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ABSTRACT:

Timetable scheduling is one of the most essential and challenging tasks in educational institutions. Traditional methods rely prominently on manual coordination,
leading to scheduling conflicts, inefficient resource allocation and problems in adapting to sudden changes. This paper presents ClassHarmonica: Adaptive Al-
Optimized Timetable Orchestrator, an intelligent system designed to automate academic timetable generation using Artificial Intelligence (AI) and constraint
optimization techniques. The system integrates Google’s OR-Tools CP-SAT solver for constraint satisfaction with OpenAI’s natural language model for intelligent
rescheduling through user interaction. It is implemented as a web-based platform using Python and Flask. ClassHarmonica generates conflict-free, adaptive and
multi-view timetables for faculty, divisions and classrooms. The system thus articulates Al and optimization techniques to deliver a scalable and practical solution

for academic institutions like engineering colleges.
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1. Introduction

Efficient academic scheduling is important for smooth institutional operations. In engineering colleges, where curricula involve theory lectures, laboratory
sessions, and tutorials across multiple years and divisions, timetable preparation becomes challenging complex. Manual methods are time-consuming,
sensitive to conflicts and difficult to adapt when changes arise.

The timetable generation problem is a well-known Constraint Satisfaction Problem (CSP), where various variables such as subjects, faculty, rooms and
time slots must satisfy institutional and logical constraints. Solving this problem manually is not feasible for large institutions due to its NP-hard nature.
Hence, an intelligent automated system is essential to ensure accuracy, efficiency and adaptability.

The proposed system, ClassHarmonica, automates the process of timetable generation using constraint optimization and artificial intelligence. It ensures
conflict-free scheduling, dynamic adaptability and ease of use through natural language interaction by users. The project addresses the academic,
administrative and technological challenges in timetable generation and provides a scalable, real-world solution.

2. Literature Review

The timetabling problem has been extensively studied using various optimization and heuristic methods. Early approaches such as Genetic Algorithms
(GA) and Simulated Annealing (SA) offered approximate solutions but lacked scalability.

Table 1 — Literature survey

Sr. No. Author(s)/Year Method Used Key Idea Limitation/Gap

1 S. Yang & S. N. Jat  Genetic Algorithm Used local search Needs parameter
(2011) for course tuning, not

dynamic

2 M. Cupic et al. GA for Exam Handled room and Focused only on
(2009) Scheduling time conflicts exams

3 E. Aycan & T. Simulated Improved Sensitive to
Ayav (2009) Annealing convergence for parameter changes

scheduling
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4 UniTime (Open- Constraint Open-source Complex setup, no
Source Tool) Programming timetable system NLP support

3. System Design

The system architecture of ClassHarmonica is modular and follows a layered approach consisting of the Presentation Layer, Application Layer, Data
Layer, and External Services Layer.

3.1 System Overview

. Frontend: Built using HTMLS, CSS3, JavaScript, and Bootstrap for responsiveness and accessibility.

. Backend: Developed using Flask (Python) with integration of OR-Tools and OpenAl GPT-40 APL

. Data Storage: Utilizes JSON-based configuration with planned migration to PostgreSQL for persistence.

e Al and Optimization: OR-Tools CP-SAT solver generates conflict-free schedules; GPT-40 provides natural language interaction for
modifications.

3.2 Core Modules

e  Data Management Module — Handles academic structures (years, divisions, batches) and maintains data consistency.
. Constraint Modelling Module — Defines and enforces scheduling constraints (faculty, rooms, student overlap).

. Timetable Generation Module — Uses the CP-SAT solver to produce optimized, conflict-free schedules.

. Al-Assisted Interaction Module — Allows users to modify timetables using natural language commands.

e  Visualization and Reporting Module — Generates multiple timetable views and validation reports.

. Adaptability Module — Handles emergency schedule updates with minimal disruption.

3.3 Component Interaction Flow

The workflow of the system can be described as follows:

1. Input Stage:

e  Administrator enters academic structure, subjects, faculty, and rooms.
e  Coordinator triggers timetable generation or requests modification.

2. Processing Stage:

. Constraint Modelling Module encodes rules.
e OR-Tools Solver generates an optimized schedule.
e Al Assistant processes natural language requests for rescheduling.

3. Output Stage:

. Timetable produced in multiple perspectives (division, faculty, room).
e  Validation report generated (conflicts, workload distribution, room utilization).
e Users access timetables through the web interface.

The architecture of ClassHormonica is modular and layered, ensuring scalability, adaptability, and user-friendliness. Each component plays a
crucial role:

The frontend ensures accessibility.
The application layer provides the core scheduling logic and Al assistance.
The data layer ensures accurate storage and retrieval of academic information.

The external services bring optimization and intelligence to the system.

This design makes ClassHormonica capable of handling the complexities of academic timetabling while remaining flexible and responsive to
institutional needs.
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3.4 Architectural Diagram
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Fig. 1 — System Layered Architecture

4. Results and Discussion

At the current stage of development, the ClassHarmonica project has achieved completion of the problem identification, literature survey, system design,
and around 30% of the coding and module integration. The initial prototype has been developed to validate the concept and architecture proposed in the

design phase.
4.1 Preliminary Results

The partial implementation focuses on:

. User Interface and Data Input Module: Basic web interface created using Flask and HTML for entering faculty, subjects, and room data.
. Constraint Definition Module: Preliminary structure for hard constraints (faculty availability, room occupancy) has been coded and tested

using sample data.
. Prototype Schedule Generation: A simplified version of the OR-Tools CP-SAT model was used to generate basic non-conflicting timetables

for limited data (2 divisions, 5 faculty members).

4.2 Observed Outcomes

e The initial prototype successfully generates basic timetables without overlap in time slots.

e  Constraint definitions and database structures were validated for scalability.

. The front-end data entry and JSON-based data storage performed reliably for smaller datasets.

. Early integration with OR-Tools confirmed the feasibility of constraint-based optimization for full-scale deployment.
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4.3 Discussion

The progress so far validates the conceptual soundness and technical feasibility of the proposed system architecture. The implemented modules
demonstrate that constraint-based optimization can effectively automate timetable generation when integrated with Al-driven adaptability in future

iterations.
Upcoming work will focus on:
e  Completing the Al-assisted interaction module for natural language-based rescheduling.

e  Implementing dynamic adaptability for real-time schedule modifications.
. Conducting comprehensive testing with real institutional datasets.
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5. Conclusion

ClassHarmonica: Adaptive AI-Optimized Timetable Orchestrator shows how artificial intelligence and constraint programming has changed the way we
think about academic scheduling. The system automates complex timetabling tasks, reduces human error and adapts to changing conditions in real time.
Its design enables efficient constraint satisfaction, intelligent user interaction and scalability. Future enhancements include migrating to a relational
database for larger data handling, integrating machine learning for predictive scheduling and expanding Al features for more natural, context-aware
interaction. Overall, ClassHarmonica offers a robust, intelligent and future-ready solution for academic institutions.
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