

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Smart Irrigation System Using IOT Sensors: An Comprehensive Review.

Nitin Jitendergi C*, B V Mathew**

*B.Tech Student ,Department of Civil Engineering, Ahalia School of Engineering and Technology, Palakkad, 678557

**Head of the Department, Department of Civil Engineering, Ahalia School of Engineering and Technology, Palakkad, 678557

ABSTRACT

The Smart Irrigation System using IoT Sensors is an advanced and sustainable solution developed to make agriculture more efficient, automated, and eco-friendly. Traditional irrigation systems rely on manual operation or fixed schedules, which often result in excessive water use or poor crop growth due to irregular watering. To solve this issue, the proposed system uses Internet of Things (IoT) technology to monitor environmental and soil conditions in real time. Various sensors such as soil moisture, temperature, humidity, water flow, and pressure sensors are installed in the field to collect accurate and continuous data. This information is sent to a microcontroller unit, such as ESP32 or Arduino, which analyses the data and communicates with a cloud platform for further processing and storage. Based on the soil's moisture level, the system automatically controls the water pump, turning it on when the soil is dry and off when the moisture level is sufficient. Farmers can monitor live readings and control the system remotely through a mobile app or web dashboard, allowing for better decision-making and reduced labour. This smart irrigation system minimizes water wastage, conserves energy, reduces costs, and ensures optimal crop growth. By integrating IoT technology with agriculture, the system supports precision farming and promotes sustainable use of natural resources. Overall, it represents a major step toward smarter, greener, and more productive farming practices.

Keywords: Smart Irrigation, Internet of Things (IoT), Precision Agriculture, Soil Moisture Sensor, Water Flow Sensor, Pressure Sensor.

1. Introduction

Water is one of the most essential resources for life and agriculture, yet it is becoming increasingly scarce across the globe. In many regions, overirrigation has led to serious problems such as groundwater depletion, soil salinity, and loss of soil fertility. Traditional irrigation methods—such as surface, flood, or furrow irrigation—are often inefficient because they do not account for the actual moisture level of the soil. As a result, large quantities of water are wasted. According to the Food and Agriculture Organization (FAO), almost 60% of irrigation water is lost through evaporation and runoff. To overcome these challenges, researchers and farmers are turning to Smart Irrigation Systems powered by Internet of Things (IoT) technology. These systems use sensors, control algorithms, and wireless communication to automate the watering process. By continuously monitoring real-time soil and environmental conditions, they ensure that crops receive water only when needed and in the right amount. This approach not only saves water but also promotes better crop health, higher productivity, and sustainable farming practices. The Internet of Things (IoT) refers to a network of interconnected devices that can sense, collect, and share data through the internet. In the context of agriculture, IoT plays a key role in transforming traditional farming into precision agriculture, where decisions are made based on real-time data rather than manual observation or guesswork. IoT-based smart irrigation systems use a variety of sensors to continuously monitor important field conditions such as soil moisture, temperature, and humidity. The data collected from these sensors is analysed and used to automatically control irrigation—supplying water only when and where it is needed. This approach helps farmers make informed decisions, improves water-use efficiency, and promotes sustainable farming practices by minimizing waste and maximizing crop productivity. Traditional irrigation methods, though widely used, suffer from several major limitations. They often result in excessive water usage, which contributes to groundwater depletion and long-term resource scarcity. In many cases, the distribution of water across the field is uneven, leading to overirrigation in some areas and under-irrigation in others. These systems also require significant manual labour and time, increasing both operational effort and cost. Moreover, traditional methods are unable to adjust to changing weather conditions, such as unexpected rainfall or temperature fluctuations. Smart irrigation systems address these challenges by utilizing real-time monitoring, automated control, and data-driven decision-making. By responding dynamically to actual soil and environmental conditions, they ensure efficient water use, reduce manual intervention, and promote sustainable agricultural practices.

2. System Architecture of IoT based smart irrigation

An IoT-based smart irrigation system is generally designed with a four-layer architecture, where each layer performs a specific function to ensure efficient and automated water management. The layers are described below:

1. Sensing Layer:

This layer is responsible for collecting real-time data from various sensors installed in the agricultural field. These sensors measure key environmental parameters such as soil moisture, temperature, humidity, and rainfall, which are essential for determining irrigation needs.

2. Processing and Connectivity Layer:

The data gathered by the sensors is sent to a microcontroller or processing unit, such as an Arduino or ESP32. Here, the data is processed and transmitted to a cloud platform using wireless communication technologies like Wi-Fi, GSM, or LoRa. This layer acts as the bridge between field-level data collection and remote decision-making.

3. Actuation and Control Layer:

Based on the processed data and programmed logic, this layer executes irrigation commands. It controls components such as pumps and solenoid valves, turning them on or off to deliver the required amount of water. This automation reduces human effort and ensures precise water distribution.

4. Application Layer:

The final layer provides a user interface, accessible through a mobile application or web dashboard. Farmers can monitor field conditions, view real-time data, receive alerts, and manually control irrigation when needed. This layer enables remote monitoring and management, making the system user-friendly and efficient.

2.1 Sensing Layer (Data Acquisition Layer)

The sensing layer serves as the foundation of an IoT-based smart irrigation system. It is responsible for monitoring key field parameters and converting physical quantities—such as soil moisture, temperature, and light intensity—into digital signals that can be processed by the system. This layer ensures that all decisions are based on real-time, accurate field data rather than manual estimation.

The main sensors used in this layer include:

- Soil Moisture Sensor: This is the most important sensor in any irrigation system. It measures the volumetric water content in the soil, helping
 determine when plants actually need water. Common types include capacitive and resistive sensors. When soil moisture drops below a
 predefined threshold, the sensor sends a signal to the controller to start irrigation, ensuring optimal soil moisture levels.
- Temperature and Humidity Sensor (DHT11/DHT22): These sensors monitor ambient temperature and humidity. Temperature affects the
 rate of evaporation, while humidity influences plant transpiration. By tracking both, the system can decide the best timing and duration for
 irrigation, reducing water waste and improving crop health.
- Rain Sensor: This sensor detects rainfall and prevents unnecessary watering during or after natural precipitation. It helps conserve water and protects plants from over-irrigation.
- Light Sensor (LDR Light Dependent Resistor): The light sensor measures sunlight intensity, which is useful in solar-powered irrigation
 systems to optimize energy consumption. It can also help in understanding plant photosynthesis patterns and adjusting irrigation schedules
 accordingly.
- Water Level Sensor: This sensor monitors the water level in storage tanks or reservoirs, ensuring that there is sufficient water available for irrigation. If the level is low, the system can alert the user or automatically stop the pump to prevent damage.
- Working Principle: All sensors generate analog or digital signals representing real-time field conditions. These signals are then sent to the
 microcontroller, which processes the data and decides whether irrigation is required.

2.2 Processing and Connectivity Layer

The Processing and Connectivity Layer serves as the "brain" of an IoT-based smart irrigation system. It is responsible for analyzing sensor data, making irrigation decisions, and ensuring communication between field devices and cloud platforms. This layer bridges the gap between raw sensor readings and meaningful, automated irrigation actions. Main Components:

Microcontroller (ESP32, Arduino, or Raspberry Pi): The microcontroller is the central control unit that reads sensor data, processes information, and operates actuators such as relays and solenoid valves. Among these, the ESP32 is widely used because it has built-in Wi-Fi and Bluetooth connectivity, making it ideal for IoT applications. It executes programmed logic to determine when irrigation should start or stop, based on real-time field conditions.

Communication Modules: These modules enable data transfer between the microcontroller and remote systems (such as the cloud or mobile app). The choice of communication technology depends on farm location and connectivity needs:

Wi-Fi: Suitable for areas close to routers or local networks where stable internet access is available.

GSM/GPRS: Uses SIM card-based mobile networks, ideal for rural regions without fixed internet connections.

LoRa (Long Range): Provides long-distance, low-power communication, making it effective for large or remote farms.

ZigBee/Bluetooth: Best suited for short-range communication between nearby sensors and devices.

Edge Processing: Some advanced systems use edge computing, where data is processed locally on the device rather than sending it to the cloud. This allows the system to make quick decisions even when internet connectivity is poor or unavailable. It also reduces data transmission costs and improves reliability by ensuring uninterrupted irrigation control.

2.3 Actuation and Control Layer

The Actuation and Control Layer is responsible for executing the commands received from the processing unit. It translates digital decisions into physical actions, such as turning on a pump or opening a valve to start irrigation. This layer forms the hands of the system, ensuring that automated responses are accurately carried out in the field.

Key Components:

Relay Module: The relay acts as an electrical switch that controls the operation of devices such as water pumps or solenoid valves. It allows the microcontroller to manage high-power electrical equipment safely and efficiently.

Solenoid Valves: These valves regulate the flow of water to different sections of the field. When activated, they open to allow water passage, and when deactivated, they close to stop the flow. This enables precise water distribution based on crop requirements.

Pump Motor: The pump motor draws water from the source—such as a tank, well, or reservoir—and supplies it to the irrigation lines. It operates automatically based on control signals received from the relay module.

Power Supply: The entire system requires a stable power source, which can come from electricity, batteries, or solar panels. Solar energy is often preferred for remote agricultural fields, as it supports sustainable and off-grid operation.

2.4 Application Layer (Cloud and User Interface)

The Application Layer serves as the connection between the farmer and the irrigation system, enabling real-time interaction and control through the internet. It allows users to access field data, monitor conditions, and manage irrigation remotely from anywhere at any time. Main Functions:

Data Storage and Visualization: Field data collected from sensors is uploaded to cloud platforms such as Blynk, ThingSpeak, or Firebase, where it is securely stored and visualized in the form of charts and dashboards. This helps farmers easily interpret trends in soil moisture, temperature, and humidity over time.

Mobile and Web Applications: User-friendly mobile and web apps allow farmers to monitor and control their irrigation systems remotely. Through these interfaces, users can start or stop irrigation, view live data, and receive system updates without being physically present in the field.

Real-Time Alerts and Notifications: The system can send instant alerts via SMS, email, or app notifications whenever critical conditions occur—such as low soil moisture, pump failure, or connectivity issues. These alerts help farmers respond quickly to prevent crop stress or equipment damage.

Data Analysis and Historical Trends: Cloud platforms also maintain historical records of environmental data, allowing farmers to analyze past irrigation patterns. This information supports better decision-making for future water management and crop planning.

3. Working Principle

The IoT-based Smart Irrigation System operates on a closed-loop control process, where continuous monitoring and automated actions ensure that crops receive the right amount of water at the right time. The entire process can be explained in the following steps:

1. Data Monitoring:

Sensors installed in the field continuously measure soil and environmental parameters such as soil moisture, temperature, and humidity. These readings reflect the real-time condition of the field.

2. Data Processing and Comparison:

The microcontroller collects the sensor data and compares it with present threshold values. For example, if the soil moisture level falls below the required limit, the system recognizes that the soil is dry.

3. Automatic Pump Activation:

When dryness is detected, the relay module sends a signal to activate the water pump. This allows water to flow through pipes or drip irrigation lines to the root zone of the crops.

4. Irrigation Control:

The system continues watering until the desired soil moisture level is reached. Once the soil moisture sensor detects that the threshold has been achieved, the microcontroller automatically turns off the pump, preventing over-irrigation.

5. Data Logging and Cloud Storage:

Throughout the process, all readings—such as soil moisture, temperature, humidity, and water usage—are uploaded to the cloud. This allows the data to be stored, analysed, and accessed remotely by the farmer through a mobile or web interface.

4. Benefits and Advantages

IoT-based smart irrigation systems bring multiple benefits to modern agriculture, improving both productivity and sustainability. The major advantages are discussed below:

4.1 Water Conservation

One of the most significant benefits of smart irrigation is efficient water use. By continuously monitoring soil moisture, temperature, and humidity, the system ensures that water is supplied only when the soil is dry and in the exact amount required. This approach can reduce water wastage by up to 50% compared to traditional irrigation. For instance, in a drip irrigation setup, soil moisture sensors prevent unnecessary watering, helping to conserve valuable freshwater resources and reduce groundwater depletion.

4.2 Increased Crop Yield

Crops grow best when they receive the right amount of water at the right time. IoT systems help maintain optimal soil moisture conditions, which improves root development, nutrient absorption, and overall plant health. Studies have shown that using smart irrigation can increase the yield of crops such as wheat, maize, and vegetables by 15–30%, leading to better productivity and food quality.

4.3 Reduced Labor and Cost

Traditional irrigation requires regular human supervision to open and close valves, monitor field conditions, and manage water distribution. Smart irrigation systems automate these tasks, saving farmers time, effort, and labor costs. This automation also helps in reducing human error, making the system more reliable and cost-effective in the long run.

4.4 Energy Efficiency

IoT systems help save energy by operating pumps only when necessary. Since the motor or pump runs for shorter and more efficient cycles, electricity consumption is reduced. In some cases, solar-powered irrigation systems are used, making the system even more sustainable and suitable for remote areas without stable power supply.

4.5 Remote Monitoring and Control

Farmers no longer need to be physically present in the field to manage irrigation. Through mobile or web applications, they can monitor soil conditions, control water flow, and receive alerts about low moisture levels or system faults. This remote accessibility improves convenience and enables quick decision-making, especially for large farms or multiple field locations.

4.6 Environmental Protection

Smart irrigation promotes eco-friendly farming by preventing overwatering and reducing water runoff. Controlled irrigation helps minimize soil erosion, salinity, and nutrient leaching, thereby maintaining soil health and fertility. Efficient water use also contributes to sustainable groundwater management and supports long-term agricultural productivity.

4.7 Data Analytics for Better Decision-Making

The continuous collection of field data provides valuable insights into soil behaviour, crop water needs, and environmental trends. By analyzing historical data, farmers can predict irrigation requirements, plan cropping patterns, and optimize fertilizer and water use. This data-driven approach transforms farming into a more scientific and informed process, improving both efficiency and yield over time.

5. Challenges and Limitations

Despite the numerous benefits, IoT-based smart irrigation systems face several challenges and limitations that can affect their adoption and effectiveness, especially for small-scale farmers.

5.1 High Initial Investment

The cost of installing a smart irrigation system can be significant. Components such as sensors, microcontrollers, communication modules, and actuators contribute to the high initial expense. This investment can be a major barrier for small and marginal farmers, limiting widespread adoption.

5.2 Maintenance Requirements

Sensors and other electronic components are often exposed to soil, water, and varying weather conditions, which makes them prone to wear and malfunction. Regular cleaning, calibration, and occasional replacement are required to maintain accurate measurements and reliable operation.

5.3 Connectivity Issues

Real-time monitoring and automated control depend on stable internet or GSM connectivity. However, many rural areas suffer from weak or unreliable network coverage, which can disrupt system performance and delay irrigation decisions.

5 4 Technical Skills

Farmers need basic technical knowledge to operate, configure, and troubleshoot smart irrigation systems. Without proper training, they may struggle to manage the system effectively, which can reduce its efficiency and benefits.

5.5 Standardization Challenges

The wide variety of sensor types, communication protocols, and IoT platforms can create compatibility issues. Integrating devices from different manufacturers may be difficult, requiring careful planning and configuration to ensure smooth operation.

6. Future Directions and Innovations

The future of IoT-based smart irrigation is full of innovations that aim to make farming more efficient, sustainable, and intelligent. Emerging technologies and research trends are expected to address current limitations and enhance system performance.

6.1 Integration with Artificial Intelligence (AI)

Artificial Intelligence can analyze vast amounts of field data to predict irrigation needs and determine the optimal amount of water for crops. For example, AI algorithms can combine soil moisture readings with weather forecasts to create dynamic, adaptive irrigation schedules, ensuring that crops receive water precisely when needed.

6.2 Machine Learning (ML) Models

Machine Learning techniques, such as LSTM (Long Short-Term Memory) networks and Random Forest algorithms, can forecast soil moisture trends and automatically optimize irrigation intervals. These predictive models reduce water waste, improve crop health, and make irrigation more data-driven and precise.

6.3 Edge and Cloud Computing

By combining edge computing (local processing on the device) with cloud computing (remote processing), smart irrigation systems can make faster and more reliable decisions, even in areas with unstable or limited internet connectivity. This hybrid approach ensures continuous automation and reduces reliance on external networks.

6.4 Block chain Technology

Block chain technology can provide secure and transparent management of agricultural data. For large-scale farms and cooperative systems, block chain ensures that sensor data, water usage records, and irrigation schedules are immutable and easily auditable, enhancing trust and accountability.

6.5 Renewable Energy Integration

Integrating solar panels or other renewable energy sources enables smart irrigation systems to operate off-grid, reducing dependence on conventional electricity. This makes the technology more sustainable and suitable for remote or rural areas.

6.6 Smart Fertigation

Future smart irrigation systems are expected to go beyond water management by incorporating fertigation—the controlled delivery of nutrients along with water. This approach ensures that crops receive the right balance of water and nutrients, maintaining optimal soil conditions for maximum growth and productivity.

6.7 Government and Research Support

Support from government programs, research institutions, and open-source initiatives can make smart irrigation more accessible and affordable. Subsidies, technical training, and university collaborations can help farmers adopt advanced technologies, accelerating the shift toward precision and sustainable agriculture.

7. Conclusion

The IoT-based Smart Irrigation System marks a transformative step toward achieving sustainable, efficient, and technology-driven agriculture. By integrating advanced sensors, microcontrollers, and cloud-based data analytics, these systems allow farmers to monitor soil moisture, temperature, and humidity in real time. This data-driven approach enables precise water delivery—supplying the right amount of water at the right time—thereby minimizing waste and ensuring optimal plant growth. Such automation not only enhances crop productivity but also significantly reduces manual labor, water consumption, and operational costs, contributing to both economic and environmental benefits.

As the world faces challenges like climate change, unpredictable rainfall, and water scarcity, smart irrigation emerges as a powerful solution to balance agricultural needs with ecological sustainability However, the widespread adoption of these systems still faces challenges, including high installation costs, technical complexity, and limited internet connectivity in rural areas. Despite these barriers, rapid advancements in Artificial Intelligence (AI), Machine Learning (ML), renewable energy integration, and low-cost IoT components are steadily overcoming these limitations.

Looking ahead, the convergence of IoT with emerging technologies such as drones, block chain, and predictive weather analytics will further revolutionize modern farming practices. These innovations will empower farmers with greater control, accuracy, and sustainability in water management. Ultimately, the adoption of IoT-based smart irrigation systems signifies a paradigm shift toward precision agriculture, where every resource is optimized for maximum output with minimal environmental impact. With continued research, strong policy support, and increased awareness among farmers, this technology has the potential to ensure global food security, climate resilience, and a greener agricultural future.

References

- 1. García, L., Parra, L., Jiménez, J. M., Lloret, J., & Lorenz, P. "IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture." Sensors, 2020, 20(4), 1042.
- 2. Huque, M. T., Jafor Godhuli, J., Raziur Rahman Pushon, S. M., & Haque, E. "Internet of Things (IoT)-based Smart Irrigation System for Sustainable Agriculture." JIEEE (Journal of Informatics Electrical and Electronics Engineering), 2023.
- 3. Awawda, J., & Ishaq, I. "IoT Smart Irrigation System for Precision Agriculture." In: A. K. Nagar, D. Singh Jat, D. K. Mishra, A. Joshi (Eds), Intelligent Sustainable Systems. Lecture Notes in Networks and Systems, vol 579. Springer, Singapore, 2023.
- 4. Irianto, K. D. "Design of Smart Farm Irrigation Monitoring System Using IoT and LoRa." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2022, 6(1), 47-56.
- 5. Dharashive, P., & Sawale, M. "Smart Irrigation System Techniques using Artificial Intelligence and IoT." International Journal of Intelligent Systems and Applications in Engineering (IJISAE).
- 6. Kingslin, S., & Vaishnavi, K. "A Comprehensive Survey on IoT-Based Smart Irrigation in Agriculture." IJRSI, 2025.
- 7. Velmurugan, S., Balaji, V., Bharathi, T. M., & Saravanan, K. "An IoT based Smart Irrigation System using Soil Moisture and Weather Prediction." IJERT, 2020, 8(07).
- 8. Pandey, Y., Mehraj, N., Maryam, M., Dadhich, S. M., & Mir, G. M. "Studies on Smart Irrigation System using IoT Approaches: Smart Irrigation System." Journal of AgriSearch, 10(4).
- 9. Gurao, M. V., & Vaidya, U. B. "IoT based Smart Irrigation System." International Journal of Engineering Research & Technology (IJERT), 2022, Vol. 11, Issue 11.

- 10. Mishra, A., Majumdar, A., Roy, A., Ghosal, P., Dhar, P., Biswas, S., & Roy, S. "Smart Agriculture Monitoring & Auto Irrigation System using IoT with ESP8266." IJRASET, 2022.
- 11. Singh, R., Raghav, P., Saini, N., Neha, & Srivastava, S. "IoT-Based Smart Farming: A Plant Monitoring System for Precision Agriculture." Stallion Journal for Multidisciplinary Associated Research Studies.
- 12. Kumar, T. P., Lala, S. K., Sravani, B., & Sandeep, A. "Internet of Things Survey on Crop Field Smart Irrigation Automation using IoT." International Journal of Engineering & Technology (IJET), 2018.
- 13. Thiagarajan, R., & Sripriya, N. "Precision Irrigation Model for Agriculture Using Intelligent IoT." Journal of Computational Analysis & Applications (JoCAAA).
- 14. Muruga B., S., Atithya K. J., Ibrahim M., & Saravanan P. "Precision Agriculture through Smart Irrigation using IoT and Hybrid Machine Learning." International Research Journal on Advanced Engineering and Management (IRJAEM), 2025.
- 15. Leao, H.-R., Lee, C.-L., Thien, G. S. H., Lee, I.-E., Chung, G.-C., Pang, W.-L., Ng, Z.-N., Tan, K.-B., & Chan, K.-Y. "Artificial Intelligence-Powered IoT-Based Irrigation System for Precision Farming." IJISAE, 2024.
- 16. Pavithra, M., Duraisamy, S., & Shankar, R. "Hydrosense: Pioneering IoT for Precision Drip Irrigation and Sustainable Water Management." IJRSI, 2025.
- 17. "Intelligent Precision Farming with an Eco-Conscious Smart Irrigation System." Tejas V., Vishaal Kumaar, Sudeep G., Srikanth S. IJRASET, 2024.
- 18. Hasan Pretom, M. "Smart Irrigation Systems using Internet of Things for Smart Farming." IJRASET, 2022.
- 19. B V, A. "A Study on Smart Irrigation System Using IoT for Surveillance of Crop-Field.
- 20.Ramesh, M., Karthikeyan, T., & Babu, P. R. "IoT-Enabled Smart Irrigation System for Efficient Water Management in Agriculture." International Journal of Scientific & Engineering Research (IJSER), 2023, 14(6), 512–519.