatsakanian (2011) investigated sums of squares of integers in arithmetic progression using 

geometric visualization techniques, providing alternative perspectives on classical formulas and extending results to more general cases (Apostol & 

Mnatsakanian, 2011). 

Contemporary Formulations: Ballew (2012) developed a formula for sums of squares in arithmetic sequences expressed as S = FLn + d²(n-1) n(2n-

1)/6, where F and L represent the first and last terms respectively (Ballew, 2012). This formulation offers computational advantages by relating the 

problem to the well-known sum of squares of natural numbers. 

3. Methodology and Results 

We employ the method of finite differences to derive the general formula. By examining specific cases with common differences d = 1, 2, 3, 4, and 5, 

we identify patterns in the coefficients that lead to a general expression. 

3.1. Pattern Analysis for d = 1 

Consider arithmetic sequences with common difference d = 1 and varying first terms. 

Case 1: First term a = 1 

Table 3.1: Finite Differences for Sequence Starting at 1 with d = 1 

Description Term 1  Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8 

Sequence 1 2 3 4 5 6 7 8 
Squares   1 4 9 16 25 36 49 64 

Cumulative Sum     1 5 14 30 55 91 140 204 

1st Difference     - 4 9 16 25 36 49 64 
2nd Difference     - - 5 7 9 11 13 15 

3rd Difference     - - - 2 2 2 2 2 

Formula: 1 + 4(n-1) + 5(n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6 

Case 2: First term a = 2 

Formula: 4 + 9(n-1) + 7(n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6 

Case 3: First term a = 3 

Formula: 9 + 16(n-1) + 9(n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6 

Pattern Identification: 

First coefficient: a² 

Second coefficient: (a+d) ² = (a+1) ² 

Third coefficient: 5 + 2(a-1) = 2a + 3 

Fourth coefficient: 2 (constant) 

General formula for d = 1: a² + (a+1) ² (n-1) + [2a+3] (n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6 

3.2. Pattern Analysis for d = 2, 3, 4, 5 

Following similar analysis for d = 2, 3, 4, and 5, we obtain: 

For d = 2: a² + (a+2) ²(n-1) + [16+4(a-1)] (n-2) (n-1)/2 + 8(n-3) (n-2) (n-1)/6 

For d = 3: a² + (a+3) ²(n-1) + [33+6(a-1)] (n-2) (n-1)/2 + 18(n-3) (n-2) (n-1)/6 

For d = 4: a² + (a+4) ²(n-1) + [56+8(a-1)] (n-2) (n-1)/2 + 32(n-3) (n-2) (n-1)/6 

For d = 5: a² + (a+5) ²(n-1) + [85+10(a-1)] (n-2) (n-1)/2 + 50(n-3) (n-2) (n-1)/6 

3.3. Derivation of the General Formula 

Let us denote the coefficients in the third and fourth terms as c₁, c₂, and D respectively: 

a² + (a+d) ²(n-1) + [c₁+c₂(a-1)] (n-2) (n-1)/2 + D(n-3) (n-2) (n-1)/6 

Analysis of c₁: 
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Table 3.2: Pattern Analysis for Coefficient c₁ 

D 1 2 3 4 5 

c₁              5 16 33 56 85 

1st Difference - 11 17 23 29 

2nd Difference - - 6 6 6 

This suggests: c₁ = 5 + 11(d-1) + 6(d-2) (d-1)/2 = 3d² + 2d 

Analysis of c₂: 

 

Table 3.3: Pattern Analysis for Coefficient c₂ 

d 1 2 3 4 5 

c₂ 2 4 6 8 10 

Clearly: c₂ = 2d 

Analysis of D: 

 

Table 3.4: Pattern Analysis for Coefficient D 

D 1 2 3 4 5 

D   2 8 18 32 50 

1st Difference - 6 10 14 18 
2nd Difference - - 4 4 4 

This gives: D = 2 + 6(d-1) + 4(d-2) (d-1)/2 = 2d² 

3.4. Final General Formula 

Substituting these expressions, we obtain: 

Main Formula: 

Σᵢ₌₁ⁿ [a+(i-1) d] ² = a² + (a+d) ²(n-1) + [3d²+2ad] (n-2) (n-1)/2 + (2d²/3) (n-3) (n-2) (n-1)/2            

This can be rewritten in compact form as: 

Compact Form: 

 Σᵢ₌₁ⁿ [a+(i-1) d] ² = a² + (a+d) ²(n-1) + X(n-2) (n-1) + Y(n-3) (n-2) (n-1)  

where: 

X = d(3d+2a)/2 

Y = d²/3 

4. Verification and Examples 

 Example 1: Find the sum of squares for the sequence 2, 5, 8, 11, 14 

Given: a = 2, d = 3, n = 5 

Direct calculation: 

2² + 5² + 8² + 11² + 14² = 4 + 25 + 64 + 121 + 196 = 410 

Using the formula: 

a² = 4 

(a+d) ²(n-1) = 5² (4) = 25(4) = 100 

X = 3(9+4)/2 = 3(13)/2 = 19.5 

X(n-2) (n-1) = 19.5(3)(4) = 234 

Y = 3²/3 = 3 

Y(n-3) (n-2) (n-1) = 3(2)(3)(4) = 72 

Sum = 4 + 100 + 234 + 72 = 410 ✓ 

Example 2: Sequence with negative terms: -3, 0, 3, 6 

Given: a = -3, d = 3, n = 4 

Direct calculation: 

(-3) ² + 0² + 3² + 6² = 9 + 0 + 9 + 36 = 54 

Using the formula: 

a² = 9 
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(a+d) ²(n-1) = 0² (3) = 0 

X = 3(9-6)/2 = 3(3)/2 = 4.5 

X(n-2) (n-1) = 4.5(2)(3) = 27 

Y = 3²/3 = 3 

Y(n-3) (n-2) (n-1) = 3(1)(2)(3) = 18 

Sum = 9 + 0 + 27 + 18 = 54 ✓ 

Example 3: Natural numbers 1, 2, 3, 4, 5, 6 

Given: a = 1, d = 1, n = 6 

Expected result: 1² + 2² + 3² + 4² + 5² + 6² = 1 + 4 + 9 + 16 + 25 + 36 = 91 

Using the formula: 

a² = 1 

(a+d) ²(n-1) = 2² (5) = 4(5) = 20 

X = 1(3+2)/2 = 5/2 = 2.5 

X(n-2) (n-1) = 2.5(4)(5) = 50 

Y = 1²/3 = 1/3 

Y(n-3) (n-2) (n-1) = (1/3) (3)(4)(5) = 20 

Sum = 1 + 20 + 50 + 20 = 91 ✓ 

Verification with classical formula: 

n(n+1) (2n+1)/6 = 6(7) (13)/6 = 91 ✓ 

5. Discussion 

The derived formula provides a unified approach to computing sums of squares for arithmetic sequences with arbitrary parameters. Unlike previous 

formulas restricted to natural numbers, this formula accommodates: Negative first terms, Negative common differences, Rational and irrational values 

and Both increasing and decreasing sequences 

The method of finite differences proves effective in identifying patterns and generalizing from specific cases. The formula's structure reveals the 

polynomial nature of such sums and connects to classical results when specialized to natural number sequences. 

5.1. Comparison with Existing Formulas 

Ballew's Formula (2012): S = FLn + d²(n-1) n(2n-1)/6 requires the first term (F), last term (L), number of terms (n), and common difference (d). Its 

primary advantage is the direct use of the last term. 

Our Formula: ∑  Σᵢ₌₁ⁿ [a+(i-1) d] ² = a² + (a+d) ²(n-1) + X(n-2) (n-1) + Y(n-3) (n-2) (n-1) requires only the first term (a), common difference (d), and 

number of terms (n). Its advantage lies in eliminating the need to calculate the last term, allowing it to work directly with initial parameters. 

Both approaches are mathematically equivalent but offer different computational advantages depending on the available information. 

5.2. Applications 

This formula has practical applications in several domains. In numerical analysis and computational mathematics, it enables efficient computation of 

quadratic sums in algorithms and error analysis in numerical methods. For statistical calculations, it provides means for variance and standard deviation 

computations as well as regression analysis with arithmetic progressions. In engineering problems, the formula applies to signal processing applications 

and structural analysis involving distributed loads. Educational contexts benefit from the formula's utility in teaching series and sequences and 

demonstrating pattern recognition in mathematics. 

5.3. Theoretical Significance 

The formula demonstrates that sums of squares in arithmetic sequences follow a polynomial pattern of degree 3 in n, consistent with general results about 

finite differences and polynomial expressions. The coefficients reveal systematic relationships between the sequence parameters (a, d) and the resulting 

sum. 

5.4. Limitations and Future Work 

Limitations. The formula becomes computationally intensive for very large $n$. Additionally, it requires careful attention to numerical precision for 

non-integer values. 
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Future Research Directions. Extension to higher-order powers (cubes, fourth powers, and beyond) represents a natural progression. Investigation of 

mixed polynomial sequences could broaden applicability. Development of similar formulas for geometric sequences would complement this work. 

Computational optimization for large-scale applications would enhance practical utility. Finally, generalization to non-constant differences (second-order 

sequences) could extend the methodology further. 

6. Conclusion 

This paper presents a general formula for the sum of squares of terms in an arithmetic sequence using the method of finite differences. The formula 

extends previous results to encompass all real-valued parameters, broadening its applicability in computational mathematics and related fields. Key 

contributions of this work include the following. First, the formula demonstrates universal applicability in working for any real-valued first term and 

common difference, including negative and non-integer values. Second, the systematic derivation using finite differences provides a transparent, 

reproducible approach to formula development. Third, multiple examples demonstrate the formula's correctness across diverse scenarios, verifying its 

accuracy. Fourth, the formula offers computational advantages in various mathematical, statistical, and engineering applications. The systematic 

derivation through pattern analysis provides both theoretical insight and practical utility for diverse applications. This work contributes to the ongoing 

development of summation techniques and demonstrates the power of finite differences as a tool for mathematical discovery. 
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