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INTRODUCTION 

Bridge infrastructure plays an essential role in global transportation systems. However, it constantly faces challenges from rising traffic loads, harsh 

environmental conditions, and material wear. This exposure can result in structural damage, leading to a constant risk of sudden, severe failure. 

Traditionally, assessing bridge condition has depended mainly on manual visual inspections. This process can be slow, costly, and prone to human error. 

As a result, there is a growing need for smart, automated, and real-time monitoring solutions to protect these crucial assets. 

Structural Health Monitoring (SHM) offers a modern, data-driven solution to this problem. By combining the Internet of Things (IoT) and Artificial 

Intelligence (AI), SHM systems allow for continuous and automated collection and analysis of structural data. This capability changes maintenance from 

a purely reactive approach to a predictive and preventive one. The main benefits are clear: SHM greatly improves public safety by detecting critical issues 

like cracks, fatigue, and corrosion early on. Additionally, this predictive approach is important for operational efficiency. It leads to significant cost 

savings by lowering unplanned repairs and helps extend the operational lifespan of bridges. 

A bridge's integrity can be evaluated using a number of different technical methods, according to recent research in this area. Vibration-Based Monitoring, 

the most widely used technique, examines the dynamic response of the structure. Monitoring important factors like vibration, acceleration, natural 

frequency, and mode shapes helps diagnose damage. In order to accomplish scalable monitoring, research looks into cost-effective techniques like Drive-

By SHM, which gathers data indirectly from sensors in passing cars. Digital twin and BIM integration are more sophisticated techniques that connect 

real-time deflection and displacement data to a 3D model for visual diagnostics in real time. 

The deployed systems make use of a number of specialized sensors and technologies. Piezoelectric sensors can also detect dynamic changes, but 

accelerometers (including MEMS and triaxial variants) are the most widely used sensors for dynamic measurements. Advanced Fiber Optic Sensors and 

strain gauges are used to measure stress and strain in material response. Low-cost IoT platforms like the Raspberry Pi and Arduino microcontrollers are 

frequently used to manage this raw data. The information gathered provides a comprehensive profile of the bridge's health under a range of operational 

and environmental circumstances, covering all important variables such as temperature, wind speed, and traffic load. 

Artificial Intelligence and Machine Learning (AI/ML) are required due to the enormous amounts of data that these IoT sensors generate. These algorithms, 

which are frequently used with models like artificial neural networks, are essential for automated analysis, noise filtering, and pattern recognition. This 

ability enables engineers to produce precise, prognostic forecasts and separate structural alterations from environmental influences. This term paper's 

overall goal is to thoroughly examine and classify the state of SHM today, with an emphasis on the complementary application of AI and IoT. Finding 

the most efficient, affordable, and scalable sensing methods and combining the results into a sound methodological framework for future SHM 

implementation on bridge infrastructure are the main goals. 

Keywords: Structural Health monitoring (SHM), Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), .Digital twin, Building 

Information modelling (BIM) 

Review: 

1. Advanced Analytics, AI, and Novelty Detection 

This group focuses on developing high-level computational methods and machine learning (ML) algorithms to accurately interpret sensor data, filter 

noise, and enable autonomous diagnostics. The core challenge is extracting reliable, damage-sensitive features from complex, high-volume data streams.  

Several studies showed that advanced analytics are essential for strong diagnostics. Anastasia et al. (2023) successfully used Temporal Autoregressive 

(AR) modeling on strain data from a railway bridge. They concluded that strain measurements offer better, less noisy inputs for identifying damage 

compared to acceleration. The key is in effective data cleansing: Gao et al. (2022) achieved remarkable efficiency by developing a Pattern Recognition 
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Neural Network (PRNN) that reduced data vector size by orders of magnitude while maintaining 96.4% accuracy in classifying multi-type anomalies 

(e.g., drift, outliers). On the deployment side, Armijo & Zamora-Sánchez (2024) validated a Digital Twin framework that achieved > or = 99.9% 

classification accuracy for structural anomalies using an on-premises-cloud hybrid ML architecture, proving the feasibility of high-accuracy, scaled 

systems.  

2. Low-Cost Hardware, IoT, and Mobile Sensing 

This research segment is devoted to making SHM widely accessible by developing low-cost, easily deployable hardware that rivals expensive commercial 

systems through software intelligence and component fusion. Komarizadehasl et al. (2022) detailed the development of the Low-cost Adaptable 

Reliable Accelerometer (LARA), proving that an array of inexpensive MEMS accelerometers, when averaged and enhanced by software, significantly 

reduced Noise Density (ND) and achieved extremely high eigenfrequency accuracy (<1.28% error) compared to commercial systems. This 

democratization was supported by Jothi Saravanan et al. (2024) who validated a similar COTS-based sensor node that consistently returned frequencies 

with <6% average difference compared to industrial-grade accelerometers. 

Expanding functional utility, Al-Ali et al. (2024) built a comprehensive IoT system incorporating vibration and deflection sensors with a Fuzzy Logic 

algorithm to classify bridge health status, creating a low-cost, intuitive warning system (USD 198.40). For continuous structural assessment via vehicle, 

Peng et al. (2023) engineered a cost-effective IoT system (Raspberry Pi 4B) for drive-by SHM, successfully integrating and synchronizing acceleration, 

temperature, and GPS data into a reliable platform normalized root mean square error (NRMSE of 0.0144). 

3. Load Monitoring, Reliability, and Extreme Events 

  This research investigates the vital need to move beyond static design assumptions by quantifying the impact of actual operational and environmental 

loading on long-term structural integrity and safety margins. The fundamental finding that environmental variables are critical inputs for structural analysis 

was established by Catbas et al. (2008), who showed that unmodeled temperature-induced strains could be ten times larger than traffic loads, critically 

reducing the calculated safety index. Worden & Cross (2018) addressed this by successfully building highly accurate regression models to automatically 

filter out the thermal effects from frequency data, thereby enhancing damage detection sensitivity. 

4. Advanced Modeling for Structural Dynamics  

This research group develops the necessary analytical and computational tools to precisely characterize structural dynamics, enabling highly informed 

sensor placement and reliable indirect sensing techniques. Advancing the capability of non-contact monitoring, Malekjafarian & O'Brien (2014) achieved 

a significant milestone by introducing the Short Time Frequency Domain Decomposition (STFDD) method, proving that bridge mode shapes can be 

accurately extracted from the response signals of a moving vehicle, a fundamental prerequisite for drive-by sensing. 

5. Component Material and Fiber Optic Sensing  

This research focuses on the durability of specialized materials and the implementation of high-precision sensing technologies for local monitoring of 

critical structural components. He et al. (2013) demonstrated the height of complexity and precision achievable in cable monitoring with a hybrid FBG-

BOTDA/R system, combining local high-accuracy point strain with long-distance distributed sensing in a single optical fiber, successfully proving 

temperature self-compensation for enhanced data stability. Focusing on next-generation materials, Al-Rousan et al. (2020) used 

Nonlinear finite element analysis (NLFEA) to show that Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) 

reinforcement offered superior stiffness and energy absorption over steel in deck slabs, providing valuable data for material durability assessment. 

Conclusion: 

The combination of Structural Health Monitoring (SHM) with Internet of Things (IoT) and Artificial Intelligence (AI) marks a significant change in smart 

and sustainable infrastructure management. It addresses fundamental needs identified in various structural analyses. Researchers agree that these 

combined systems allow for continuous and real-time assessment of complex structural behavior, which is crucial because bridges face cyclic and 

changing loads.  

This new approach relies on the scalability provided by hybrid Edge-Cloud architectures. These architectures use Edge Computing, such as dedicated 

microcontrollers or simplified middleware like Node-RED, to carry out initial data processing on site. This includes fast Fourier transforms (FFT) and 

anomaly detection. This process significantly lowers network load and operational costs while ensuring high data throughput. This setup also supports 

the use of affordable digital MEMS sensors for extensive coverage, as demonstrated by the creation of precise modules like LARA. 

The critical value comes from predictive diagnostic models that go beyond traditional monitoring. Techniques using unsupervised Machine Learning 

(ML) learn the complex, non-linear baseline behavior of the structure through novelty detection. This improves accuracy, especially when monitoring 

focuses on the most reliable features, like dynamic strain data, which are better than noisy acceleration signals. This diagnostic confidence gets a 

significant boost by optimizing sensor resources through Optimal Sensor Placement (OSP).  
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