
International Journal of Research Publication and Reviews, Vol (6), Issue (11), November (2025), Page – 309-313                         

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

Artificial Intelligence based Drug Design in Pharmacy 

Arif Ali 1, Mr. Mark Masih2, Atul Yadav3,Jaiswar Ankit Shivpujan 4 

G-Mail- ansariarifali22@gmail.com 
2-4 Co-Author-  

University - Dr. A.P.J. Abdul Kalam Technical University 

College- S N College Of Pharmacy 

ABSTRACT : 

Artificial Intelligence, or AI, is changing how drugs are designed and developed in the field of pharmacy. It helps speed up the discovery process, makes 

predictions more accurate, and lowers the costs involved. By using machine learning and deep learning, AI looks at large amounts of chemical and biology data 

to predict how drugs might work in the body, improve early drug candidates, and design better molecules. Methods like virtual screening and designing new 

drugs from scratch have become more effective because of AI, allowing scientists to find good treatment options more quickly. AI also helps in personalized 

medicine by combining genetic and medical information to create treatments that are better suited for each individual. However, there are still some problems, 

like making sure the data is reliable, understanding how AI models work, and getting approval from regulators. In general, AI is a strong tool that is changing 

how pharmaceutical research is done today, with the possibility of making drug development faster, safer, and more successful.  
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1. Introduction 

In the past, medicinal chemistry intuition and high-throughput screening were key components of drug development. Artificial intelligence (AI) and 

computational techniques have become essential components of rational drug design within the last 20 years. The phrase "artificial drug design" refers 

to the process of developing, prioritizing, and improving small molecules and biologics meant for therapeutic applications using computational 

chemistry, cheminformatics, molecular modeling, and machine learning (including deep learning). By improving early-stage forecasts and focusing 

experimental efforts, these technologies address important issues including attrition, cost, and time. 2. Core methodologies 

The development of AI and computational intelligence is closely linked to the progress of drug discovery.  Due to empirical t rial-and-error 

procedures, traditional drug pipelines experienced delays, high costs, and low success rates.  AI was quickly used into pharmaceutical research after 

2010 thanks to advancements in hardware, data accessibility, and algorithmic complexity.  QSAR frameworks were among the earl y models that 

demonstrated correlative relationships between chemical structure and biological activity, opening the door for more sophisti cated statistical and 

machine learning methods. 

2. Evolution of Artificial Intelligence in Pharmaceutical Sciences 

With QSAR (Quantitative Structure–Activity Relationship) models, computational drug research got its start in the 1980s. Early algorithms correlated 

chemical structure with biological activity using statistical regression. Nevertheless, these models were constrained by their low precision and tiny 

datasets.  

Adoption of AI was made possible by developments in large data, high-throughput screening (HTS), and processing power. Significant advances have 

been made in the last ten years: 

 

2012: Deep learning resurgence in image and pattern recognition. 

2016: Atomwise introduced AI-driven virtual screening. 

2020: DeepMind’s AlphaFold2 achieved near-experimental accuracy in protein structure prediction (Jumper et al., 2021). 

2023–2024: AI-generated drugs from Insilico Medicine and Exscientia entered clinical evaluation. 

This evolution demonstrates a shift from descriptive to predictive and now to generative drug discovery, where AI not only predicts but designs new 

molecules. 
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3.Core approaches 

2.1 Structure-based drug design (SBDD)                            
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SBDD uses three-dimensional structural information of biological targets (such as X-ray, cryo-EM, and NMR) to develop ligands that fit the binding 

site. Important elements include scoring functions, molecule docking, and physics-based free energy methods (such molecular dynamics and alchemical 

free energy computations). Docking efficiently screens vast libraries to suggest binding modes, whereas more computationally intensive techniques 

(such MM-GBSA and FEP) assess binding free energies and enhance potency estimates. SBDD works best when binding site dynamics are taken into 

account and high-quality target structures are available. 

2.2 Ligand-based drug design (LBDD) 

Ligand-based methods infer structure-activity relationships (SAR) from known active compounds in the absence of target structures. These techniques 

include similarity-based virtual screening, quantitative structure–activity relationships (QSAR), and pharmacophore modeling. When a well-defined set 

of ligands is available, ligand-based drug design (LBDD) works especially well, enabling virtual screening and predictive models to guide chemical 

changes. 

2.3 De novo design and generative modelling  

In order to satisfy binding or property requirements, de novo design develops novel molecular frameworks.  Rule-based and fragment-assembly 

methods were common in the past, but new developments in generative AI models (like variational autoencoders, GANs, and autoregressive 

transformers) make it possible to propose synthesizable molecules that are optimized for a variety of goals, such as potency, selectivity, and ADMET 

properties.  Compared to classical enumeration, these models can explore chemical space in a more creative way. 

2.4 Machine learning and deep learning in property prediction 

  Biological activity, physicochemical qualities, and ADMET features are predicted using deep neural networks and machine learning models (such as 

random forests, gradient boosting, and SVMs).  Data representation is essential: graph neural networks and sequence/transformer models operate 

directly on molecular graphs or SMILES to improve performance, while fingerprints and descriptors have been widely used.  In situations where 

labeled data is scarce, multitasking techniques like transfer learning are useful. 

3. Typical AI-driven workflow in pharmaceutical labs  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Data curation: gather and refine biochemical, structural, and ADMET datasets — this is a vital step as the quality of the model is contingent upon 

the quality of the data. 

 2. Exploratory analysis & featurization: select molecular representations (such as fingerprints, descriptors, and graphs). 

 3. Modeling & virtual screening: utilize docking, ML classifiers/regressors, or generative models to prioritize compounds. 

 4. In silico ADMET filtering: forecast absorption, metabolism, and toxicity to eliminate high-risk candidates at an early stage.  

5. Prioritization for synthesis/assay: combine predictions with synthetic feasibility to identify compounds for experimental evaluation. 

 6. Iterative learning: integrate new experimental findings to retrain models, facilitating closed-loop optimization.This iterative human–machine 

workflow improves efficiency and helps focus experimental resources on the most promising candidates. 

4. Strengths and limitations 

Strengths 

Speed and scale: Compared to physical screens, virtual screening can assess millions of compounds far more quickly and affordably.  

AI is capable of balancing potency with ADMET and synthetic feasibility in multi-objective optimization. 

Innovative research: generative models suggest new scaffolds that aren't found in current libraries.  
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Data integration: For more accurate forecasts, machine learning models can combine heterogeneous data (bioactivity, omics, structure).  

Restrictions  

Data quality and bias: models that are deceptive are produced by noisy, inconsistent, or biased datasets.  

Interpretability: medicinal chemists frequently need justifications for design decisions; deep models may be opaque.  

Generalization: models may fail on new chemotypes and overfit to the chemical space depicted in training data.  

Synthetic accessibility and cost: the synthesis of produced compounds may be challenging or costly.  

Regulatory and validation obstacles: clinical translation is still pending; in silico predictions need experimental validation. 

5. Case studies and impact examples (brief) 

Hit discovery by virtual screening: effective uses where docking and machine learning reduced libraries to a small number of active compounds that 

were then verified in vitro. 

 Lead optimization using free-energy techniques: FEP has been applied in the pharmaceutical industry to provide quantitative energetic estimates for 

replacement options. 

 Candidate scaffolds produced by generative models: It has been documented that deep generative architectures have suggested new leads that have 

advanced to synthesis and testing. 

 (See the references and recent literature for detailed company or trial examples.) 

6. Best practices and practical recommendations 

Invest in data curation: garbage in, garbage out — standardize assays, remove duplicates, and annotate experimental conditions. 

Combine orthogonal methods: cross-validate predictions using both data-driven (ML) and physics-based (docking, MD) methods.. 

Prioritize interpretability: To make results actionable, combine explainability tools and traditional SAR analysis with black-box models. 

Assess uncertainty: Calculate the degree of prediction confidence and identify low-confidence forecasts using ensembles or Bayesian techniques. 

Consider synthetic feasibility early: Use rule-based filtering and retrosynthesis to steer clear of impractical designs. 

Implement iterative design-test cycles to speed up optimization using closed-loop workflows (modeling → synthesis → assay → retraining).. 

7. Future directions 

                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

➢ Tighter integration of multi-omics and phenotypic data to enable target deconvolution and mechanism-aware design. 

➢ Self-driving labs combining automation, real-time model updates, and active learning to close the loop faster. 

➢ Improved uncertainty quantification and regulatory validation frameworks to increase adoption in late-stage discovery. 

➢ Generative models conditioned on synthesis constraints and biological context for more actionable proposals. 

➢ Ethical and reproducibility standards for data sharing, benchmark datasets, and transparent model reporting. 

8.Challenges and Limitations 

➢ Data Limitations: Model reliability is decreased by incomplete, biased, or proprietary datasets. 
➢ Model Interpretability: The "black-box problem" of lack of transparency makes regulatory approval more difficult. 
➢ Integration with Wet-Lab Workflows: Experimental validation must coincide with computational predictions.  
➢ Regulatory Obstacles: The FDA and EMA do not have clear frameworks for AI-designed pharmaceuticals.  
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➢ the ethical and legal issues:Data ownership, algorithmic bias, and AI-generated intellectual property are among  
➢ Computational Costs: Complex AI models need a lot of energy and processing power. 

8. Conclusion 

From specialized computational tools, artificial drug design has developed into essential elements of contemporary pharmaceutical research and 

development. Even if there are still issues with data quality, interpretation, and experimental validation, the combination of physics-based modeling, 

machine learning, and automation promises to speed up, lower the cost, and increase the creativity of discovery. The extent to which AI actually 

transforms drug research will depend on the careful adoption of best practices and ongoing cooperation between computational scientists and 

experimentalists. 
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