International Journal of Research Publication and Reviews, Vol (6), Issue (10), October (2025), Page — 4438-4442

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

WWW.IJRPR.COM

ClassHarmonica: Adaptive AI-Optimized Timetable Orchestrator

ISudarshan Kadam, 'Sakshi Palekar, ' Atharva Pujari, 'Sanket Malegaonkar, *Prof. S. R. Ganorkar

! Student, Department of Information Technology,Sinhgad College of Engineering, Pune, India.
2Head of Department, Department of Information Technology,Sinhgad College of Engineering, Pune, India.

ABSTRACT:

Timetable scheduling is one of the most essential and challenging tasks in educational institutions. Traditional methods rely prominently on manual coordination,
leading to scheduling conflicts, inefficient resource allocation and problems in adapting to sudden changes. This paper presents ClassHarmonica: Adaptive Al-
Optimized Timetable Orchestrator, an intelligent system designed to automate academic timetable generation using Artificial Intelligence (AI) and constraint
optimization techniques. The system integrates Google’s OR-Tools CP-SAT solver for constraint satisfaction with OpenAI’s natural language model for intelligent
rescheduling through user interaction. It is implemented as a web-based platform using Python and Flask. ClassHarmonica generates conflict-free, adaptive and
multi-view timetables for faculty, divisions and classrooms. The system thus articulates Al and optimization techniques to deliver a scalable and practical solution

for academic institutions like engineering colleges.

Keywords: Timetable Scheduling, Artificial Intelligence, Constraint Programming, OR-Tools, Optimization, Educational Automation.

1. Introduction

Efficient academic scheduling is important for smooth institutional operations. In engineering colleges, where curricula involve theory lectures, laboratory
sessions, and tutorials across multiple years and divisions, timetable preparation becomes challenging complex. Manual methods are time-consuming,
sensitive to conflicts and difficult to adapt when changes arise.

The timetable generation problem is a well-known Constraint Satisfaction Problem (CSP), where various variables such as subjects, faculty, rooms and
time slots must satisfy institutional and logical constraints. Solving this problem manually is not feasible for large institutions due to its NP-hard nature.
Hence, an intelligent automated system is essential to ensure accuracy, efficiency and adaptability.

The proposed system, ClassHarmonica, automates the process of timetable generation using constraint optimization and artificial intelligence. It ensures
conflict-free scheduling, dynamic adaptability and ease of use through natural language interaction by users. The project addresses the academic,
administrative and technological challenges in timetable generation and provides a scalable, real-world solution.

2. Literature Review

The timetabling problem has been extensively studied using various optimization and heuristic methods. Early approaches such as Genetic Algorithms
(GA) and Simulated Annealing (SA) offered approximate solutions but lacked scalability.

Table 1 — Literature survey

Sr. No. Author(s)/Year Method Used Key Idea Limitation/Gap

1 S. Yang & S. N. Jat Genetic Algorithm Used local search Needs parameter
(2011) for course tuning, not

dynamic

2 M. Cupic et al. GA for Exam Handled room and Focused only on
(2009) Scheduling time conflicts exams

3 E. Aycan & T. Simulated Improved Sensitive to
Ayav (2009) Annealing convergence for parameter changes

scheduling

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol (6), Issue (10), October (2025), Page — 4438-4442 4439

4 UniTime (Open- Constraint Open-source Complex setup, no
Source Tool) Programming timetable system NLP support

3. System Design

The system architecture of ClassHarmonica is modular and follows a layered approach consisting of the Presentation Layer, Application Layer, Data
Layer, and External Services Layer.

3.1 System Overview

. Frontend: Built using HTMLS, CSS3, JavaScript, and Bootstrap for responsiveness and accessibility.

. Backend: Developed using Flask (Python) with integration of OR-Tools and OpenAl GPT-40 APL

. Data Storage: Utilizes JSON-based configuration with planned migration to PostgreSQL for persistence.

e Al and Optimization: OR-Tools CP-SAT solver generates conflict-free schedules; GPT-40 provides natural language interaction for
modifications.

3.2 Core Modules

e Data Management Module — Handles academic structures (years, divisions, batches) and maintains data consistency.
. Constraint Modelling Module — Defines and enforces scheduling constraints (faculty, rooms, student overlap).

. Timetable Generation Module — Uses the CP-SAT solver to produce optimized, conflict-free schedules.

. Al-Assisted Interaction Module — Allows users to modify timetables using natural language commands.

e Visualization and Reporting Module — Generates multiple timetable views and validation reports.

. Adaptability Module — Handles emergency schedule updates with minimal disruption.

3.3 Component Interaction Flow

The workflow of the system can be described as follows:

1. Input Stage:

e Administrator enters academic structure, subjects, faculty, and rooms.
e Coordinator triggers timetable generation or requests modification.

2. Processing Stage:

. Constraint Modelling Module encodes rules.
e OR-Tools Solver generates an optimized schedule.
e Al Assistant processes natural language requests for rescheduling.

3. Output Stage:

. Timetable produced in multiple perspectives (division, faculty, room).
e Validation report generated (conflicts, workload distribution, room utilization).
e Users access timetables through the web interface.

The architecture of ClassHormonica is modular and layered, ensuring scalability, adaptability, and user-friendliness. Each component plays a
crucial role:

The frontend ensures accessibility.
The application layer provides the core scheduling logic and Al assistance.
The data layer ensures accurate storage and retrieval of academic information.

The external services bring optimization and intelligence to the system.

This design makes ClassHormonica capable of handling the complexities of academic timetabling while remaining flexible and responsive to
institutional needs.

International Journal of Research Publication and Reviews, Vol (6), Issue (10), October (2025), Page — 4438-4442 4440

3.4 Architectural Diagram

X

User

Pr ion Layer\
Web Interface

Applicatiop Layer \

AP| Gateway
Business Logic

K N

Data Manager F

Services |

| Timetable Solver

Al Assistant
/ \
Integration gayer \ Database \/ \
"2 |2 ¥ N N N
OpenAl Client | OR-Tools Subjects | Timetables Rooms Faculty |

External $ystems \

OpenAl API

Fig. 1 — System Layered Architecture

4. Results and Discussion

At the current stage of development, the ClassHarmonica project has achieved completion of the problem identification, literature survey, system design,
and around 30% of the coding and module integration. The initial prototype has been developed to validate the concept and architecture proposed in the

design phase.
4.1 Preliminary Results

The partial implementation focuses on:

. User Interface and Data Input Module: Basic web interface created using Flask and HTML for entering faculty, subjects, and room data.
. Constraint Definition Module: Preliminary structure for hard constraints (faculty availability, room occupancy) has been coded and tested

using sample data.
. Prototype Schedule Generation: A simplified version of the OR-Tools CP-SAT model was used to generate basic non-conflicting timetables

for limited data (2 divisions, 5 faculty members).

4.2 Observed Outcomes

e The initial prototype successfully generates basic timetables without overlap in time slots.

e Constraint definitions and database structures were validated for scalability.

. The front-end data entry and JSON-based data storage performed reliably for smaller datasets.

. Early integration with OR-Tools confirmed the feasibility of constraint-based optimization for full-scale deployment.

International Journal of Research Publication and Reviews, Vol (6), Issue (10), October (2025), Page — 4438-4442 4441

4.3 Discussion

The progress so far validates the conceptual soundness and technical feasibility of the proposed system architecture. The implemented modules
demonstrate that constraint-based optimization can effectively automate timetable generation when integrated with Al-driven adaptability in future

iterations.
Upcoming work will focus on:
e Completing the Al-assisted interaction module for natural language-based rescheduling.

e Implementing dynamic adaptability for real-time schedule modifications.
. Conducting comprehensive testing with real institutional datasets.

B8 AI Timetable Generator

amic timetable generation for engin:

Configure Structure Manage Subjects Faculty Management Room Management

Set up your academic structure with Add and configure theory and Assign faculty members to subjects Configure classrooms and labs with
years, divisions, and batches practical subjects with hours per and manage availability capacity and equipment
week
> Configure -> Faculty
> Subjects

-» Rooms

Ready to Generate Your Timetable?

Use our Al-powered constraint satisfaction solver to create conflict-free, unified timetables

« Generate Timetable

Key Features

© Configurable Structure @ Unified Scheduling © Conflict Resolution
- ottt wadiatich

© Faculty Management @ Resource Optimization © Multiple Views

Fig. 2 — User Interface

B8 AI Timetable Generator

Configure Academic Structure

Set up your department -ademic structure for timetable gene

= Structure Configuration © Current Structure

Number of Academic Years Divisions per Year Academic Years: 3
3 2 Divisions per Ye:

Batches per Division: 3

Batches per Division Theory Session Duration (minutes) ’
Theory Duration: 60 minutes

3 60
Practical Duration: 120 minutes

Practical Si Duration (t St G

e s Mondey [Tuesdey | Wedesdny Thursdey Feidey.

120 =]

Time Slots: 8
Time Slots Working Days

09:00-10:00 Monday
10:00-11:00
11:15-12:15
121151315 Wednesday v Theory classes are for entire divisions

? Tips

Tuesday

14:15-15:15
Thursdey v Practical sessions are batch-wise

15:15-16:15

16:30-17:30

17:30-18:30 Saturday « Changes affect timetable generation

Friday v Configure this before adding subjects

B Save Configuration € Back to Home

Fig. 3 — Configuration of Academic Structure

International Journal of Research Publication and Reviews, Vol (6), Issue (10), October (2025), Page — 4438-4442 4442

B8 Al Timetable Generator

Faculty Management

Manage faculty members and their subject assignments

+ Add Faculty

ey
am
No Faculty Members

em! assign subjects a

4 Add Your First Faculty Member

© Faculty Management Guidelines

Assignment Rules © Scheduling Constraints
v Faculty can teach multiple subjects v/ One session per faculty at a time
v Maximum hours per week prevents overload v Workload distributed evenly

/' No scheduling conflicts will be created v Subject expertise considered

Fig. 4 — Faculty Management

5. Conclusion

ClassHarmonica: Adaptive AI-Optimized Timetable Orchestrator shows how artificial intelligence and constraint programming has changed the way we
think about academic scheduling. The system automates complex timetabling tasks, reduces human error and adapts to changing conditions in real time.
Its design enables efficient constraint satisfaction, intelligent user interaction and scalability. Future enhancements include migrating to a relational
database for larger data handling, integrating machine learning for predictive scheduling and expanding Al features for more natural, context-aware
interaction. Overall, ClassHarmonica offers a robust, intelligent and future-ready solution for academic institutions.

6. REFERENCES

[1]S. Yang and S. N. Jat, “Genetic algorithms with guided and local search strategies for university course timetabling,” /EEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 1, pp. 93-106, Jan. 2011.

[2] M. Cupic, M. Golub, and D. Jakobovic, “Exam timetabling using genetic algorithm,” in Proc. 31st Int. Conf. Information Technology Interfaces (ITI),
Cavtat, Croatia, 2009, pp. 357-362.

[3] E. Aycan and T. Ayav, “Solving the course scheduling problem using simulated annealing,” in /EEE Int. Advance Computing Conf. (IACC), Patiala,
India, 2009, pp. 1-6.

[4] Google, “OR-Tools Documentation.” [Online]. Available: https://developers.google.com/optimization.

[5] OpenAl “OpenAl API Documentation.” [Online]. Available: https:/platform.openai.com/docs

https://developers.google.com/optimization
https://platform.openai.com/docs

