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INTRODUCTION

Bridge infrastructure plays an essential role in global transportation systems. However, it constantly faces challenges from rising traffic loads, harsh
environmental conditions, and material wear. This exposure can result in structural damage, leading to a constant risk of sudden, severe failure.
Traditionally, assessing bridge condition has depended mainly on manual visual inspections. This process can be slow, costly, and prone to human error.
As a result, there is a growing need for smart, automated, and real-time monitoring solutions to protect these crucial assets.

Structural Health Monitoring (SHM) offers a modern, data-driven solution to this problem. By combining the Internet of Things (IoT) and Artificial
Intelligence (AI), SHM systems allow for continuous and automated collection and analysis of structural data. This capability changes maintenance from
a purely reactive approach to a predictive and preventive one. The main benefits are clear: SHM greatly improves public safety by detecting critical issues
like cracks, fatigue, and corrosion early on. Additionally, this predictive approach is important for operational efficiency. It leads to significant cost
savings by lowering unplanned repairs and helps extend the operational lifespan of bridges.

A bridge's integrity can be evaluated using a number of different technical methods, according to recent research in this area. Vibration-Based Monitoring,
the most widely used technique, examines the dynamic response of the structure. Monitoring important factors like vibration, acceleration, natural
frequency, and mode shapes helps diagnose damage. In order to accomplish scalable monitoring, research looks into cost-effective techniques like Drive-
By SHM, which gathers data indirectly from sensors in passing cars. Digital twin and BIM integration are more sophisticated techniques that connect

real-time deflection and displacement data to a 3D model for visual diagnostics in real time.

The deployed systems make use of a number of specialized sensors and technologies. Piezoelectric sensors can also detect dynamic changes, but
accelerometers (including MEMS and triaxial variants) are the most widely used sensors for dynamic measurements. Advanced Fiber Optic Sensors and
strain gauges are used to measure stress and strain in material response. Low-cost IoT platforms like the Raspberry Pi and Arduino microcontrollers are
frequently used to manage this raw data. The information gathered provides a comprehensive profile of the bridge's health under a range of operational
and environmental circumstances, covering all important variables such as temperature, wind speed, and traffic load.

Artificial Intelligence and Machine Learning (AI/ML) are required due to the enormous amounts of data that these IoT sensors generate. These algorithms,
which are frequently used with models like artificial neural networks, are essential for automated analysis, noise filtering, and pattern recognition. This
ability enables engineers to produce precise, prognostic forecasts and separate structural alterations from environmental influences. This term paper's
overall goal is to thoroughly examine and classify the state of SHM today, with an emphasis on the complementary application of Al and IoT. Finding
the most efficient, affordable, and scalable sensing methods and combining the results into a sound methodological framework for future SHM

implementation on bridge infrastructure are the main goals.

Keywords: Structural Health monitoring (SHM), Internet of Things (IoT), Artificial Intelligence (Al), Machine Learning (ML), .Digital twin, Building
Information modelling (BIM)

Review:

1. Advanced Analytics, Al, and Novelty Detection

This group focuses on developing high-level computational methods and machine learning (ML) algorithms to accurately interpret sensor data, filter
noise, and enable autonomous diagnostics. The core challenge is extracting reliable, damage-sensitive features from complex, high-volume data streams.

Several studies showed that advanced analytics are essential for strong diagnostics. Anastasia et al. (2023) successfully used Temporal Autoregressive
(AR) modeling on strain data from a railway bridge. They concluded that strain measurements offer better, less noisy inputs for identifying damage
compared to acceleration. The key is in effective data cleansing: Gao et al. (2022) achieved remarkable efficiency by developing a Pattern Recognition


http://www.ijrpr.com/
mailto:23341A0152@gmrit.edu.in
mailto:23341A0152@gmrit.edu.in
mailto:23341A0152@gmrit.edu.in
mailto:23341A0152@gmrit.edu.in
mailto:23341A0119@gmrit.edu.in

International Journal of Research Publication and Reviews, Vol 6, Issue 11, pp 374-377 November, 2025 375

Neural Network (PRNN) that reduced data vector size by orders of magnitude while maintaining 96.4% accuracy in classifying multi-type anomalies
(e.g., drift, outliers). On the deployment side, Armijo & Zamora-Sanchez (2024) validated a Digital Twin framework that achieved > or = 99.9%
classification accuracy for structural anomalies using an on-premises-cloud hybrid ML architecture, proving the feasibility of high-accuracy, scaled
systems.

2. Low-Cost Hardware, IoT, and Mobile Sensing

This research segment is devoted to making SHM widely accessible by developing low-cost, easily deployable hardware that rivals expensive commercial
systems through software intelligence and component fusion. Komarizadehasl et al. (2022) detailed the development of the Low-cost Adaptable
Reliable Accelerometer (LARA), proving that an array of inexpensive MEMS accelerometers, when averaged and enhanced by software, significantly
reduced Noise Density (ND) and achieved extremely high eigenfrequency accuracy (<1.28% error) compared to commercial systems. This
democratization was supported by Jothi Saravanan et al. (2024) who validated a similar COTS-based sensor node that consistently returned frequencies
with <6% average difference compared to industrial-grade accelerometers.

Expanding functional utility, Al-Ali et al. (2024) built a comprehensive IoT system incorporating vibration and deflection sensors with a Fuzzy Logic
algorithm to classify bridge health status, creating a low-cost, intuitive warning system (USD 198.40). For continuous structural assessment via vehicle,
Peng et al. (2023) engineered a cost-effective IoT system (Raspberry Pi 4B) for drive-by SHM, successfully integrating and synchronizing acceleration,
temperature, and GPS data into a reliable platform normalized root mean square error (NRMSE of 0.0144).

3. Load Monitoring, Reliability, and Extreme Events

This research investigates the vital need to move beyond static design assumptions by quantifying the impact of actual operational and environmental
loading on long-term structural integrity and safety margins. The fundamental finding that environmental variables are critical inputs for structural analysis
was established by Catbas et al. (2008), who showed that unmodeled temperature-induced strains could be ten times larger than traffic loads, critically
reducing the calculated safety index. Worden & Cross (2018) addressed this by successfully building highly accurate regression models to automatically
filter out the thermal effects from frequency data, thereby enhancing damage detection sensitivity.

4. Advanced Modeling for Structural Dynamics

This research group develops the necessary analytical and computational tools to precisely characterize structural dynamics, enabling highly informed
sensor placement and reliable indirect sensing techniques. Advancing the capability of non-contact monitoring, Malekjafarian & O'Brien (2014) achieved
a significant milestone by introducing the Short Time Frequency Domain Decomposition (STFDD) method, proving that bridge mode shapes can be
accurately extracted from the response signals of a moving vehicle, a fundamental prerequisite for drive-by sensing.

5. Component Material and Fiber Optic Sensing

This research focuses on the durability of specialized materials and the implementation of high-precision sensing technologies for local monitoring of
critical structural components. He et al. (2013) demonstrated the height of complexity and precision achievable in cable monitoring with a hybrid FBG-
BOTDA/R system, combining local high-accuracy point strain with long-distance distributed sensing in a single optical fiber, successfully proving
temperature self-compensation for enhanced data stability. Focusing on next-generation materials, Al-Rousan et al. (2020) used
Nonlinear finite element analysis (NLFEA) to show that Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP)
reinforcement offered superior stiffness and energy absorption over steel in deck slabs, providing valuable data for material durability assessment.

Conclusion:

The combination of Structural Health Monitoring (SHM) with Internet of Things (IoT) and Artificial Intelligence (Al) marks a significant change in smart
and sustainable infrastructure management. It addresses fundamental needs identified in various structural analyses. Researchers agree that these
combined systems allow for continuous and real-time assessment of complex structural behavior, which is crucial because bridges face cyclic and
changing loads.

This new approach relies on the scalability provided by hybrid Edge-Cloud architectures. These architectures use Edge Computing, such as dedicated
microcontrollers or simplified middleware like Node-RED, to carry out initial data processing on site. This includes fast Fourier transforms (FFT) and
anomaly detection. This process significantly lowers network load and operational costs while ensuring high data throughput. This setup also supports
the use of affordable digital MEMS sensors for extensive coverage, as demonstrated by the creation of precise modules like LARA.

The critical value comes from predictive diagnostic models that go beyond traditional monitoring. Techniques using unsupervised Machine Learning
(ML) learn the complex, non-linear baseline behavior of the structure through novelty detection. This improves accuracy, especially when monitoring
focuses on the most reliable features, like dynamic strain data, which are better than noisy acceleration signals. This diagnostic confidence gets a
significant boost by optimizing sensor resources through Optimal Sensor Placement (OSP).

REFERENCES

1.  Fawad, M., Salamak, M., Chen, Q., Uscilowski, M., Koris, K., Jasinski, M., ...&Piotrowski, D. (2025). Development of immersive bridge digital
twin platform to facilitate bridge damage assessment and asset model updates. Computers in Industry.



International Journal of Research Publication and Reviews, Vol 6, Issue 11, pp 374-377 November, 2025 376

10.

11.

12.

13.

14.

20.

21.

22.

23.

24.

25.

Iacussi, L., Chiariotti, P., &Cigada, A. (2024). Al-enhanced IoT system for assessing bridge deflection in drive-by conditions. Sensors.

Mendoza-Lugo, M. A., Nogal, M., & Morales-Napoles, O. (2024). Estimating bridge criticality due to extreme traffic loads in highway
networks. Engineering Structures.

Saravanan, T. J., Mishra, M., Aherwar, A. D., &Lourenco, P. B. (2024). Internet of things (IoT)-based structural health monitoring of laboratory-

scale civil engineering structures. Innovative Infrastructure Solutions.

Armijo, A., & Zamora-Sanchez, D. (2024). Integration of railway bridge structural health monitoring into the internet of things with a digital
twin: a case study. Sensors.

Al-Ali, A. R., Beheiry, S., Alnabulsi, A., Obaid, S., Mansoor, N., Odeh, N., &Mostafa, A. (2024). An IoT-based road bridge health monitoring

and warning system. Sensors.

Hossain, M. 1. (2024). Implementation Of Al-Integrated IOT Sensor Networks For Real-Time Structural Health Monitoring Of In-Service
Bridges. ASRC Procedia: Global Perspectives in Science and Scholarship, 4(1), 33-71.

Anastasia, S., Garcia-Macias, E., Ubertini, F., Gattulli, V., &lIvorra, S. (2023). Damage identification of railway bridges through temporal
autoregressive modeling. Sensors.

Nieminen, V., &Sopanen, J. (2023). Optimal sensor placement of triaxial accelerometers for modal expansion. Mechanical Systems and Signal
Processing.

Peng, Z., Li, J., &Hao, H. (2023). Development and experimental verification of an IoT sensing system for drive-by bridge health
monitoring. Engineering Structures.

Figueiredo, E., Moldovan, 1., Alves, P., Rebelo, H., & Souza, L. (2022). Smartphone application for structural health monitoring of
bridges. Sensors.

Komarizadehasl, S., Lozano, F., Lozano-Galant, J. A., Ramos, G., &Turmo, J. (2022). Low-cost wireless structural health monitoring of
bridges. Sensors.

Gosliga, J., Hester, D., Worden, K., &Bunce, A. (2022). On Population-based structural health monitoring for bridges. Mechanical Systems and

Signal Processing.

Scianna, A., Gaglio, G. F., & La Guardia, M. (2022). Structure monitoring with BIM and IoT: The case study of a bridge beam model. ISPRS
International Journal of Geo-Information.

Gao, K., Chen, Z. D., Weng, S., Zhu, H. P., & Wu, L. Y. (2022). Detection of multi-type data anomaly for structural health monitoring using
pattern recognition neural network. Smart Struct. Syst.

Avendano, J. C., Otero, L. D., & Otero, C. (2021, April). Optimization of sensor placement in a bridge structural health monitoring system.
In 2021 IEEE International Systems Conference (SysCon) (pp. 1-5). IEEE.

Moallemi, A., Burrello, A., Brunelli, D., & Benini, L. (2022). Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge Health
Monitoring. IEEE Internet of Things Journal.

Scianna, A., Gaglio, G. F., & La Guardia, M. (2022). Structure monitoring with BIM and IoT: The case study of a bridge beam model. ISPRS
International Journal of Geo-Information.

Gao, B., Bai, Z., & Song, Y. (2021). Optimal Three-Dimensional Sensor Placement for Cable-Stayed Bridge Based on Dynamic Adjustment of
Attenuation Factor Gravitational Search Algorithm. Shock and Vibration, 2021(1), 6664188.

Al-Rousan, R. Z., Alhassan, M., & Al-wadi, R. (2020, October). Nonlinear finite element analysis of full-scale concrete bridge deck slabs
reinforced with FRP bars. In Structures (Vol. 27, pp. 1820-1831). Elsevier.

Ding, H., Shen, Q., & Du, S. (2020). Autonomous main-cable vibration monitoring using wireless smart sensors for large-scale three-pylon

suspension bridges: A case study. Journal of Low Frequency Noise, Vibration and Active Control.

Fitzgerald, P. C., Malekjafarian, A., Bhowmik, B., Prendergast, L. J., Cahill, P., Kim, C. W., ...&OBrien, E. J. (2019). Scour damage detection
and structural health monitoring of a laboratory-scaled bridge using a vibration energy harvesting device. Sensors.

Mandi¢lvankovié, A., Skokandi¢, D., Znidarié, A., &Kreslin, M. (2019). Bridge performance indicators based on traffic load

monitoring. Structure and Infrastructure Engineering.

Worden, K., & Cross, E. J. (2018). On switching response surface models, with applications to the structural health monitoring of

bridges. Mechanical Systems and Signal Processing.

Neves, A. C., Gonzalez, 1., Leander, J., &Karoumi, R. (2017). Structural health monitoring of bridges: a model-free ANN-based approach to



International Journal of Research Publication and Reviews, Vol 6, Issue 11, pp 374-377 November, 2025 377

26.

27.

28.

29.

damage detection. Journal of Civil Structural Health Monitoring.

Abdelgawad, A., &Yelamarthi, K. (2017). Internet of things (IoT) platform for structure health monitoring. Wireless Communications and
Mobile Computing.

Malekjafarian, A., &OBrien, E. J. (2014). Identification of bridge mode shapes using short time frequency domain decomposition of the

responses measured in a passing vehicle. Engineering Structures.

He, J., Zhou, Z., &Jinping, O. (2013). Optic fiber sensor-based smart bridge cable with functionality of self-sensing. Mechanical Systems and
Signal Processing.

Catbas, F. N., Susoy, M., &Frangopol, D. M. (2008). Structural health monitoring and reliability estimation: Long span truss bridge application

with environmental monitoring data. Engineering structures.



