International Journal of Research Publication and Reviews, Vol (6), Issue (11), November (2025), Page — 1108-1112

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

WWW.IJRPR.COM

A General Formula for The Sum of Squares in Arithmetic Sequences

Nelson Muhati

Department of Mathematics, Kibabii University, 1699-50200, Bungoma, Kenya

ABSTRACT

This paper presents a general formula for computing the sum of squares of terms in an arithmetic sequence with arbitrary first term, common difference and number
of terms. While existing formulas for sums of squares typically apply only to natural numbers, the proposed formula extends to all real numbers, including negative,
rational and decimal values. The derivation uses the method of finite differences systematically examining sequences with common differences of 1 through 5 to

identify patterns which are then generalized. This work provides a unified approach applicable to diverse computational contexts.
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1. Introduction

An arithmetic sequence is a sequence of numbers where consecutive terms differ by a constant value called the common difference. For an arithmetic
sequence with first term a and common difference d, the sum of the first n terms is given by:

Formula 1.1:

Sh = (0/2) [2a + (n-1) d]

The problem of finding sums of squares has a rich historical context. The classical formula for the sum of squares of the first n natural numbers, Zi-i" i?
=n(n+1) (2n+1)/6, has been known since ancient times and appears in numerous mathematical texts. However, extending this result to arbitrary arithmetic
sequences presents additional challenges that have attracted scholarly attention over centuries. This paper extends existing results to develop a general
formula applicable to arithmetic sequences with any real-valued first term and common difference using the method of finite differences as a systematic
derivation tool.

Notation:

a = first term of the sequence

d = common difference

n = number of terms

Yi-i" [a + (i-1) d] 2 = sum of squares of the first n terms

2. Literature Review

The study of sums of squares in arithmetic sequences has evolved significantly over the centuries with contributions from diverse mathematical traditions.

2.1. Historical Development

Early work on sums of squares dates back to ancient Indian mathematics. Mahavira's Ganita Sara Sangraha (circa 850 CE) contained formulas for
computing sums of squares in arithmetic progressions, though these formulas were computationally complex (Mahavira, 1912). Later, in the 14th century,
Narayana Pandita developed alternative formulations that were somewhat more manageable (Narayana Pandita, 1942). In medieval Europe, Fibonacci's
Liber Abaci (1202) presented rules for computing sums of squares, though his methods primarily applied to sequences of natural numbers and certain
special cases involving odd integers and specific multiples (Fibonacci, 1202).

2.2. Classical Results

The fundamental formula for the sum of squares of the first n natural numbers has been extensively studied and proven through various methods. The
standard formula Xi-i" i> = n(n+1) (2n+1)/6 provides the foundation for more general investigations (Burton, 2010).

For arithmetic sequences with specific properties, specialized formulas exist. The sum of squares of n odd numbers is given by: n(2n+1) (2n-1)/3 while
the sum of squares of n even numbers is expressed as 2n(n+1) (2n+1)/3.
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2.3. Modern Approaches

Recent work has employed various mathematical techniques to derive general formulas:

Method of Finite Differences: The finite differences method provides a systematic approach for finding polynomial formulas for sums, based on the
principle that if successive differences eventually become constant, the sum can be expressed as a polynomial (Brousseau, 1968) (Graham, Knuth &
Patashnik, 1994). This method has been particularly effective for sequences whose cumulative sums follows polynomial patterns.

Geometric and Algebraic Methods: Apostol and Mnatsakanian (2011) investigated sums of squares of integers in arithmetic progression using
geometric visualization techniques, providing alternative perspectives on classical formulas and extending results to more general cases (Apostol &
Mnatsakanian, 2011).

Contemporary Formulations: Ballew (2012) developed a formula for sums of squares in arithmetic sequences expressed as S = FLn + d*(n-1) n(2n-
1)/6, where F and L represent the first and last terms respectively (Ballew, 2012). This formulation offers computational advantages by relating the
problem to the well-known sum of squares of natural numbers.

3. Methodology and Results

We employ the method of finite differences to derive the general formula. By examining specific cases with common differences d = 1, 2, 3, 4, and 5,
we identify patterns in the coefficients that lead to a general expression.

3.1. Pattern Analysis for d =1
Consider arithmetic sequences with common difference d = 1 and varying first terms.

Case 1: Firstterma =1
Table 3.1: Finite Differences for Sequence Starting at 1 withd =1

Description Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8
Sequence 1 2 3 4 5 6 7 8
Squares 1 4 9 16 25 36 49 64
Cumulative Sum 1 5 14 30 55 91 140 204

1st Difference - 4 9 16 25 36 49 64

2nd Difference - - 5 7 9 11 13 15

3rd Difference - - - 2 2 2 2 2

Formula: 1 + 4(n-1) + 5(n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6
Case 2: First term a =2

Formula: 4 + 9(n-1) + 7(n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6
Case 3: First terma =3

Formula: 9 + 16(n-1) + 9(n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6
Pattern Identification:

First coefficient: a*

Second coefficient: (a+d) 2= (a+1) 2

Third coefficient: 5 +2(a-1)=2a+3

Fourth coefficient: 2 (constant)

General formula for d = 1: a2 + (a+1) 2 (n-1) + [2a+3] (n-2) (n-1)/2 + 2(n-3) (n-2) (n-1)/6

3.2. Pattern Analysis ford =2, 3,4, 5

Following similar analysis for d = 2, 3, 4, and 5, we obtain:

Ford=2: a>+ (a+2) %(n-1) + [16+4(a-1)] (n-2) (n-1)/2 + 8(n-3) (n-2) (n-1)/6
Ford=3:a*+ (at+3) *(n-1) + [33+6(a-1)] (n-2) (n-1)/2 + 18(n-3) (n-2) (n-1)/6
For d=4: a> + (at+4) %(n-1) + [56+8(a-1)] (n-2) (n-1)/2 + 32(n-3) (n-2) (n-1)/6
Ford=5: a>+ (at+5) %(n-1) + [85+10(a-1)] (n-2) (n-1)/2 + 50(n-3) (n-2) (n-1)/6

3.3. Derivation of the General Formula

Let us denote the coefficients in the third and fourth terms as c1, c2, and D respectively:
a2+ (at+d) 2(n-1) + [citc2(a-1)] (n-2) (n-1)/2 + D(n-3) (n-2) (n-1)/6

Analysis of ci:
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Table 3.2: Pattern Analysis for Coefficient c:

D 1 2 3 4 5
ci 5 16 33 56 85
1st Difference - 11 17 23 29
2nd Difference - - 6 6 6
This suggests: ¢c1 =5 + 11(d-1) + 6(d-2) (d-1)/2 =3d>+ 2d
Analysis of c2:
Table 3.3: Pattern Analysis for Coefficient c:
d 1 2 3 4 5
[ 2 4 6 8 10
Clearly: c2=2d
Analysis of D:
Table 3.4: Pattern Analysis for Coefficient D
D 1 2 3 4 5
D 2 8 18 32 50
1st Difference - 6 10 14 18
2nd Difference - - 4 4

This gives: D =2 + 6(d-1) + 4(d-2) (d-1)/2 = 2d*

3.4. Final General Formula

Substituting these expressions, we obtain:

Main Formula:

i [a+(i-1) d] 2 = a% + (a+d) 2(n-1) + [3d*+2ad] (n-2) (n-1)/2 + (2d*/3) (n-3) (n-2) (n-1)/2
This can be rewritten in compact form as:

Compact Form:

Yia" [a+(i-1) d] 2 = a% + (a+d) *(n-1) + X(n-2) (n-1) + Y(n-3) (n-2) (n-1)

where:

X =d(3d+2a)/2

Y =d¥3

4. Verification and Examples

Example 1: Find the sum of squares for the sequence 2, 5, 8, 11, 14
Given:a=2,d=3,n=35

Direct calculation:

22+ 52+ 82+ 112+ 142=4+25+ 64 + 121 + 196 = 410
Using the formula:

a’=4

(at+d) 2(n-1) =52 (4) =25(4) = 100

X =3(9+4)2=3(13)/12=19.5

X(n-2) (n-1)=19.5(3)(4) =234

Y=3%3=3

Y(n-3) (n-2) (n-1)=3(2)(3)(4) =72
Sum=4+100+234+72=410 v

Example 2: Sequence with negative terms: -3, 0, 3, 6
Given:a=-3,d=3,n=4

Direct calculation:
(-3)2+02+32+6°=9+0+9+36="54

Using the formula:

a?=9
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(atd)2(n-1)=0*(3)=0
X=3(9-6)/2=3(3)2=4.5

X(n-2) (n-1)=4.5(2)(3) =27

Y=3%3=3

Y(n-3) (n-2) (n-1) =3(1)(2)(3)=18
Sum=9+0+27+18=54 v

Example 3: Natural numbers 1,2, 3,4, 5, 6
Given:a=1,d=1,n=6

Expected result: 12+22+32+42+52+62=1+4+9+16+25+36=91
Using the formula:

a?=1

(atd) 2(n-1)=22(5)=4(5)=20
X=13+2)2=5/2=25

X(n-2) (n-1) =2.5(4)(5) =50

Y=1%3=1/3

Y(n-3) (n-2) (n-1) = (1/3) 3)(4)(5) =20
Sum=1+20+50+20=91V
Verification with classical formula:

n(n+1) 2nt+1)/6 = 6(7) (13)/6 =91 v

5. Discussion

The derived formula provides a unified approach to computing sums of squares for arithmetic sequences with arbitrary parameters. Unlike previous
formulas restricted to natural numbers, this formula accommodates: Negative first terms, Negative common differences, Rational and irrational values
and Both increasing and decreasing sequences

The method of finite differences proves effective in identifying patterns and generalizing from specific cases. The formula's structure reveals the
polynomial nature of such sums and connects to classical results when specialized to natural number sequences.

5.1. Comparison with Existing Formulas

Ballew's Formula (2012): S = FLn + d*(n-1) n(2n-1)/6 requires the first term (F), last term (L), number of terms (n), and common difference (d). Its
primary advantage is the direct use of the last term.

Our Formula: )’ X" [at+(i-1) d] 2 = a> + (at+d) *(n-1) + X(n-2) (n-1) + Y(n-3) (n-2) (n-1) requires only the first term (a), common difference (d), and
number of terms (n). Its advantage lies in eliminating the need to calculate the last term, allowing it to work directly with initial parameters.

Both approaches are mathematically equivalent but offer different computational advantages depending on the available information.

5.2. Applications

This formula has practical applications in several domains. In numerical analysis and computational mathematics, it enables efficient computation of
quadratic sums in algorithms and error analysis in numerical methods. For statistical calculations, it provides means for variance and standard deviation
computations as well as regression analysis with arithmetic progressions. In engineering problems, the formula applies to signal processing applications
and structural analysis involving distributed loads. Educational contexts benefit from the formula's utility in teaching series and sequences and

demonstrating pattern recognition in mathematics.

5.3. Theoretical Significance

The formula demonstrates that sums of squares in arithmetic sequences follow a polynomial pattern of degree 3 in n, consistent with general results about
finite differences and polynomial expressions. The coefficients reveal systematic relationships between the sequence parameters (a, d) and the resulting
sum.

5.4. Limitations and Future Work

Limitations. The formula becomes computationally intensive for very large $n$. Additionally, it requires careful attention to numerical precision for

non-integer values.
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Future Research Directions. Extension to higher-order powers (cubes, fourth powers, and beyond) represents a natural progression. Investigation of
mixed polynomial sequences could broaden applicability. Development of similar formulas for geometric sequences would complement this work.
Computational optimization for large-scale applications would enhance practical utility. Finally, generalization to non-constant differences (second-order
sequences) could extend the methodology further.

6. Conclusion

This paper presents a general formula for the sum of squares of terms in an arithmetic sequence using the method of finite differences. The formula
extends previous results to encompass all real-valued parameters, broadening its applicability in computational mathematics and related fields. Key
contributions of this work include the following. First, the formula demonstrates universal applicability in working for any real-valued first term and
common difference, including negative and non-integer values. Second, the systematic derivation using finite differences provides a transparent,
reproducible approach to formula development. Third, multiple examples demonstrate the formula's correctness across diverse scenarios, verifying its
accuracy. Fourth, the formula offers computational advantages in various mathematical, statistical, and engineering applications. The systematic
derivation through pattern analysis provides both theoretical insight and practical utility for diverse applications. This work contributes to the ongoing
development of summation techniques and demonstrates the power of finite differences as a tool for mathematical discovery.
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