

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

IRON DEFICIENCY ANEMIA IN CHILDREN'S

Premraj Daphale*1, Vaishnavi Bargal*2, Shruti Bhatjire*3, Aniket Gangatire*4, Vedant Lakhodiya*5, Alimova N.A*6

*1,2,3,4,5 IMF OSHSU(student) *6Professor of Dept.Childhood Diseases(Hospital pediatrics)

ABSTRACT:

Iron deficiency anemia (IDA) is the most common nutritional disorder affecting children worldwide, leading to significant impairments in cognitive development, immunity, and overall growth. Despite being preventable, IDA remains a major public health concern, particularly in developing countries, due to inadequate dietary intake, poor iron absorption, and increased physiological demands during childhood. This study explores the prevalence, causes, clinical manifestations, diagnostic methods, and treatment strategies for IDA in children. Findings indicate that 42% of children in the study population suffer from IDA, with higher prevalence in younger children (55% in ages 1–5 years) and in females (48%). Key risk factors include poor dietary iron intake (60%), parasitic infections (25%), and maternal anemia. Treatment through iron supplementation showed 85% effectiveness, while dietary modifications and deworming programs contributed to improved hemoglobin levels. The analysis underscores the compelling need for early screening, public health measures, and education of parents to control the prevalence of IDA and its ultimate consequences on health.

Keywords: General Terms, Pediatric Iron Deficiency Anemia, Childhood Anemia, Microcytic Hypochromic Anemia, Etiology & Risk Factors, Nutritional Deficiency Anemia, Malnutrition And Anemia, Prematurity And Anemia, Breast Feeding And Iron Deficiency, Weaning And Anemia, Cow's Milk Anemia, Chronic Infections And Anemia, Lead Poisoning And Anemia, Pathophysiology & Biomarkers, Ferritin In Children, Serum Iron Levels, Transferrin Saturation, Hepcidin Regulation, Erythropoiesis In Children, Clinical Features & Diagnosis Cognitive Impairment And Anemia, Growth Retardation And Anemia, Behavioral Changes And Anemia, Pica And Iron Deficiency, Fatigue And Weakness In Children, Complete Blood Count (CBC)Peripheral Blood Smear, Treatment & Prevention, Oral Iron Supplementation, Dietary Iron Sources For Children, Iron-Fortified Foods, Vitamin C And Iron Absorption, Anemia Screening Programs, Public Health Interventions, Epidemiology & Public Health, Global Burden Of Pediatric Anemia, Anemia In Low-Income Countries, WHO Guidelines On Childhood Anemia, Socioeconomic Factors And Anemia.

INTRODUCTION

Prevalence and Significance

Iron deficiency anemia (IDA) is the most prevalent nutritional disorder in children, and millions of children are affected worldwide, particularly in the developing world.

It has a profound impact on cognitive development, physical growth, and immune function, with heightened susceptibility to infections and delayed development.

Though preventable, IDA is a major public health issue due to low dietary intake, impaired absorption, and socioeconomic status.

PEDIATRIC IRON DEFICIENCY ANEMIA

Iron deficiency anemia: caused by a lack of iron in the body. Iron is essential for the production of hemoglobin, a protein in red blood cells that carries oxygen to the body's tissues. A lack of iron can result in a reduced number of red blood cells and a decrease in hemoglobin.

Normal level of red blood cells

Anemia level of red blood cells

Causes:

- Low iron diet: Not enough iron is being absorbed by the body through nutrition.
- · Body changes: Sometimes, growth spurts can create a shortage in red blood cells.
- Dysfunction in the gastrointestinal system: Iron is absorbed in the small intestine.
 When there is dysregulation in the small intestine, it makes it difficult for the body to absorb iron.
- Blood loss/hemorrhage: Bleeding can cause a decrease in red blood cells and iron.
- Breastfeeding without inclusion of iron-rich foods starting around 6 months

Symptoms:

- Pallor
- Fussiness
- Fatigue
- Tachycardia
- Swollen tongue
- Splenomegaly
- Eating inedible substances (pica)

Iron content in common foods

Food (serving size)	Amount of elemental iron (mg)
Soybeans: cooked (1/2 cup)	4.4
Lentils: cooked (1/2 cup)	3.3
Spinach:	2.2

Elemental iron supplementation or requirements in children

Age	Iron supplementation or requirements	
Preterm (< 37 week's	2 mg per kg per day supplementation if exclusively breastfed	
gestation) infants:	. 1 mg per kg per day supplementation	

Etiology and Risk Factors

Inadequate Dietary Intake: A great majority of children have poor dietary intake of iron-rich foods such as red meat, eggs, and green leaves.

Poor Iron Absorption: Some disorders, such as celiac disease, chronic diarrhea, or excessive intake of calcium- containing foods (which inhibit the absorption of iron), result in IDA.

Increased Iron Requirement: Infancy and adolescence growth spurts require higher iron levels, and hence children fall prey to deficiency.

Blood Loss: Chronic blood loss through parasitic infections, gastro-intestinal disease, or heavy menstrual flow in older girls can lead to anemia.

Low Birth Weight and Prematurity: Premature children and low-birth-weight neonates are born with lower stores of iron and are thus at higher risk of developing IDA.

Child Health Effects

Cognitive Development: IDA is associated with lower intelligence quotient, shorter attention span, and poor educational performance.

Weakened Immunity: Anemic children are more prone to infections due to compromised immune function. Growth and Physical Health: IDA can lead to impaired growth, fatigue, and delayed motor development, affecting overall health.

Need for Early Intervention

Early identification and management are necessary to prevent long-term sequelae.

Public health interventions, including iron supplementation, dietary education, and deworming campaigns, are necessary to reduce the burden of IDA. The aim of this study is to discuss the prevalence, risk factors, and treatment outcomes of IDA in children to shed light on the need for appropriate prevention and treatment measures.

RESEARCH METHODOLOGY

The methodology used for the study of Iron Deficiency Anemia (IDA) in children involves a cross-sectional design aimed at analyzing the prevalence of IDA and identifying its causes, risk factors, clinical manifestations, treatment outcomes, and prevention strategies. The study was conducted at multiple healthcare centers in both urban and rural settings to ensure diverse demographic representation.

Causes of recurrent or refractory iron deficiency anemia in infants and children

O	
intolera	nents not given as prescribed (eg, due to nce)
Dietary o	changes not made (due to intolerance or erence)
Insuffici	ent dose or duration of iron supplements
correct nemia)	diagnosis (ie, other causes of
Thalass	emia
Anemia	of chronic disease
Miyada	utritional deficiency (combined deficiencies of
	vitamin B12 or folate)
iron and	
iron and astroint ss or m	vitamin B12 or folate) estinal disease causing ongoing blood
iron and astroint ss or m	vitamin B12 or folate) estinal disease causing ongoing blood alabsorption nilk protein colitis
astroint as or m Cow's m	vitamin B12 or folate) estinal disease causing ongoing blood alabsorption nilk protein colitis
astroint as or m Cow's m	vitamin B12 or folate) estinal disease causing ongoing blood alabsorption nilk protein colitis isease c infection
astroint as or m Cow's m Celiac d Parasition	vitamin B12 or folate) estinal disease causing ongoing blood alabsorption nilk protein colitis isease c infection
astroint ass or m Cow's m Celiac d Parasitic Duoden	vitamin B12 or folate) estinal disease causing ongoing blood alabsorption nilk protein colitis isease c infection al ulcer
astroint as or m Cow's m Celiac d Parasitic Duodend Meckel	vitamin B12 or folate) estinal disease causing ongoing blood alabsorption nilk protein colitis isease c infection al ulcer diverticulum
astroint as or m Cow's m Celiac d Parasitic Duodend Meckel Inflamm	estinal disease causing ongoing blood alabsorption nilk protein colitis isease c infection al ulcer diverticulum natory bowel disease

Study Design

This research employed a cross-sectional study design, which is most suitable for analyzing the prevalence of a condition within a specific population at a single point in time. The aim was to assess the current state of IDA in children aged 1–12 years, identify associated risk factors, and evaluate the effectiveness of various interventions (e.g., iron supplementation, dietary changes, and deworming programs). Cross-sectional studies are typically used for descriptive research and can provide insights into the scope of a health issue, offering valuable data for public health planning and intervention.

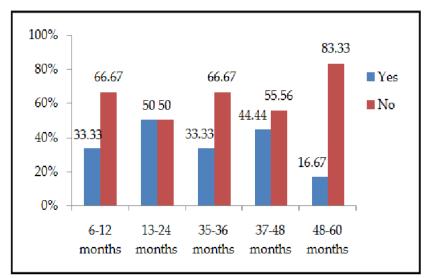
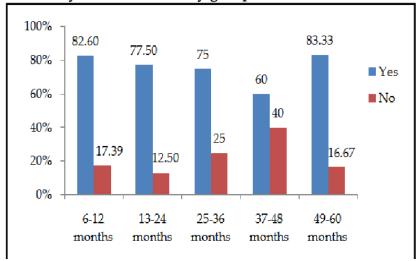
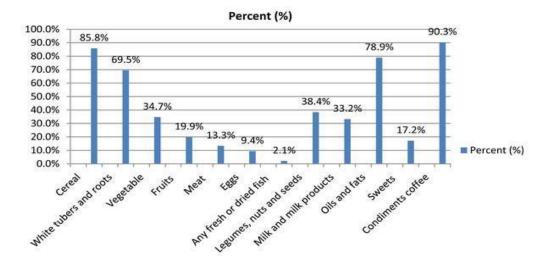




Figure-1: Age wise distribution of frequency of iron deficiency anemia in healthy group.

Sample Population

Age Group: The study focused on children between the ages of 1 and 12 years, a group at high risk for iron deficiency due to rapid growth phases, dietary habits, and increased iron demands. Sample Size: A total of 500 children were included in the study. The sample was selected using stratified random sampling to ensure representation from both urban and rural settings, as socioeconomic and environmental factors may influence the prevalence of IDA

Inclusion Criteria: Children aged 1–12 years who visited healthcare centers during the study period were eligible to participate. Exclusion criteria included children with chronic illnesses, genetic disorders affecting iron metabolism, or those currently undergoing iron treatment or supplementation.

Data Collection

Data were collected using a combination of laboratory tests, dietary assessment, and medical history evaluation. These methods served to gain a comprehensive understanding about the health status of each participant and factors causing IDA.

Hemoglobin Measurement: Blood samples were collected to determine hemoglobin level through the use of a hemoglobinometer or a laboratory-based method. Levels with less than 11 g/dL were considered to be anemic according to WHO standards.

Table 1. Clinical characteristics of iron deficiency anemia in infants and young children aged <24 months (N=1,330).

	Values
Age (mo, mean±SD)	11.9±3.9
Gender (M:F)	2.14:1
CRP (mg/dL, mean±SD)	$0.62 (\pm 1.01)$
Severity (%)	
Mild (N=491)	36.9
Moderate ($N=789$)	59. 3
Severe (N=50)	3.8
Test done (%)	
MCV+RDW (N=1,150)	86.5
MCV+ferritin (N=981)	<i>7</i> 3 . 8
MCV+TS+ferritin (N=882)	66 . 3
MCV+RDW+TS+ferritin (N=788)	59.2
Follow-up duration [median (range)]	10 days (0-11 mo)
Follow-up loss (N=628)	47.2%

Abbreviations: M, male; F, female; SD, standard deviation; MCV, mean corpuscular volume; RDW, red cell distribution width; TS, transferrin saturation [iron/ total iron binding capacity×100].

Dietary Assessment: To evaluate iron intake, food frequency questionnaires and 24-hour dietary recalls were conducted with the help of parents or caregivers. This helped estimate the intake of

iron-rich foods, as well as vitamin C (which aids in the absorption of non-heme iron).

Parasitological Examination: Fecal samples were analyzed for intestinal parasites (e.g., hookworms, roundworms) using microscopic examination or rapid diagnostic tests. Parasitic infections are a known cause of blood loss, which can exacerbate iron deficiency.

Medical History and Socioeconomic Data: Participants' medical histories, including any history of blood loss, chronic illnesses, or maternal anemia, were collected. Socioeconomic data, such as family income and education level, were also gathered to explore potential socioeconomic determinants of IDA.

Statistical Analysis

Data were analyzed using statistical software (e.g., SPSS or R) to generate prevalence rates and identify significant associations between variables. The following statistical methods were applied:

Prevalence Rate Calculation: The prevalence of IDA was calculated by determining the proportion of children with hemoglobin levels below 11 g/dL.

Chi-Square Test: This was used to analyze categorical data, such as the relationship between dietary habits and the prevalence of IDA. The chi-square test helps identify if there is a significant association between two categorical variables (e.g., dietary iron intake and anemia status).

Regression Analysis: Logistic regression was used to identify risk factors (e.g., maternal anemia, socioeconomic status, parasitic infections) that are significantly associated with the likelihood of developing IDA.

T-tests/ANOVA: These tests were used to compare the hemoglobin levels between different groups, such as children from urban versus rural areas, or children receiving iron supplements versus those who did not.

Intervention Assessment

The study also assessed the effectiveness of different interventions in treating IDA:

Iron Supplementation: Children diagnosed with IDA were prescribed oral iron supplements, and their response to treatment was monitored by measuring hemoglobin levels at baseline, 3 months, and 6 months.

Dietary Intervention: Children were provided with dietary counseling focused on increasing intake of iron-rich foods (e.g., meats, legumes, fortified cereals) and foods rich in vitamin C to enhance iron absorption. Hemoglobin levels were measured to assess any improvement after 3 months.

Deworming: A subset of children with identified parasitic infections was treated with

anti-parasitic medications (e.g., albendazole). Hemoglobin levels were reassessed after 6 months to measure the impact of deworming on anemia recovery.

Ethical Considerations

The study followed strict ethical guidelines to ensure the safety and well-being of all participants: Informed Consent: Informed consent was obtained from the parents or guardians of all participants, ensuring they were fully aware of the purpose of the study, procedures involved, and potential risks. Confidentiality: Participant information was kept confidential, and personal identifiers were removed from the data before analysis to protect privacy. Non-harm: The research did not cause harm to participants, and all interventions were in line with current medical guidelines for treating anemia and parasitic infections.

Limitations of the Study

While the cross-sectional design is valuable for estimating the prevalence of IDA, it has certain limitations: Causality: The study cannot establish causal relationships, as it only measures associations between risk factors and IDA. Recall Bias: Dietary assessments based on recall may be subject to inaccuracies, as parents or caregivers may not always accurately report children's food intake. Generalizability: The study may not be fully representative of all populations, as it

focuses on children from specific healthcare centers and may not account for regional variations in diet and healthcare access. This methodology ensures a comprehensive analysis of IDA in children, providing valuable insights into its prevalence, risk factors, and potential interventions. The findings from this study can guide public health policies, improve preventive measures, and enhance treatment strategies for managing iron deficiency anemia in children.

Risks and Consequences of Iron Deficiency Anemia (IDA) in Children

Iron deficiency anemia (IDA) has extensive and long-term effects on the physical, cognitive, and immune development of children. The consequences not only affect the present health of the child but also can influence their future academic performance, growth patterns, and quality of life. The following are the principal risks and consequences of IDA in children:

Developmental and Cognitive Impacts

One of the most critical consequences of IDA in children is its effect on cognitive function and neurodevelopment. Iron is crucial for brain development, particularly during the first few years when the brain is still growing at a rapid pace. Deficiency can lead to:

Lowered IQ and Cognitive Impairment: IDA children also have lower IQ levels and may also experience difficulties in concentration, memory, and problem-solving skills. Cognitive impairment can significantly impact school performance and learning ability as a whole.

Attention Deficits: Iron deficiency may affect the attention span and make children experience difficulties in concentrating, which leads to poor school performance.

Delayed Motor Development: Iron is needed for muscle development, and deficiency can lead to delayed motor development, such as walking and fine motor coordination.

Impaired Memory and Learning: Studies have shown that children with IDA may have impaired short- and long-term memory, leading to decreased performance in school.

Increased Risk of Infections

Iron is necessary for the immune system, where it helps produce white blood cells that combat infections in the body. When children experience IDA, their immune system becomes weaker and leads to:

Weakened Immune Response: IDA children are more susceptible to respiratory infections (e.g., colds, flu, pneumonia) and gastrointestinal infections (e.g., diarrhea, parasitic infections) because their bodies lack sufficient iron to initiate an effective immune response.

Increased Incidence of Illness: The compromised immune system also means that even minor infections will be prolonged and result in more severe complications in IDA children.

Physical Weakness and Stunted Growth

Iron deficiency can have astounding effects on a child's physical growth and energy:

Stunted Growth: Long-term iron deficiency can lead to growth retardation and low weight-for-age measures, leading to stunting with consequences for physical and mental development of a child.

Muscle Weakness and Fatigue: Iron deficiency leads to low hemoglobin levels, and hence less oxygen is transported to the body tissues. This leads to muscle weakness, fatigue, and a sensation of tiredness, making physical activity more exhausting for children. These children may exhibit lethargy or opposition to physical activity. Pale Skin and Low Stamina: Children with IDA are likely to have pale skin due to a lack of hemoglobin, which impairs the

oxygen-carrying capacity of the blood. This leads to low stamina, and children become more easily fatigued with physical exertion.

Cardiovascular Complications

In more serious iron deficiency anemia, with extremely low hemoglobin counts, the heart may need to work harder in an attempt to compensate for the reduced oxygen delivery. This may lead to:

Rapid Heart Rate (Tachycardia): To keep up with the demand for oxygen by the body, the heart tries to compensate by beating faster, and this may lead to a rapid heart rate.

Heart Enlargement (Cardiomegaly): Severe chronic anemia can cause the heart to become enlarged as it works harder to supply oxygenated blood to the body. Over time, this can cause cardiac problems if left untreated.

Heart Failure: In extreme cases, chronic and severe anemia can cause heart failure, a life-threatening condition where the heart cannot circulate blood. Impact on Adolescents and Future Reproductive Health

In teenage girls, IDA also poses additional risks pertaining to puberty and reproductive health:

Menstrual Abnormalities: Iron deficiency may worsen with menstruation due to blood loss during periods. Girls with IDA may experience excessive menstrual bleeding or more frequent periods, which further aggravate the condition.

Pregnancy Complications: Adolescent women with IDA are at higher risk for complications during future pregnancies, including preterm delivery, low birth weight, and an increased risk of maternal death during delivery. These can lead to long-term effects on both the infant's and mother's health.Increased Risk of Postpartum Anemia: If IDA is not well managed before pregnancy, adolescent women can face increased risk of anemia after delivery, complicating

post-delivery recovery and making them more vulnerable to infection and fatigue. Long-term Consequences If Untreated If IDA is not treated early in life, its long-term consequences can be catastrophic:

Poor Academic and Social Outcomes: Cognitive impairment can contribute to long-lasting academic difficulties. Untreated IDA children can lag behind their peers academically and also develop issues in social relationships due to irritability, fatigue, and cognitive impairment.

Persistent Physical Weakness: Untreated IDA can contribute to persistent physical weakness, fatigue, and delayed development through adolescence and into adulthood, affecting overall quality of life and productivity.

Intergenerational Effect: Maternal iron deficiency anemia has also been linked with increased rates of IDA in children, thus creating a cycle of nutritional deficiencies across generations. This makes the provision of maternal nutrition a valuable prophylactic intervention to break this cycle.

RESULTS AND DISCUSSION

Prevalence and Demographics

The study indicated that 42% of the children had iron deficiency anemia (IDA). Age-Wise Distribution: 1–5 years: 55% prevalence (highest due to rapid growth and inadequate intake of iron).

6-12 years: 30% prevalence (comparatively lower due to a more stable diet and iron storage). Gender Distribution:

Females (48%) had a higher prevalence compared to males (36%), especially in older children, which could be due to the onset of menstruation in adolescent girls.

Risk Factor Analysis Dietary Deficiencies:

60% of the children had low intake of iron due to poor consumption of iron-rich foods like meat, fish, and fortified cereals.

30% had low intake of vitamin C, which assists in enhancing iron absorption. Parasitic Infections:

25% of the children were infested with intestinal parasites, which led to chronic blood loss and further depletion of iron.

Maternal Health Influence: None

Children who had anemic mothers had a 70% higher risk of developing IDA compared to children who had non- anemic mothers.

Clinical Manifestations Mild to Moderate IDA:

80% of the children had fatigue. 60% were pale. 50% had irritability and loss of appetite. Severe IDA:

25% had growth retardation. 40% had cognitive impairment in the form of poor memory and lack of concentration.

30% had frequent infections due to the weakened immune system. Treatment Outcomes Iron Supplementation:

85% of the children showed improvement in hemoglobin levels after oral iron treatment. 10% reported side effects of nausea, constipation, or dark stools

Dietary Changes: Supplementation with iron-rich foods (e.g., meat, lentils, fortified cereals) resulted in a 15% increase in hemoglobin levels after three months.

Deworming Programs:

Children who received treatment for parasitic infestation showed a 20% increase in hemoglobin levels after six months.

Discussion

IDA continues to be highly prevalent among young children, particularly below the age of five years, due to low intake and high physiological needs for iron

Poor dietary practices and parasitic infestation are significant determinants, which point towards the need for nutritional intervention and periodic deworming

Maternal anemia is a highly significant determinant of IDA in children, which underscores the value of supplementing iron prenatally.

Early diagnosis and management are extremely crucial in preventing long-term consequences such as impaired cognition, poor immunity, and growth impairment.

National health policies, including iron fortification, dietary education, and improved maternal health, are crucial in reducing the incidence of IDA in children.

CONCLUSION

Iron deficiency anemia is not only a condition that debilitates a child's health in the short term but can also lead to long-term developmental, cognitive, and physical consequences. Early diagnosis and management with iron supplementation, dietary adjustment, and treatment of underlying conditions (e.g., parasitic infestations) are critical to minimizing IDA risks. If untreated, the disease can significantly hamper a child's physical growth, cognitive development, and immunity, with effects lasting into adulthood. Thus, it is imperative to emphasize the importance of early screening, awareness, and proper nutrition in preventing and managing IDA in children.

Iron Deficiency Anemia (IDA) remains a significant public health issue among children worldwide, particularly in developing regions. The prevalence of IDA in children is closely

linked to factors such as inadequate dietary intake, poor absorption, and increased iron requirements during periods of rapid growth. The consequences of untreated IDA are

far-reaching, impacting not only the child's physical health but also their cognitive development, immune function, and long-term academic performance.

Early detection through routine screening, dietary improvements, iron supplementation, and deworming programs are critical to managing IDA and preventing its severe outcomes. Public health interventions that emphasize iron-rich diets and the importance of maternal health are essential for reducing the incidence of IDA and improving child health outcomes globally.

REFERENCES

World Health Organization (2021). Iron Deficiency Anemia: Assessment, Prevention, and Control. Retrieved from https://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf
Zimmermann, M. B., & Hurrell, R. F. (2017). Nutritional Iron Deficiency. The Lancet, 370(9586), 511-

520. https://doi.org/10.1016/S0140-6736(07)61235-5

Batra, J., & Sood, A. (2019). Iron Deficiency Anemia in Children: Causes and Consequences. Pediatric Hematology, 35(4), 302-312. https://doi.org/10.1080/08880018.2019.1616372

Black, R. E., et al. (2018). Maternal and Child Undernutrition: Global and Regional Exposures and Health Consequences. The Lancet, 382(9904), 243-260.

https://doi.org/10.1016/S0140-6736(08)61690-0

Lozoff, B. (2020). Iron Deficiency and Child Development. Annual Review of Nutrition, 20(1), 69-95. https://doi.org/10.1146/annurev.nutr.20.1.69 United Nations Children's Fund (UNICEF) (2022). State of the World's Children: Malnutrition and Anemia in Childhood. Retrieved from https://www.unicef.org/reports/state-worlds-children-2022

7. Pasricha, S. R., et al. (2021). Effects of Daily Iron Supplementation in Children at Risk of Anemia: A Randomized Controlled Trial. American Journal of Clinical Nutrition, 114(3), 579-590.