

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Exploring the Different Dimensions of Building using Building Information Modelling

B. Swathi¹, B. Jaya Vardhan², Ch. Sai Harika³, G. Kishore⁴

GMR Institute of technology

ABSTRACT:

This research offers an integrated framework bringing together 4D, 5D, and 6D Building Information Modelling (BIM) strategies to improve lifecycle management, safety, cost, time, and sustainability in construction projects. Employing case studies like Donggou Bridge and a 3000 m² building, the research illustrates the real-world application of enhanced BIM technologies on different kinds of projects. The 4D BIM element, via the SCI4D system, brings generative planning to camera placement for optimized surveillance, improving on-site safety monitoring and threat detection. The 5D BIM implementation combines 3D design with scheduling and cost estimation via tools such as Autodesk Revit, Microsoft Project, and Navisworks, with increased planning precision, reduced waste, and real-time project control support. The 6D BIM extension includes carbon footprint analysis, which finds that embodied emissions are dominated by raw materials. Such early-stage adoption encourages stakeholder coordination and ensures sustainable, cost-effective, and timely delivery of the project. The integrated BIM framework enables improved decision-making, minimizes errors, and maximizes asset performance across the project's entire lifecycle. In total, this multidisciplinary framework develops a digital platform for more intelligent, safer, and more sustainable construction management.

INTRODUCTION

The international construction sector is currently experiencing a rapid transformation into a digital arena fueled by the increasing demand for sustainability, efficiency, and safety throughout the entire stage of infrastructure development. Conventional 2D-based design and documentation practices are progressively being substituted with state-of-the-art Building Information Modelling (BIM) technologies that facilitate integrated, data-enriched project environments. Of the various multidimensional extensions of BIM, 4D, 5D, and 6D models have become essential tools for the improvement of visualization, coordination, and decision-making in intricate construction projects.

Bridge and building infrastructures, which are the backbone of economic development, are frequently plagued with cost overruns, time slippages, and environmental inefficiencies as a result of fragmented design and management systems. The 6D BIM approach solves these problems by factoring in sustainability and lifecycle cost estimation parameters so that stakeholders are able to assess material impacts, energy usage, and carbon emissions from initial design phases. One good example is China's Donggou Bridge project, where 6D BIM integration showed drastic enhancements in lifecycle prediction and collaborative planning.

At the same time, the 5D BIM model also helps in the management of projects by interfacing 3D design components with time and cost information. Integration provides real-time visualization of the construction process, precise cost calculation, and proactive financial management, especially in the field of residential construction works. With the help of software tools like Autodesk Revit, Navisworks, and Microsoft Project, 5D BIM enables engineers and project managers to simulate different construction conditions, detect potential conflicts, and optimize

Safety continues to be a critical component of contemporary construction, complementing cost and sustainability objectives. By integrating 4D BIM and generative design software, like the SCI4D framework, intelligent and automatic planning of safety observation systems is achieved for real-time observation and hazard avoidance. Concurrently, the 4D, 5D, and 6D dimensions of BIM—time, cost, safety, and sustainability—constitute an integrated digital environment which bolsters project efficiency, reduces environmental footprint, and advocates safer, greener construction methods across infrastructure and building project lifecycles.

LITERATURE REVIEW

The international construction sector is currently experiencing a rapid transformation into a digital arena fueled by the increasing demand for sustainability, efficiency, and safety throughout the entire stage of infrastructure development. Conventional 2D-based design and documentation practices are progressively being substituted with state-of-the-art Building Information Modelling (BIM) technologies that facilitate integrated, data-enriched project environments. Of the various multidimensional extensions of BIM, 4D, 5D, and 6D models have become essential tools for the improvement of visualization, coordination, and decision-making in intricate construction projects.

Bridge and building infrastructures, which are the backbone of economic development, are frequently plagued with cost overruns, time slippages, and environmental inefficiencies as a result of fragmented design and management systems. The 6D BIM approach solves these problems by factoring in sustainability and lifecycle cost estimation parameters so that sssstakeholders are able to assess material impacts, energy usage, and carbon emissions

from initial design phases. One good example is China's Donggou Bridge project, where 6D BIM integration showed drastic enhancements in lifecycle prediction and collaborative planning.

At the same time, the 5D BIM model also helps in the management of projects by interfacing 3D design components with time and cost information. Integration provides real-time visualization of the construction process, precise cost calculation, and proactive financial management, especially in the field of residential construction works. With the help of software tools like Autodesk Revit, Navisworks, and Microsoft Project, 5D BIM enables engineers and project managers to simulate different construction conditions, detect potential conflicts, and optimize

Safety continues to be a critical component of contemporary construction, complementing cost and sustainability objectives. By integrating 4D BIM and generative design software, like the SCI4D framework, intelligent and automatic planning of safety observation systems is achieved for real-time observation and hazard avoidance. Concurrently, the 4D, 5D, and 6D dimensions of BIM—time, cost, safety, and sustainability—constitute an integrated digital environment which bolsters project efficiency, reduces environmental footprint, and advocates safer, greener construction methods across infrastructure and building project lifecycles.

METHODOLOGY

This research combines 4D (schedule and safety), **5D (cost control), and **6D (sustainability) BIM dimensions to develop a holistic digital lifecycle management framework. Utilizing *Autodesk Revit, Navisworks, Microsoft Project, and Dynamo, the method provides **impeccable data interoperability throughout design, construction, and operation stages.

The methodology involves six steps:

- 1. Data acquisition
- 2. 3D model creation
- 3. Time-cost integration
- 4. Safety simulation
- 5. Sustainability analysis
- 6. Validation

Step 1: Data Collection and Model Preparation

- Input Data: Architectural, structural, and MEP drawings; project schedules; cost breakdowns; and sustainability data (material quantities, embodied carbon coefficients, and energy consumption factors).
- Software Utilized: Autodesk Revit 2023 for the generation of 3D models and Microsoft Excel for managing input data.
- An A Level of Development (LOD 300) model having geometric and non-geometric data for every component.

Step 2: 4D BIM - Time and Safety Integration

- 4D BIM Safety and Time Integration
- The 3D Revit model is imported with a construction schedule in Navisworks Manage to create a 4D simulation.
- By applying SCI4D principles, a parametric safety monitoring model is created in Dynamo, with automated surveillance camera placement based on dynamic site layouts.
- This step allows for visualizing the sequence of construction and identifying possible safety conflicts.

Step 3: 5D BIM - Cost Simulation and Resource Optimization

- 5D BIM Cost Simulation and Resource Optimization
- The 4D model is extended to incorporate cost factors like material, labor, equipment, and upkeep costs.
- Microsoft Project is integrated with Navisworks Quantification to obtain reliable cost estimates and monitor cash flow.
- · This enables real-time comparison between expenditures planned and actual, assisting in reducing budget deviations.

Step 4: 6D BIM - Sustainability and Lifecycle Assessment

- 6D BIM Sustainability and Lifecycle Analysis
- From data supplied by the 5D model, carbon footprint and energy consumption are determined using standard factors of emissions (e.g., UK BEIS 2018).
- The lifecycle analysis (LCA) analyzes the environmental performance at material extraction, transportation, construction, operation, and demolition phases.
- Sustainability indicators like embodied CO₂, energy intensity, and material recyclability are measured

Step 5: Integration and Analysis

- The 4D-6D BIM datasets are integrated within one integrated Revit-Navisworks-Dynamo environment with uninhibited data flow across safety, cost, and sustainability modules.
- Real-time dashboards represent performance indicators like project progress, cost fluctuation, safety compliance, and carbon emissions.
- Multi-criteria analysis is carried out to maximize cost, time, and sustainability objectives.

Step 6: Validation and Optimization

- The integrated model is validated through case studies: Donggou Bridge (for validation of sustainability), a residential building (cost/time analysis), and a 3000 m² safety monitoring site (4D safety validation).
- Simulation outputs are compared to baseline performance measures from conventional methods.
- Optimization is centered on minimal carbon impact, utmost safety cover, and less project delay.

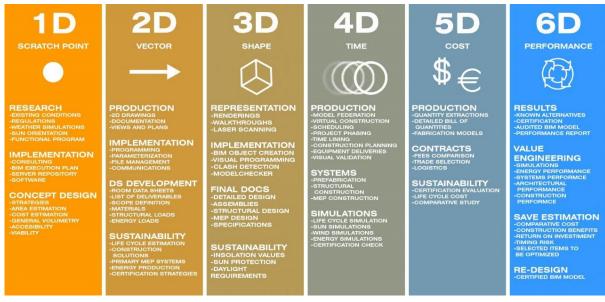


Fig: Evolution of Building Information Modelling (BIM) Dimensions from 1D to 6D

31.	Aspect	Applications	Challenges	uture Advancements
No 1	Materials	Self-assembling	Limited printable	Development of
		structures	materials	idvanced materials
		Adaptive facades	Material durability and	Biodegradable and
		Smart construction	stability	ustainable options
		naterials	Cost constraints	Integration of
		Shape-memory		nanotechnology for
		components		nhanced properties
		Programmable		
		netamaterials		
2	Design &	Complex geometric	Software limitations	Enhanced design
	Modeling	structures	Design complexity	oftware
		Customizable	Integration challenges	AI-driven design
		components		ptimization
		Responsive designs		Bioinformatics for bio-
		Programmable &		nspired solutions
		econfigurable designs		
		Bio-inspired		
		architectures		
3	Construction	Self-assembling	Limited construction	Specialized construction
		nfrastructure	echniques	echniques
		On-site assembly	Skill training gaps	Robotics for automation
		utomation	Integration hurdle	Standardized
		Rapid prototyping		construction protocols
		Disaster-responsive		On-demand 4D printing
		structures		ervice
		Customizable		
		construction		
4	Sustainability	Reduced material waste	Environmental impact	Eco-friendly 4D printing
		Energy-efficient	Energy consumption	naterials
		structures	Recycling challenges	Energy-efficient printing
		Reconfigurable		echniques
		puildings		Water-based &
		Pollution-absorbing		piodegradable solutions-
		structures		Recycling innovations
		Water-responsive		
		ırchitecture		
5	Cost & Time	Faster construction	Initial technology	Economical 4D printing
		imelines	nvestment	echnologies
		Reduced labor cost	R&D costs	Cost-effective materials
		Minimized errors-	Time-consuming	& supply chain

		Customizable & on-	processes	Management
		lemand construction		Faster R&D cycles
		Streamlined supply		On-demand printing
		hai		ervice
6	Functionality	Responsive structures	Limited long-term	Long-term stability
		Programmable	stability understanding-	tudies- Enhanced
		components	Precision challenges	recision & accuracy
		Real-time	Sensor integration	IoT integration for real-
		esponsiveness		ime monitoring
		Wearable & bio-		Bio-sensing technologie
		ntegrated architecture		
		Interactive installation		
7	Regulatory	Customizable &	Lack of standardized	Collaboration for
		ompliant structures	egulations	tandard guidelines
		Disaster-resistant	Safety certifications	Safety certifications for
		lesigns	Legal concerns	naterials
		Heritage preservation		Legal frameworks for
		Urban planning		iability issues
		solution		Integration of 4D printing
				n urban planning policies

Table 1: Applications, challenges, and future advancements of 4D Printing in AEC Industry

CONCLUSION

This research proves that the incorporation of several BIM dimensions—4D, 5D, and 6D—builds an integrated system for enhancing construction project safety, efficiency, and sustainability in their entire lifecycle. The 6D BIM model improves environmental performance through the inclusion of carbon footprint analysis and lifecycle assessment so that more reasoned material choices and sustainable design decisions are possible, as in bridge infrastructure projects such as the Donggou Bridge. The 5D BIM solution successfully integrates cost and time parameters with 3D models to facilitate accurate budgeting, scheduling, and resource allocation in residential construction projects. In contrast, the 4D BIM solution, facilitated by generative design software like SCI4D, offers a novel solution for safety management by automating surveillance planning and enabling real-time visualization of risk. Together, these dimensions create a data-driven environment in which cost effectiveness, safety guarantee, and environmental stewardship coexist. The use of 4D–6D BIM not only increases the coordination between project parties but also fosters transparency, minimizes rework, and avoids uncertainties about the project. Generally, the multi-dimensional BIM approach is a revolutionary step towards smart, sustainable, and resilient building practices, facilitating global movement towards digitalization and lifecycle infrastructure management

REFERENCES:

- S. Kaewunruen, J. Sresakoolchai, and Z. Zhou, "Sustainability-based lifecycle management for bridge infrastructure using 6D BIM," Sustainability, vol. 12, no. 6, p. 2436, 2020, doi: 10.3390/su12062436.
- 2. S. M. Jununkar, D. S. Aswar, and D. L. Mittapalli, "Application of BIM and construction process simulation using 5D BIM for residential building project," *Int. Res. J. Eng. Technol. (IRJET)*, vol. 4, no. 7, pp. 1063–1068, 2017. [Online]
- 3. S. V.-T. Tran, T. L. Nguyen, H.-L. Chi, D. Lee, and C. Park, "Generative planning for construction safety surveillance camera installation in 4D BIM environment," *Autom. Constr.*, vol. 134, p. 104103, 2022, doi: 10.1016/j.autcon.2021.104103.