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ABSTRACT:

Carbon dioxide (CO:) emissions are a leading driver of climate change, contributing to global warming, ecosystem disruption, and negative health outcomes.
Accurate forecasting of these emissions has become vital for designing mitigation strategies and guiding sustainable development. Conventional statistical models,
while previously useful, often struggle with the nonlinear and rapidly changing nature of emission data. Advances in artificial intelligence (Al), particularly machine
learning (ML) and deep learning (DL), have shown significant potential by uncovering complex patterns and improving predictive reliability.

This paper examines recent developments in CO: emission forecasting, including gradient boosting, long short-term memory (LSTM) networks, transformer-
based approaches, and hybrid frameworks that integrate optimization techniques. It also highlights the importance of explainable Al (XAl), which enhances
transparency and provides interpretability for decision-makers. Findings indicate that hybrid Al-based models achieve superior performance by combining
predictive accuracy with practical insights. Such approaches offer a scalable and transparent foundation for emission reduction efforts and support global
sustainability objectives.
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1. INTRODUCTION

Carbon dioxide (CO:) emissions are widely recognized as one of the main drivers of climate change, contributing to rising global temperatures, extreme
weather events, and widespread environmental and public health challenges [1]-[3]. With industrialization, urbanization, and energy demand continuing
to grow, global CO: levels are projected to rise further unless effective monitoring and mitigation strategies are implemented [4], [5]. Accurate forecasting
of emissions is therefore essential for informing policies, guiding industrial operations, and supporting global sustainability initiatives [6], [7].

Conventional forecasting approaches, such as linear regression and time-series econometric models, often fail to account for the complexity and
interdependencies inherent in emission data. Factors such as fluctuating energy consumption, industrial output, transport activity, and meteorological
conditions interact in nonlinear and dynamic ways, making traditional models insufficient for high-precision forecasting.

Traditional statistical and econometric approaches have historically been used to predict CO2 emissions [8], [9]. While these methods provide valuable
baseline insights, they often struggle to capture the nonlinear, high-dimensional, and dynamic nature of emission drivers, which include energy
consumption patterns, industrial activity, transportation, weather conditions, and policy interventions [2], [10]. As a result, their predictive accuracy can
be limited, particularly over long-term horizons or in rapidly changing environments [11].

Recent advancements in artificial intelligence (Al) offer promising alternatives. Machine learning (ML) algorithms, such as gradient boosting and support
vector machines, and deep learning (DL) models, including long short-term memory (LSTM) networks and transformer-based architectures, have
demonstrated the ability to identify hidden patterns and temporal trends within large and complex datasets [4], [12], [13].

Artificial intelligence (Al) provides a promising alternative, offering advanced methods capable of learning intricate patterns from large and
heterogeneous datasets. Machine learning (ML) algorithms, including ensemble techniques, and deep learning (DL) architectures like LSTM and
Transformers, have demonstrated strong potential in capturing both temporal and spatial emission patterns. When combined with optimization strategies,
these models can not only predict future emission trends but also suggest actionable mitigation measures. Incorporating explainable Al (XAl) further
ensures that predictions are interpretable, allowing policymakers and stakeholders to understand the key drivers of emissions and make evidence-based
decisions.
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Additionally, the integration of optimization techniques allows predictive models to be directly linked to decision-making, enabling industries and
policymakers to implement targeted carbon reduction strategies [14], [15]. Explainable Al (XAIl) further enhances these frameworks by providing
transparency and interpretability, which is critical for building stakeholder trust [1], [16].
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Hybrid intelligent systems that combine ML, DL, optimization, and XAl have been increasingly applied to sector-specific and national-level CO-
forecasting, achieving higher accuracy, robustness, and practical usability compared to conventional methods [5], [7], [12]. These approaches are capable
of supporting real-time emission management, evaluating policy interventions, and assisting in the transition toward low-carbon operations.

This paper provides a comprehensive review of the latest Al-driven CO: emission prediction techniques, highlighting the advantages, limitations, and
emerging trends in hybrid forecasting models. It emphasizes the potential of these systems to transform emission monitoring and mitigation efforts,
bridging the gap between predictive analytics and actionable sustainability strategies.

2.Literature Review

The growing urgency to monitor and reduce carbon dioxide (CO:) emissions has led to significant research efforts exploring artificial intelligence (Al)
methods for accurate forecasting. recent studies have shifted toward machine learning (ML) and deep learning (DL) approaches, which offer enhanced
capability to model dynamic and high-dimensional interactions

Deep learning model-based prediction of vehicle CO2 emissions with eXplainable Al integration for sustainable environment: Alam et al., 2025

Alam et al. proposed a deep learning framework to forecast vehicle CO. emissions, integrating explainable Al (XAI) to provide interpretability
of model outputs [1]. The methodology involved feeding historical vehicle and environmental data into a multilayer neural network while using XAl
techniques to identify feature importance. The study demonstrated high predictive accuracy and offered insights into factors affecting emissions, aiding
targeted interventions. However, the model was primarily validated on vehicle datasets, leaving its applicability to other sectors open for future
exploration.
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An examination of daily CO2 emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models:
Ajala et al., 2025

Ajala et al. compared statistical models, classical machine learning, and deep learning techniques for daily CO: forecasting [2]. They employed
datasets encompassing energy consumption and industrial activity, evaluating performance based on error metrics. The results showed that ML and DL
approaches significantly outperformed statistical models in capturing nonlinear trends and temporal patterns. A limitation noted was that extremely high-
frequency variations were not fully captured, suggesting room for incorporating more granular datasets.

Machine Learning in Carbon Capture, Utilization, Storage, and Transportation: A Review of Applications in Greenhouse Gas Emissions
Reduction: Du et al., 2025

Du et al. provided a comprehensive overview of machine learning applications across the carbon capture, utilization, and storage (CCUS)
process [16]. Their review highlighted how ML techniques are being used to optimize different stages, including absorbent selection in CO: capture, site
characterization and leakage prediction in storage, and catalyst optimization for CO: utilization. The study emphasized that ML-driven methods can
enhance operational efficiency and reduce costs in emission mitigation technologies. However, the authors noted that challenges persist in terms of data
availability, model generalizability, and the interpretability required for large-scale industrial deployment.

Predicting carbon dioxide emissions using deep learning and Ninja Metaheuristic Optimization: Liebert & Ruple, 2025

Liebert and Ruple integrated deep learning with the Ninja Metaheuristic Optimization to predict emissions and simultaneously propose
reduction strategies [3]. The deep neural network learned emission patterns while the optimization algorithm suggested parameter adjustments to minimize
carbon output. This hybrid methodology improved forecast precision and decision-making capabilities, though its complexity may limit real-time
deployment in resource-constrained environments.

Prediction of CO2 emissions using machine learning — Bussaban et al., 2024

Bussaban et al. applied various machine learning algorithms for emission prediction [4]. They focused on the significance of feature selection
and data preprocessing, demonstrating that well-tuned ML models can achieve higher accuracy, especially in regional or sector-specific datasets. The
study highlighted the adaptability of ML for localized emission forecasting.

A Review of Machine Learning Used in Carbon Emission Prediction: Lu, 2024

Lu conducted an extensive review of more than 150 studies employing machine learning models for carbon emission prediction [18]. The analysis
compared models such as Support Vector Machines, Random Forests, Gradient Boosting, and Deep Neural Networks, noting that ML consistently
outperformed traditional statistical methods in both accuracy and adaptability. The review also identified key barriers such as inconsistent datasets, lack
of transparency in complex models, and limited cross-domain applicability. The study concluded that future advancements should focus on improving
data quality, hybrid model design, and interpretability to ensure practical adoption of Al-based forecasting systems.

Forecasting National CO: Emissions Worldwide: Costantini et al., 2024

Costantini and colleagues developed a large-scale forecasting framework to predict national CO- emissions across 117 countries up to the year
2035 [19]. They combined multivariate regression models and Random Forest algorithms using socio-economic and energy-related indicators. The model
demonstrated that while developed economies are projected to experience gradual emission reductions, developing nations may continue to see emission
growth due to industrial expansion. This study underscored the importance of integrating both environmental and economic indicators for more reliable
and policy-relevant forecasts. Limitations included uneven data quality across countries and the need for continuous model retraining as global energy
systems evolve.

Predicting CO2 Emissions with Advanced Deep Learning Models: Feng et al., 2024

Feng et al. utilized LSTM and attention-based architectures to model temporal CO: emission trends [5]. The approach effectively captured
complex nonlinear relationships in high-dimensional datasets and outperformed traditional statistical methods. Limitations included the requirement for
extensive computational resources and large training datasets for optimal performance.

Forecasting energy-related carbon dioxide emission using artificial neural networks: Moayedi et al., 2024

Moayedi et al. focused on energy sector emissions using artificial neural networks [6]. The model incorporated variables like energy
consumption, production indices, and industrial activity to predict CO- emissions. Their findings confirmed that ANNSs are capable of modelling nonlinear
interactions effectively, though the study noted potential overfitting risks if the network architecture is not properly tuned.

A Hybrid Ensemble ML Approach for Carbon Emission Forecasting: Li etal., 2023

Li et al. developed an ensemble ML framework combining multiple models, including Gradient Boosting and Random Forest, to improve
predictive stability and accuracy [7]. The study highlighted that ensemble methods reduce variance and improve robustness across diverse datasets,
making them suitable for complex emission forecasting tasks. However, ensemble models are computationally heavier and may require careful calibration
to avoid overfitting.

Spatial-temporal prediction of CO2 emissions based on deep learning: Hu et al., 2023
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Hu et al. introduced a graph-based deep learning model to incorporate spatial and temporal dependencies simultaneously [8]. The model
enabled precise, region-specific forecasts and highlighted the importance of considering both geographic and temporal factors in emission prediction.
Limitations included dependency on high-quality spatial data and computationally intensive training procedures.

Forecasting the CO2 Emissions at the Global Level: A Multilayer Artificial Neural Network Modelling: Jena et al., 2022

Jena et al. applied multilayer ANNs for global CO: forecasting, using aggregated international datasets covering energy consumption,
population, and industrial metrics [9]. The study demonstrated the scalability of neural networks and their ability to capture global emission patterns.
However, challenges remain in integrating real-time data and addressing missing or inconsistent datasets.

Predicting CO2 Emission Footprint Using Al through Machine Learning: Meng & Noman, 2022

Meng and Noman employed ML to estimate CO: emission footprints [10]. They implemented regression-based and tree-based models on
industry and energy datasets to produce actionable insights. Their work emphasized the role of predictive modelling in supporting targeted sustainability
strategies and guiding policy interventions.

KEY INSIGHTS
Machine learning and deep learning approaches have consistently demonstrated higher accuracy and adaptability across sectors [1] — [10].

Deep learning architectures, particularly LSTM networks and attention-based models, effectively model temporal and high-dimensional emission data.
Feng et al. [5] showed that attention mechanisms outperform traditional models, while Hu et al. [8] incorporated spatial-temporal dependencies for more
precise regional predictions. Alam et al. [1] integrated explainable Al (XAl), enabling identification of key emission drivers such as energy use, industrial
activity, and transportation.

Classical ML models, including Random Forest, Gradient Boosting, and hybrid ensembles, perform well for sector-specific or regional predictions. Li et
al. [7] highlighted ensemble methods’ ability to reduce variance, and Bussaban et al. [4] emphasized the role of feature selection and preprocessing in
improving accuracy. Hybrid models combining deep learning with optimization algorithms further enhance prediction precision and provide actionable
strategies for emission reduction [3].

Comparative insights reveal that deep learning generally surpasses traditional and classical ML models in handling complex patterns, while hybrid and
ensemble approaches improve stability and interpretability. Explainable Al adds transparency, aiding informed decision-making. Challenges remain,
including data quality, computational requirements, and scalability.

HYBRID

INTELLIGENCE

Fig. 2. Hybrid Computing and Environmental Sustainability

3.METHODOLOGY

The proposed framework is designed as a structured pipeline comprising multiple stages, including data acquisition, preprocessing, model training,
testing, and prediction. Each phase is integral to optimizing the accuracy and efficiency of detection of lung cancer [10].
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Fig. 3. Data flow diagram

The primary goal of this study is to accurately forecast CO- emissions using advanced artificial intelligence techniques while providing actionable insights
for environmental decision-making. Based on the literature, hybrid deep learning models integrated with optimization techniques have demonstrated
superior performance in capturing complex temporal, spatial, and nonlinear patterns in emission data. Building on these findings, the proposed
methodology combines data preprocessing, model training, optimization, and evaluation in a structured framework.

3.1. Proposed Framework

Data Collection and Preprocessing:

The first step involves gathering comprehensive datasets, including historical CO- emission records, energy consumption statistics, industrial
activity metrics, transportation data, and environmental parameters. Data is then cleaned to remove inconsistencies, missing values, and outliers. Feature
selection is conducted using correlation analysis and domain knowledge to identify variables that significantly influence emissions. Normalization and
scaling techniques are applied to ensure all features contribute proportionally during model training.

Model Selection and Architecture:

Deep learning models, particularly Long Short-Term Memory (LSTM) networks and attention-based architectures, are selected due to their
ability to model temporal dependencies and capture long-term trends. LSTM layers are used to learn sequential patterns in emission data, while attention
mechanisms enhance the network’s focus on critical features influencing predictions. Additionally, a hybrid

framework integrates optimization algorithms, such as metaheuristic or ensemble methods, to fine-tune hyperparameters and enhance predictive
performance.

Training and Validation:

The processed dataset is split into training, validation, and test sets. The model is trained iteratively using the training data while monitoring
performance on the validation set to prevent overfitting. Techniques such as dropout regularization, early stopping, and learning rate scheduling are
employed to improve generalizability. Hyperparameters, including the number of layers, learning rate, and batch size, are optimized using metaheuristic
or grid search methods.

Prediction and Optimization:

Once trained, the model predicts future CO: emissions based on new input data. The integrated optimization component analyses these
predictions to provide actionable recommendations for emission reduction strategies. This may include identifying the most influential emission sources
or suggesting operational adjustments for industries and transportation systems.
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3.2. Model Selection and Architecture

To enhance the predictive accuracy and interpretability of the proposed hybrid framework, the Extreme Gradient Boosting (XGBoost) algorithm is
incorporated as a complementary model. XGBoost is a scalable ensemble learning technique that constructs multiple weak learners typically decision
trees in a sequential manner. Each successive tree is designed to correct the prediction errors of its predecessors, thus reducing bias and improving model
robustness.

Data Preprocessing:

Prior to model training, the dataset undergoes essential cleaning, encoding, and normalization to ensure uniformity across all variables. Missing
values are handled appropriately, and the processed data is divided into training and validation subsets to enable reliable model evaluation.

Model Initialization:

The algorithm begins by setting key hyperparameters such as the number of trees, learning rate (r), and maximum tree depth. The initial
predictions (9}0)) for all samples are initialized to zero or to the mean of the target variable.

Iterative Boosting Process:

At each boosting round t, XGBoost minimizes a regularized objective function that balances prediction accuracy and model complexity. The
model calculates first-order gradients (g;) and second-order gradients (h;) of the loss function with respect to the predicted outputs, which represent

the direction and curvature of the loss surface. A new regression tree f; (x)is then built to fit these gradients and
maximize the information gain obtained from each split.
The optimal weight assigned to each leaf node is given by:

*

Zielj 9i
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where lis the regularization parameter that prevents overfitting by penalizing complex models. The model predictions are updated iteratively according
to:

90 =95 4 ufi(x)

where f; (x;)denotes the prediction from the t"regression tree, and nis the learning rate controlling each tree’s contribution. This process continues until
convergence or until a predefined number of iterations Kis completed. The final prediction is the sum of contributions from all trees:

K
Pi= ) nfil)
t=1
Model Evaluation and Optimization:

Model performance is evaluated using standard regression metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the
coefficient of determination (R?). Hyperparameters—including learning rate, tree depth, and number of estimators—are fine-tuned through grid search
or metaheuristic optimization to enhance model generalization and predictive stability.

Feature Interpretation:
One of the key strengths of XGBoost lies in its interpretability. The contribution of each feature to the final prediction can be expressed as:

a
Y=o+ Z ;i (xi5)

J

where ¢; (x;;)denotes the contribution of the j**feature to the prediction for instance i, and ¢,is the model bias term. This interpretive framework allows
identification of the most influential environmental or industrial factors driving CO. emissions, providing valuable insights for sustainable decision-
making.

4.DISCUSSION AND ANALYSIS

The literature on CO: emission forecasting highlights a clear progression in methodologies, moving from traditional statistical approaches to advanced
artificial intelligence techniques. Early statistical models, while useful for identifying general trends, often struggle to capture the complex, nonlinear,
and temporal relationships inherent in emission data. This limitation has driven the adoption of machine learning and deep learning approaches, which
offer greater flexibility and predictive power across diverse datasets [2,4,10,12].

Deep learning models, particularly LSTM networks and attention-based architectures, have shown strong capability in modelling temporal and high-
dimensional patterns in CO: emissions. Attention mechanisms further enhance model performance by focusing on the most relevant features, improving
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both accuracy and interpretability [5,8]. Graph-based deep learning models have also incorporated spatial dependencies, enabling precise, region-specific
forecasts [8]. These approaches demonstrate that deep learning is well-suited for capturing complex emission dynamics, although they typically require
substantial computational resources and large datasets for optimal performance [5,6,9].

Classical ML techniques, including Random Forest, Gradient Boosting, and XGBoost, have also been effective, particularly for sector-specific or regional
forecasting [7,10,12]. Gradient boosting models, such as XGBoost, efficiently handle nonlinear interactions and provide interpretable feature importance
metrics, making them a practical alternative to computationally intensive deep learning models [7,10]. Ensemble frameworks, which combine multiple
models, further enhance prediction stability and reduce variance, ensuring more reliable performance across diverse datasets [7,12].

Hybrid approaches that integrate deep learning with optimization algorithms or ensemble strategies represent another promising avenue. These methods
not only improve forecasting accuracy but also offer actionable insights for emission reduction, bridging the gap between prediction and practical
application [3,7]. Moreover, the integration of explainable Al (XAl) techniques allows stakeholders to identify key emission drivers such as energy
consumption, industrial activity, and transportation patterns supporting informed policy and operational decisions [1].

Despite these advances, challenges remain Data quality, completeness, and granularity are critical for reliable forecasting [2,8,12]. Computational
demands of deep learning and hybrid models can limit scalability and real-time applicability [5,6]. Additionally, sectoral and regional differences
necessitate careful adaptation and tuning of models to maintain predictive performance [4,7].

Overall, the literature indicates that deep learning models excel at capturing complex temporal and spatial emission patterns, while classical machine
learning models such as XGBoost provide an efficient, interpretable alternative for smaller or less computationally intensive datasets [7,10]. Hybrid and
ensemble approaches offer a balanced solution, combining accuracy, robustness, and practical applicability. The incorporation of explainable Al enhances
the value of these models by clarifying the factors driving CO- emissions, making AI-driven forecasting a powerful tool for both analysis and actionable
sustainability strategies [1,3,7].

Nonetheless, the collective findings indicate that Al-driven approaches especially hybrid and explainable models represent the most promising solutions
for accurate, interpretable, and actionable CO: emission forecasting.

Key Insights from Literature:
e  Deep learning outperforms traditional statistical methods in modelling nonlinear and temporal emission patterns.
e  Hybrid frameworks combining Al with optimization improve precision and decision-making capabilities.
e  Explainable Al enhances transparency, highlighting the key drivers of emissions for targeted mitigation.

e  Data quality and accessibility are critical determinants of model reliability and generalizability.

5.CONCLUSION

The forecasting of CO- emissions has advanced significantly with the adoption of artificial intelligence techniques. While traditional statistical methods
provided foundational insights, they are often inadequate for capturing the complex, nonlinear, and temporal patterns present in emission data. Machine
learning, deep learning, and hybrid frameworks have demonstrated enhanced predictive capability, with architectures such as LSTM networks, attention
mechanisms, and ensemble models effectively handling both regional and global emission trends.

The incorporation of hybrid strategies and explainable Al has further strengthened these models, enabling not only precise predictions but also the
identification of the key factors influencing emissions. Such insights are invaluable for policymakers, industry stakeholders, and environmental planners
in designing targeted mitigation strategies.

But, challenges remain, including data quality, model generalizability across different regions and sectors, and computational demands. Addressing these
challenges will be critical for the development of more efficient, scalable, and interpretable forecasting models.

In conclusion, Al-driven forecasting frameworks offer a reliable, interpretable, and scalable approach to CO: emission prediction. By combining
predictive accuracy with actionable insights, these models can support informed decision-making, shape effective environmental policies, and contribute
meaningfully to global efforts to reduce the carbon footprint.

6. FUTURE PROSPECTIVES

In last, there is a pressing need to develop more sophisticated and efficient models to tackle environmental pollution effectively. Technological
advancements offer significant opportunities for improving pollution monitoring, control, and remediation strategies. In particular, hybrid intelligence
approaches integrating machine learning, deep learning, and optimization methods hold great promise for addressing complex environmental challenges.
These approaches can enhance prediction accuracy, identify key contributors to pollution, and support informed decision-making. Continued research in
this area is crucial to create innovative, scalable, and practical solutions for sustainable environmental management.
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