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ABSTRACT –  

Hyperspectral anomaly detection focuses on identifying rare or unexpected targets within hyperspectral imagery, which captures detailed spectral information 

across hundreds of bands per pixel, enabling fine discrimination between materials. This process is crucial for various applications such as environmental 

monitoring, surveillance, and agriculture, as it allows the detection of objects or phenomena that differ spectrally from the surrounding background without requiring 

prior knowledge of target signatures. Traditional approaches, such as the Reed–Xiaoli (RX) detector and its derivatives, utilize statistical modeling and spectral 

distance calculations, while modern methods incorporate machine learning, subspace analysis, and both spatial and spectral features to improve detection capability 

and robustness in complex, real-world scenarios where data often exhibits high dimensionality, strong noise, and non-Gaussian distributions. 
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1.INTRODUCTION 

This project introduces an integrated approach to hyperspectral image anomaly detection by combining the strengths of both the Reed-Xiaoli (RX) 

algorithm and K-means clustering. By first segmenting the hyperspectral data into distinct clusters using K-means, the diversity and complexity of 

background materials are effectively captured. The RX detector is then applied within each cluster rather than across the entire image, allowing for more 

accurate identification of anomalies relative to localized background statistics. This integration enhances sensitivity to subtle or locally distributed 

anomalies, reduces false alarms, and improves detection performance in heterogeneous scenes by leveraging both global statistical analysis and local 

adaptive clustering. 

This paper focuses on the comparative analysis of classical statistical methods, such as the RX detector, and modern deep-learning techniques for anomaly 

detection in hyperspectral images. It examines the strengths and limitations of each approach, evaluates their effectiveness across different types of 

hyperspectral data, and discusses their suitability for various real-world anomaly detection applications. 

2.METHODOLOGY 

2.1 Reed-Xiaoli (RX) detector  

The Reed-Xiaoli (RX) detector is a classical statistical method for hyperspectral anomaly detection that assumes the background follows a multi-variate 

Gaussian distribution and  

uses the Mahalanobis distance to measure how much a test pixel deviates from the background. It is simple, interpretable, and widely used as a baseline 

due to its relatively low computational demands and unsupervised nature. However, it suffers from key limitations: the performance depends on the 

accuracy of the Gaussian and background homogeneity assumptions, which often do not hold in real hyperspectral scenes. RX also struggles to capture 

non-linear relationships among spectral bands and can yield high false alarm rates, particularly in noisy or complex environments. 

2.2 K-means clustering  

K-means clustering is a widely used unsupervised machine learning algorithm that groups similar data points—in this case, hyperspectral pixels—into 

distinct clusters based on their spectral characteristics. In hyperspectral anomaly detection, the algorithm partitions the image pixels into a predefined 

number of clusters, each representing a type of background material or common surface in the scene. The cluster centers (centroids) represent typical 

spectral signatures of the background, while pixels with spectral signatures significantly different from any cluster center are considered anomalies. The 
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process begins by randomly initializing cluster centroids, assigning pixels to the nearest centroid based on spectral distance (usually Euclidean), then 

updating centroids by computing the mean of assigned pixels. This assignment and update cycle repeats until convergence, meaning pixels no longer 

change clusters. 

2.3 False colour variation 

False colour variation is a visualization technique used in hyperspectral and multispectral imaging where colours are assigned artificially to different 

spectral bands to enhance the interpretation of data that is often invisible to the human eye. Because hyperspectral sensors capture information across 

many narrow spectral bands, including wavelengths beyond visible light such as near-infrared, false colour composites map selected bands to red, green, 

and blue channels in a way that highlights specific features or phenomena. For example, healthy vegetation strongly reflects near-infrared light and can 

be shown as bright red in a false-colour image, making it easier to differentiate from other land cover types like soil or water. 

This technique improves visibility of subtle differences and patterns that natural colour images (which use red, green, and blue visible bands in their 

natural mapping) might miss due to low contrast or being outside the visible spectrum. False colour images help in identifying and analysing vegetation 

health, mineral deposits, water bodies, urban areas, and other surface characteristics with greater clarity. Different combinations of bands can be selected 

to emphasize various properties, allowing analysts to tailor visualization to specific applications such as crop monitoring, geological mapping, pollution 

detection, or environmental change assessment. By assigning non-visible wavelengths to visual colours, false colour variation expands the amount of 

interpretable information from hyperspectral data and is essential for effective remote sensing analysis. 

3. Experimental Setup 

3.1 Data Collection 

The experiment begins with the acquisition of hyperspectral image datasets from publicly available sources such as AVIRIS or EO-1 Hyperion, or through 

direct capture using hyperspectral sensors. It is important that the datasets cover a variety of scenes and include known anomalies to effectively evaluate 

detection methods. Before analysis, the data undergoes preprocessing steps which may include atmospheric correction, noise reduction, and normalization 

to ensure accuracy and consistency. 

3.2 Algorithm Implementation 

The core stage involves implementing anomaly detection algorithms on the preprocessed data. Classical methods like the RX detector are used, which 

compute anomaly scores based on statistical measures such as the Mahalanobis distance. Clustering techniques, including k-means, segment the image 

into regions of similar spectral characteristics and isolate outliers as anomalies. Visualization techniques such as false color composites are generated by 

selecting informative spectral bands to facilitate visual examination and validation of detected anomalies. 

3.3 Experimental Procedure 

Once the algorithms are implemented, the experiment involves running them on the chosen datasets and systematically recording results. Anomaly 

detection performance is evaluated quantitatively using metrics like precision, recall, and false alarm rate by comparing against ground truth anomaly 

maps where available. Additionally, visual inspection of false color images helps validate spatial and spectral patterns of anomalies. The procedure also 

includes comparing the computational efficiency of different 

methods to assess their practical usability. 

3.4 Environment Setup 

This phase focuses on the technical infrastructure for experimentation. Programming environments such as MATLAB or Python, equipped with libraries 

like scikit-learn, TensorFlow, and OpenCV, are used to develop and run the detection algorithms. Given the large size of hyperspectral datasets, a 

computing platform with sufficient CPU and GPU resources is necessary to enable efficient processing and experimentation. 

3.5 Final Analysis 

The final phase involves comprehensive analysis of the collected data and detection outcomes. Quantitative metrics provide objective measurement of 

success and failure points of each method, while false colour visualizations assist in qualitative understanding. The insights gained help refine algorithm 

parameters and experimental design, improving robustness and accuracy for future iterations. Balancing detection quality with computational cost guides 

recommendations for operational applications. 

This structured experimental setup ensures thorough validation of hyperspectral anomaly detection techniques while providing clear insights into their 

relative strengths, limitations, and suitability for real-world use. 
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Fig 1: Dashboard 

 

Fig 2: Spectral Bands of Data 

 

Fig 3: Adding False Colour To  K-Means Clustering 

 

Fig 4: K-Means Clustering 
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Fig 5: Adding False Color to RX Algorithm 

 

Fig 6: RX Overlay 

 

Fig 7: Image Uploading Section 
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4. RESULTS AND DISCUSSION 

4.1 Performance Comparison 

Existing hyperspectral anomaly detection systems rely heavily on hyperspectral image sensor and Kernel RX, which offer simplicity and fast processing 

but often fail to detect anomalies in complex, real-world data due to their strong background assumptions and sensitivity to noise. The proposed system 

improves upon this by combining spectral and spatial subspace analysis with modern algorithms, enhancing accuracy and robustness across diverse scenes 

while minimizing false alarms and computational inefficiency. This approach ensures more reliable anomaly detection in practical applications by 

leveraging advanced machine learning techniques and adaptive processing. 

 

Fig 8:  Colour Corrected Images 

 

Fig 10: Final Output 

4.2 Strengths and Limitations 

The proposed system for hyperspectral image anomaly detection offers significant strengths, including the ability to leverage both spectral and spatial 

information for more accurate and robust detection across diverse and complex environments. By integrating advanced algorithms such as subspace 

analysis and deep learning, the system effectively minimizes false alarms and improves adaptability to various background conditions, enabling reliable 

identification of subtle or rare anomalies that traditional methods may miss. However, these benefits are coupled with certain limitations: the system often 

requires more computational resources and time due to the increased complexity of its models and data processing steps. It may also depend on the 

availability of large, well-labeled datasets for training, especially when using deep learning approaches, and can be sensitive to parameter selection or 

domain adaptation challenges when deployed on new, unseen scenes. Despite these challenges, the proposed system represents a notable advancement in 

balancing detection accuracy and practical application needs in the field of hyperspectral image analysis. 
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5. CONCLUSION 

In conclusion, the proposed system for hyperspectral image anomaly detection marks a significant step forward in the field by combining advanced 

spectral and spatial analysis with modern machine learning techniques. This approach enables more accurate, robust, and adaptive identification of 

anomalies, addressing key limitations found in traditional detection methods. While the system may require greater computational resources and careful 

parameter selection, its ability to reduce false alarms and adapt to diverse environments makes it well-suited for practical, real-world applications. 

Ultimately, this project contributes to more reliable remote sensing, enhances situational awareness, and paves the way for future advancements in 

hyperspectral image analysis for both scientific research and industry needs. 
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