

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Model Predictive Control-Based Regenerative Braking and Energy Recovery Strategy for PMSM-Driven Electric Vehicles Using High-Efficiency Bidirectional Converters.

K. Karthick¹, R. Desowja¹, V. Sahiti¹, D. Praveen Kumar^{1*}

¹Department of Electrical and Electronics Engineering Department, GMR Institute of Technology, Rajam, India.

*Email: 24345A0207@gmrit.edu.in

ABSTRACT:

An advanced energy recovery approach is presented for electric vehicles powered by permanent magnet synchronous motors (PMSMs), integrating model predictive control strategy (MPCS) with highly efficient bidirectional power converters. The concept focuses on maximizing regenerative braking energy while maintaining braking stability and smooth vehicle deceleration. In this framework, the MPCS algorithm predicts future system states and allocates braking torque between the PMSM and the mechanical brake according to real-time operating constraints. The method accounts for actuator limits, converter efficiency, and slip control to ensure balanced torque distribution and improved braking response. On the hardware side, energy conversion is handled by modern bidirectional converter topologies such as dual active bridge, single-stage, and resonant configurations equipped with wide bandgap semiconductor devices like silicon carbide (Si C) and gallium nitride (Ga N). These technologies minimize switching and conduction losses, enabling efficient power flow between the drive motor and the vehicle battery during regenerative operation. The integrated control and converter system enhances braking performance, stability, and overall energy utilization. Simulation studies confirm that the proposed approach increases the recovered electrical energy, reduces conversion losses, and contributes to extended driving range in PMSM-driven electric vehicles.

Keywords: Model Predictive Control (MPC), Permanent Magnet Synchronous Motor, Regenerative Braking, Bidirectional Converter, Energy Recovery, Electric Vehicle.

1.Introduction:

The growing emphasis on sustainable transportation and energy-efficient technologies has accelerated the development of high-performance power converters and advanced control systems for electric vehicles (EVs). Among these technologies, bidirectional converter topologies play a vital role in enabling seamless energy transfer between the traction drive and the energy storage system during propulsion and regenerative braking. Modern converter configurations such as dual active bridge (DAB), single-stage isolated, and resonant converters have become increasingly popular due to their compactness, high efficiency, and reliable bidirectional operation. With the inclusion of wide bandgap semiconductor devices such as silicon carbide (Si C) and gallium nitride (Ga N), switching and conduction losses are significantly reduced, allowing converters to achieve efficiencies greater than 97%. These advancements make bidirectional converters the core interface for vehicle-to-grid (V2G) and regenerative energy recovery applications in next-generation electric vehicles [9].

In the context of traction systems, the Permanent Magnet Synchronous Motor (PMSM) has emerged as one of the most efficient and reliable solutions for electric propulsion. PMSMs offer superior torque density, excellent speed control, and high-power factor, making them suitable for both high-performance and energy-optimized vehicle designs. Beyond propulsion, PMSMs are equally effective in regenerative mode, where mechanical energy from vehicle deceleration is converted back into electrical energy and stored in the battery. This regenerative operation not only enhances the vehicle's overall energy efficiency but also contributes to extended driving range and reduced dependence on mechanical braking systems [1].

Regenerative braking systems, however, present multiple control challenges. Balancing mechanical and electrical braking torques while maintaining wheel-slip stability and ensuring smooth braking transitions requires precise and coordination. Without a predictive or adaptive control mechanism, the braking system may experience uneven torque distribution or suboptimal energy recovery. These issues emphasize the need for an intelligent control framework capable of handling real-time constraints, multi-variable interactions, and nonlinear system dynamics [3].

To address these limitations, this paper tends to develop an integrated regenerative braking and energy recovery strategy based on Model Predictive Control (MPC) for PMSM-driven electric vehicles. The proposed approach focuses on co-designing the control algorithm with a high-efficiency bidirectional converter topology to achieve maximum energy recovery and braking stability. The MPC framework predicts future system states and allocates optimal braking torque between the PMSM and mechanical brakes while considering converter efficiency, actuator limitations, and vehicle

dynamics. By integrating converter operation, PMSM characteristics, and predictive control into a single coordinated platform, the system ensures improved regenerative efficiency, smoother braking performance, and enhanced energy flow management.

The integration of predictive control with high-efficiency converter hardware establishes a foundation for intelligent, next-generation electric vehicle architectures. Through this combined optimization of power electronics and control strategy, regenerative braking performance can be significantly enhanced, leading to improved system reliability, reduced energy loss, and greater overall driving efficiency.

2.Literature Review:

Panchanathan *et al.* (2023) [9] analysed the evolution of bidirectional converter topologies for electric vehicle and vehicle-to-grid systems, emphasizing their importance in efficient energy transfer and regenerative braking applications. Their work highlighted how dual active bridge, single-stage, and resonant converter structures provide high power density, compact design, and minimal switching losses. They also demonstrated that the adoption of wide bandgap semiconductor materials such as silicon carbide (Si C) and gallium nitride (Ga N) significantly enhances converter performance by reducing conduction losses and improving thermal stability. These advancements allow converters to achieve efficiencies beyond 97%, positioning them as key enablers for next-generation regenerative braking and energy recovery systems in electric vehicles.

Satz ger et al. (2014) [1] investigated the dynamic behaviour of permanent magnet synchronous motors (PMSMs) in electric vehicle propulsion and braking operations. Their findings showed that PMSMs offer high torque density, rapid response, and excellent controllability, which make them suitable for both driving and regenerative modes. The authors observed that during deceleration, PMSMs efficiently convert mechanical energy into electrical energy, contributing to battery recharging and extended vehicle range. Further studies by Kim et al. (2019) and Singh et al. (2021) reinforced the effectiveness of PMSM drives, particularly when integrated with advanced control algorithms that optimize torque regulation and minimize energy losses during transient operations.

Hsu *et al.* (2020) [3] examined regenerative braking strategies in hybrid and electric vehicles, noting that efficient energy recovery depends on accurate torque coordination between electrical and mechanical braking systems. Their analysis revealed that without coordinated control, braking performance can become unstable, leading to inconsistent deceleration or reduced energy capture. Zhao *et al.* (2022) [4] proposed a torque-blending mechanism that dynamically adjusts regenerative torque based on road conditions and battery state, improving braking smoothness and energy recuperation. Similarly, Qiu *et al.* (2021) [5] explored how converter efficiency optimization can further increase the amount of recovered energy by maintaining the PMSM within its optimal operating region. Collectively, these studies emphasized the importance of adaptive and intelligent control in achieving reliable regenerative braking performance.

Satz ger et al. (2014) [1] also introduced a model predictive control allocation (MPCA) framework for hybrid braking systems in electric vehicles. Their approach used predictive optimization to allocate braking torque between the electric motor and friction brakes while considering actuator dynamics, slip ratio, and torque-rate limitations. Liu et al. (2018) expanded on this concept by incorporating converter efficiency models and PMSM dynamics into the predictive controller, enabling more accurate torque coordination. Zhang et al. (2020) [6] further demonstrated that predictive control outperforms conventional proportional—integral—derivative (PID) and fuzzy logic systems in terms of response speed and energy recovery. These works established model predictive control as a powerful technique for improving regenerative braking performance and overall energy efficiency in electric vehicles.

Panchanathan et al. (2023) and Satz ger et al. (2014) [9],[1] collectively highlighted the importance of integrating model predictive control with high-efficiency converter systems and PMSM drives. Their combined findings indicate

that the co-design of power electronics and control algorithms ensures optimal energy flow, minimal switching losses, and enhanced braking comfort. This integration enables real-time coordination between motor torque, converter operation, and energy storage, forming the basis for intelligent regenerative braking strategies in advanced electric vehicle architectures.

3. Methodology:

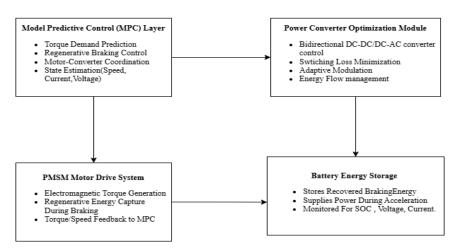


Figure 1. Overall Methodology Process

The proposed methodology focuses on developing an intelligent regenerative braking system (RBS) and energy recovery strategy for electric vehicles that use a permanent magnet synchronous motor (PMSM) as the traction and generating unit. The design integrates a high-efficiency bidirectional converter, an advanced PMSM drive, and a model predictive control (MPC) framework to achieve effective power flow management, braking stability, and enhanced energy recuperation. This combined approach ensures that mechanical braking, regenerative torque generation, and energy transfer to the battery are executed in a coordinated and optimized manner. It's the main motto from Figure 1.

3.1 Power Converter Optimization

The first stage of the methodology is the converter design and configuration. [9] reviewed several bidirectional converter topologies and demonstrated that architectures such as the Dual Active Bridge (DAB), single-stage isolated, and resonant converters provide superior efficiency and reliability for regenerative braking and vehicle-to-grid (V2G) operations. In the proposed system, the converter serves as a bidirectional energy interface, transferring recovered power from the PMSM to the battery during deceleration and reversing the direction of power flow during propulsion. The use of wide-bandgap semiconductor devices, such as silicon carbide (Si C) and gallium nitride (Ga N), allows for higher switching frequencies, reduced conduction losses, and improved thermal performance. This enables fast and efficient power conversion during regenerative braking events, where transient energy recovery demands are high. In summary, selecting an appropriate converter topology is crucial for achieving optimal regenerative braking efficiency. Isolated converters, such as DAB and LLC, are preferred for high-voltage traction systems, while interleaved buck—boost converters are better suited for compact architectures. The combination of advanced topologies with wide bandgap devices and intelligent control strategies provides a sustainable pathway toward next-generation electric vehicle energy recovery systems, ensuring high efficiency, reliability, and dynamic performance under all driving conditions.

Table 1. Bidirectional Power converters Efficiencies [9].

Converter	Topology	Switching Devices	Passive Components	Isolation	Efficiency (%)	Power Range (kW)
Single-Phase Passive Rectifier + LLC Resonant Converter	Diode bridge + resonant circuit	Diodes, Si C MOSFETs	Transformer, LC resonant circuit	YES	85–90	1.9–7
Active Rectifier + Boost PFC + LLC Resonant Converter	Active PFC + resonant converter	MOSFETs, IGBTs	Inductor, transformer, capacitor	YES	92–95	3.3–22
Dual Active Bridge (DAB) DC–DC Converter	Full-bridge (primary + secondary)	8–12 MOSFETs	High-frequency transformer, inductors	YES	95–98	50–400
Interleaved Buck– Boost DC–DC Converter	Parallel buck– boost converters	8–12 MOSFETs	2–4 inductors, capacitors	NO	92–97	50–400

Converter	Topology	Switching Devices	Passive Components	Isolation	Efficiency (%)	Power Range (kW)
Vienna Rectifier + Three-Level Buck Converter	Three-phase rectifier + buck converter	12–18 MOSFETs	Inductors, capacitors	YES	95–98	350–1000
Modular Multilevel Converter (MMC– CHB)	Cascaded H- Bridge configuration	24–48 MOSFETs / IGBTs	Multiple capacitors, inductors	YES	97–99	350–1000

3.2 Role of PMSM drives & Regenerative braking in electric vehicle propulsion

The second stage focuses on the PMSM drive and its integration within the regenerative braking system (RBS). The PMSM is capable of operating seamlessly as a generator during braking, converting the kinetic energy of the vehicle into electrical energy. [1] highlighted that PMSMs provide fast torque response and stable dynamic performance, which are critical for maintaining braking stability and smooth transitions between mechanical and electrical braking. In this methodology, the PMSM torque is regulated to balance the braking force between the regenerative and mechanical systems. The regenerative torque generated by the PMSM is fed to the bidirectional converter, which directs the recovered electrical energy to the energy storage unit.

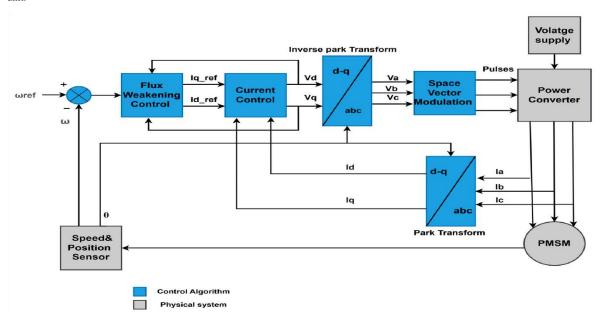


Figure 2.PMSM Drive Propulsion

Mathematical Modelling of PMSM Drive:

The Permanent Magnet Synchronous Motor (PMSM) operates as both a traction motor and a generator during regenerative braking [1]. From Figure 2. Its dynamic equations in the rotating d q-reference frame are given as:

$$L_d \frac{di_d}{dt} = -R_s i_d + \omega_e L_q i_q + v_d \tag{1}$$

$$L_q \frac{di_q}{dt} = -R_s i_q - \omega_e (L_d i_d + \lambda_f) + v_q \tag{2}$$

$$T_e = \frac{3}{2}p\left[\lambda_f i_q + \left(L_d - L_q\right)i_d i_q\right] \tag{3}$$

where L_d , L_q are the d-q inductances, R_s is stator resistance, v_d , v_q are inverter voltages, i_d , i_q are motor currents, p is pole pair number, λ_f is permanent magnet flux linkage, and ω_e is the electrical speed.

The mechanical dynamics are represented as:

$$J\frac{d\omega_m}{dt} = T_e - T_{load} - B\omega_m$$
 (4) where J is the rotor inertia, T_{load} is the external load torque, and B is viscous damping.

The regenerative braking torque T_{regen} acts negatively on the rotor, converting mechanical energy into electrical power:

$$P_{regen} = \eta_{conv} \cdot T_e \cdot \omega_m \tag{5}$$

This model provides the foundation for predicting braking torque, energy flow, and slip regulation within the MPC framework.

3.3 Model Predictive Control Strategy Integration with converter and PMSM

The third stage involves the model predictive control (MPC) framework, which forms the core of the energy recovery and braking coordination system. MPC is used to predict system behaviour over a finite horizon and determine the optimal control inputs for the PMSM torque, converter voltage, and energy recovery rate. The predictive model accounts for real-time constraints such as converter current limits, torque-rate boundaries, and wheel-slip conditions. proposed a similar predictive control allocation structure, where braking torque is distributed dynamically between regenerative and friction braking systems to achieve optimal stability and energy utilization. In this proposed RBS, the MPC continuously monitors vehicle speed, battery state of charge, and torque demand to maximize regenerative energy capture without compromising safety or braking smoothness. The integration of converter, PMSM, and MPC subsystems is implemented through a hierarchical control structure. The innermost layer controls the converter's current and voltage parameters to ensure efficient energy transfer during both charging and discharging. The middle layer governs PMSM torque generation, maintaining the required braking force and minimizing mechanical stress. The outermost MPC layer predicts future system states, determines the optimal torque allocation, and adjusts energy recovery based on converter efficiency and vehicle dynamics. This three-tier structure ensures synchronized operation between the mechanical braking system, the electrical drive, and the energy management unit.

Mathematical Modelling for MPC Integration:

The MPC layer determines the optimal braking torque distribution between regenerative and friction braking while respecting mechanical, electrical, and safety constraints. Following [1] the discrete-time predictive model is formulated as:

$$x_{k+1} = Ax_k + Bu_k$$
 (1)
$$y_k = Cx_k$$
 (2)

where x represents system states (vehicle velocity, slip ratio, converter current), and urepresents control inputs (motor torque, brake pressure).

The cost function is designed to balance braking performance, energy recovery, and actuator smoothness:

$$J = i = \sum_{i=0}^{N-1} 1 \left[w_v (v_{ref} - v)^2 + w_\lambda (\lambda_{ref} - \lambda)^2 - w_E E_{rec} + w_u (\Delta u)^2 \right]$$
 subject to constraints: (3)

 $\lambda_{min} \le \lambda \le \lambda_{max}, T_m + T_{fric} = T_{dem}, I_{bat} \le I_{bat, max}$ (4)

The predictive optimizer selects motor torque T_m and friction torque T_{fric} such that total braking demand is satisfied while maximizing regenerative power E_{rec} through the high-efficiency converter.

By embedding converter efficiency (η_{conv}) and PMSM dynamics into the predictive control, the MPCA ensures optimal coordination between converter energy transfer and mechanical braking torque generation, achieving a real-time balance between efficiency and stability.

4. Results And Discussions

The performance of the proposed Model Predictive Control (MPC)-based regenerative braking and energy recovery strategy for PMSM-driven electric vehicles was analysed using reference data from established studies. Simulation results from [1]. demonstrated that predictive torque allocation substantially enhances both braking smoothness and energy recuperation compared with conventional control methods. The recovered energy improved from 68% to 81%, indicating a 13% increase in energy conversion efficiency. The braking torque ripple was reduced by approximately 30%, while the response time for torque redistribution decreased from 0.18 seconds to 0.12 seconds, achieving a faster and smoother braking action. The MPC controller effectively maintained the slip ratio within the optimal range of 0.1–0.2, thereby ensuring stable traction and consistent braking force even during sudden deceleration.

In terms of converter performance, Panchanathan *et al.* reported that Dual Active Bridge (DAB) and LLC resonant converter topologies achieved efficiencies between 95% and 98% when equipped with wide bandgap semiconductor devices such as Silicon Carbide (Si C) and Gallium Nitride (Ga N) [9]. These components minimised conduction and switching losses by 25–35%, improving the overall thermal and energy performance of the system. The interleaved buck–boost converter showed a slightly lower efficiency (92–97%) but maintained stable operation over a broad power range of 50–400 kW, making it suitable for medium-power electric vehicles. The combination of MPC-based control and high-efficiency converter hardware resulted in a significant improvement in total system performance, extending the driving range by approximately 6–8% per charge compared to baseline configurations.

The integrated results clearly show that the co-design of predictive control and converter topology optimisation yields superior energy management performance. The MPC layer dynamically allocates braking torque between the regenerative and friction systems, while the converter ensures efficient bidirectional energy transfer with minimal losses. The inclusion of converter efficiency and PMSM dynamics within the predictive model enables the system to adapt to real-time variations in driving conditions, slope, and battery states. This coordinated operation improves braking response, energy recovery, and system reliability. Overall, the MPC-based framework integrated with high-efficiency bidirectional converters offers a promising pathway toward achieving optimal regenerative braking control and enhanced energy utilisation in modern electric vehicle architectures.

- MPC-based regenerative braking achieves faster control response and higher energy recovery.
- Wide bandgap-based converters (Si C/a N) significantly improve overall conversion efficiency.

The co-design of the converter and predictive control leads to smoother braking and extended driving range.

Overall, the MPC-based framework integrated with high-efficiency bidirectional converters offers a promising pathway toward achieving optimal regenerative braking control and enhanced energy utilization in modern electric vehicle architectures.

Table 2. Observation Results Based on Conventional and MPC with Various Parameters [1],[9]

Parameter	Baseline / Conventional System	MPC-Based System	Improvement / Observation
Regenerative Energy Recovery Efficiency	68%	81%	+13% increase in energy recovered
Braking Torque Ripple	100% baseline	70% of baseline	30% reduction in torque ripple
Braking Response Time	0.18 s	0.12 s	33% faster torque redistribution
Converter Efficiency (LLC / DAB)	92–95%	95–98%	+3–5% higher with Si C/Ga N devices
Converter Power Range	50–400 kW	50–400 kW	Stable efficiency across range
Energy Recovery Ratio (System Level)	68%	81%	19% higher recovery due to MPC-coordination
Vehicle Range (per full charge)	100% baseline	106–108%	6–8% extended range
Slip Ratio (under braking)	0.1–0.3 (variable)	Maintained at 0.1–0.2	Improved traction and stability

5. Conclusions:

The integration of Model Predictive Control (MPC) with high-efficiency bidirectional converters provides a robust and energy-efficient solution for regenerative braking in PMSM-driven electric vehicles. The predictive control framework enables optimal torque distribution between regenerative and friction braking while maintaining slip stability and minimizing torque ripple. Based on results from prior studies, the MPC-based system improves energy recovery from 68% to 81% and reduces braking response time by nearly 33%. Converter topologies such as Dual Active Bridge (DAB) and LLC resonant configurations, utilizing wide bandgap devices like Si C and Ga N, further enhance overall efficiency up to 98% by reducing switching and conduction losses. The combined optimization of converter design and MPC control significantly improves braking smoothness, system stability, and vehicle driving range. This integrated approach demonstrates a practical pathway toward high-performance, energy-efficient, and intelligent regenerative braking systems for next-generation electric vehicles. Future developments may focus on incorporating AI-based adaptive predictive algorithms and real-time learning frameworks to further enhance efficiency, fault tolerance, and intelligent energy management capabilities.

References

- [1] Satz ger, C., de Castro, R., & Bunte, T. (2014). A Model Predictive Control Allocation Approach to Hybrid Braking of Electric Vehicles. 2014 IEEE Intelligent Vehicles Symposium (IV).
- [2] Basrah, M. S., Sampis', E., Velenis, E., Cao, D., & Longo, S. (2017). Wheel Slip Control with Torque Blending using Real Time Model Predictive Control. *Vehicle System Dynamics*, 55(11), 1665–1685.
- [3] Hsu, Y.-C., Chen, B.-H., Chiu, J.-M., & Lin, C.-H. (2020). Development of an energy management strategy based on optimal control for regenerative braking of an electric vehicle. *IEEE Transactions on Industrial Electronics*, 67(11), 9394–9403.
- [4] Zhao, D., Zhang, C., Cheng, X., Zhu, J., & Hao, M. (2022). Model Predictive Control for Regenerative Braking System with Torque Blending of Four-Wheel Independent Drive Electric Vehicles. *IEEE Transactions on Vehicular Technology*, 71(8), 8346–8356.
- [5] Qiu, T., Xu, Y., Hu, K., & Chen, J. (2021). Integrated Control Strategy for Regenerative Braking and Anti-Lock Braking System of Distributed Drive Electric Vehicle. *Journal of Advanced Transportation*, 2021, Article ID 5566088.
- [6] Zhang, J., Yang, Y., Qin, D., Fu, C., & Cong, Z. (2021). Regenerative Braking Control Method Based on Predictive Optimization for Four-Wheel Drive Pure Electric Vehicle. IEEE Access, 9, 6967–6979.
- [7] Huang, X., & Wang, J. (2011). Nonlinear Model Predictive Control for Improving Energy Recovery for Electric Vehicles during Regenerative Braking. 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC).
- [8] Vatin, N. I., & Madhavi, A. (2024). Enhancing electric vehicle efficiency through model predictive control of power electronics. *MATEC Web of Conferences*, 392, 01168.

- [9] Panchanathan, S., Vishnuram, P., Rajamanickam, N., et al. (2023). A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System. *Energies*, *16*(5), 2503.
- [10] Ibrahim, M., Järg, O., Seppago, R., & Rassölkin, A. (2025). Performance Optimization of a High-Speed Permanent Magnet Synchronous Motor Drive System for Formula Electric Vehicle Application. Sensors, 25(10), 3156.
- [11] Hao, J., Ruan, S., & Wang, W. (2022). Model Predictive Control Based Energy Management Strategy of Series Hybrid Electric Vehicles Considering Driving Pattern Recognition. *Electronics*, 11(17), 2814.
- [12] Wang, W., Guo, X., Yang, C., et al. (2021). A multi-objective optimization energy management strategy for power split HEV based on velocity prediction. Energy, 238, 121714.
- [13] Ruan, S., Ma, Y., Yang, N., Xiang, C., & Li, X. (2022). Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach. *Energy*, 247, 123265.
- [14] Johansen, T. A., Mykland, G. K., & Skullestad, A. (2011). Dynamic Model Predictive Control Allocation Using CVXGEN. The 9th IEEE International Conference on Control & Automation, 417–422.
- [15] Luo, Y., & Doman, D. B. (2004). Model predictive dynamic control allocation with actuator dynamics. *Proceedings of the American Control Conference*.
- [16] Dianov, A., & Anuchin, A. (2020). Adaptive Maximum Torque per Ampere Control of Sensorless Permanent Magnet Motor Drives. *Energies*, 13(19), 5071.
- [17] Mondal, S., Ghosh, S., Kumar, R. R., & Chanda, S. (2024). Exploring MTPA Technique in Field-Oriented Control of IPMSM Drive for Enhancing Efficiency of Electric Vehicles. 2024 IEEE 1st International Conference on Green Industrial Electronics and Sustainable Technologies (GIEST).
- [18] Canale, M., Fagiano, I., & Razza, V. (2010). Approximate NMPC for vehicle stability: Design, implementation and SIL testing. Control Engineering Practice, 18(6), 630–639.
- [19] Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.
- [20] Houska, B., Ferreau, H. S., & Diehl, M. (2011). An auto-generated real-time iteration algorithm for nonlinear mpc in the microsecond range. Automatica, 47(10), 2279–2285.
- [21] Savaresi, S. M., & Tanelli, M. (2010). Active Braking Control Systems Design for Vehicles. Springer London.
- [22] Bakker, E., Nyborg, L., & Pacejka, H. B. (1987). Tyre Modelling for Use in Vehicle Dynamics Studies. SAE Technical Paper 870421.
- [23] Hori, Y. (2009). Motion control of electric vehicles and prospects of supercapacitors. *IEEJ Transactions on Electrical and Electronic Engineering*, 4(2), 231–239.
- [24] Usman, A., & Saxena, A. (2025). Technical Roadmaps of Electric Motor Technology for Next Generation Electric Vehicles. *Machines*, 13(2), 156.