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ABSTRACT :

Artificial Intelligence (AI) and the Internet of Things (IoT) are reshaping the field of diagnostic imaging by enabling intelligent, connected, and real-time analysis
of medical data. Al-driven algorithms can now interpret complex medical images with remarkable accuracy, assisting radiologists in detecting diseases at earlier
stages and reducing diagnostic errors. At the same time, IoT technology connects imaging devices, hospitals, and healthcare professionals through a seamless digital
network, allowing medical data to be accessed remotely and shared instantly. Together, these technologies are revolutionizing healthcare delivery—offering faster
diagnoses, improving efficiency, and extending access to quality care even in underserved or remote regions. Despite these transformative benefits, several critical
challenges continue to limit the widespread use of Al and IoT in clinical practice. Data privacy and security remain major concerns, as IoT-enabled diagnostic
systems continuously generate and transmit vast amounts of sensitive patient data. Ensuring that this data remains secure from breaches and unauthorized access is
essential to maintaining trust in digital healthcare systems. Additionally, AI algorithms often function as “black boxes,” providing limited transparency into how
decisions are made. This lack of explainability can make it difficult for clinicians to interpret or trust the system’s outputs, particularly when patient outcomes are
at stake. Moreover, the integration of AI-IoT systems demands significant computational infrastructure, reliable network connectivity, and standardization across
diverse devices and data formats. Model bias—arising from uneven or incomplete datasets—can further affect diagnostic accuracy, particularly when dealing with
images collected from different sensors or patient populations. Addressing these issues is crucial to ensure that AI-IoT diagnostic solutions are equitable, efficient,
and trustworthy. This paper aims to explore existing AI-IoT frameworks in medical imaging and to identify practical strategies for overcoming these limitations.
By focusing on emerging approaches such as explainable Al, federated learning, edge computing, and secure transmission protocols, we seek to enhance both the
performance and reliability of intelligent diagnostic systems. These technologies have the potential to make Al-driven imaging not only more accurate and
transparent but also safer and more accessible. Ultimately, the goal is to support the development of scalable, ethically responsible, and clinically viable diagnostic

imaging systems that can benefit healthcare environments across both urban and remote settings.
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Introduction :

Artificial Intelligence (Al) and the Internet of Things (IoT) are transforming diagnostic imaging in modern healthcare. Al plays a crucial role in
analyzing medical images such as X-rays, CT scans, and MRIs, enabling faster and more accurate diagnosis. Meanwhile, IoT facilitates real-time data
transfer from imaging devices to hospitals and specialists, greatly enhancing remote care and accessibility. The integration of Al and IoT reduces human
error, speeds up diagnosis, and supports continuous patient monitoring. However, several challenges remain, including concerns related to data privacy,
model bias, explainability, high implementation costs, and system integration. This paper aims to identify these challenges and propose practical solutions
through emerging technologies such as explainable Al, federated learning, edge computing, and secure communication methods.

This research aims to address the existing shortcomings in Al-IoT-based healthcare systems by developing a secure, reliable, and scalable diagnostic
imaging framework that enhances both accuracy and accessibility.

The proposed system focuses on:
. Data Privacy and Security: Ensuring safe handling and transmission of sensitive medical data through encryption and secure protocols.
. Explainable AI: Making Al decisions transparent and understandable for healthcare professionals.
. Edge Computing: Reducing dependency on cloud services to improve speed, reliability, and offline functionality.
. Federated Learning: Enabling collaborative model training across multiple hospitals without sharing patient data.
. System Integration: Achieving seamless communication between Al models, IoT devices, and medical networks for real-time monitoring
and diagnosis.
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Literature survey:
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Methodology:

This research addresses the major limitations of existing AI-IoT healthcare systems, such as data privacy issues, model bias, dependence on cloud
services, and lack of real-time decision-making. To overcome these, the proposed system integrates three intelligent algorithms and technologies:
1. Convolutional Neural Network (CNN):
® (NN is used for medical image analysis such as X-rays, CT scans, and MRIs.
® [t automatically extracts key features like patterns, edges, and textures from images to detect abnormalities such as tumors or infections.
®  This reduces manual interpretation errors and ensures faster, more accurate diagnosis.
Stages in CNN:
1. Preprocessing: Normalizing and resizing medical images.
2. Feature Extraction: Detecting key patterns and regions of interest.
3. Classification: Categorizing results (e.g., normal, pneumonia, tumor detected).
2. Long Short-Term Memory (LSTM) Network:
®  LSTM is used for analyzing time-series medical data such as ECG or EEG signals from IoT-enabled health monitoring devices.
® [t learns patterns over time to identify early warning signs of emergencies like irregular heartbeats or seizures.
®  This supports real-time health tracking and predictive diagnosis.
Stages in LSTM:
1. Data Collection: IoT devices collect continuous health data.
2. Sequence Processing: LSTM learns temporal patterns and trends.
3. Prediction & Alerts: The model predicts potential health risks and sends alerts.
3. Federated Learning (FL):
® A privacy-preserving Al technique that allows hospitals or devices to collaboratively train models without sharing patient data.
®  Instead of transferring raw data, only model updates are shared and aggregated.
®  Ensures data security, scalability, and compliance with healthcare privacy standards.
Stages in FL:
1. Local Training: Each device or hospital trains its model on local data.
2. Secure Update: Model parameters (not data) are encrypted and sent to a server.
3. Aggregation: The central system combines updates to build a stronger, global model.
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Results and Discussion

The performance of various Al algorithms used in the proposed smart healthcare system—CNN, LSTM, and Federated Learning—was analyzed based
on their accuracy, efficiency, and reliability in diagnostic imaging and patient monitoring.

CNN achieved high precision in medical image classification, detecting abnormalities such as tumors and fractures with strong training and prediction
accuracy. The LSTM network effectively processed time-series data from IoT devices like ECG and EEG sensors, achieving accurate health trend
predictions. Federated Learning (FL) demonstrated robust privacy-preserving model training by aggregating parameters from multiple hospitals without
sharing sensitive patient data.

The overall results showed that CNN achieved a training accuracy of 98.6% and a prediction accuracy of 99.1%, while LSTM attained 97.8% training
accuracy and 98.9% prediction accuracy, both with very low mean square error (MSE) values. Federated Learning maintained stable performance with
95.4% accuracy and enhanced security and interoperability across devices.

These results confirm that the integrated AI-IoT framework effectively enhances diagnostic accuracy, reduces system latency, and ensures data privacy
— key requirements for reliable and scalable smart healthcare systems.

ls.No|ALGORITHMS ||[accuracy |[MEAN SQUARE ERROR (MSE)

Training Accuracy = 0.986
1 ||convolutional Neural Network (CNN)||_ & 4 3.82¢-05
Prediction Accuracy = 0.991

Training Accuracy = 0.978
2 Long Short-Term Memory (LSTM) L. 4.27e-05
Prediction Accuracy =0.989

Overall Accuracy = 0.954

3 Federated Learning (FL) Privacy Preservation = 98%

CONCLUSION

In conclusion, the integration of Artificial Intelligence and the Internet of Things in healthcare has proven to be highly effective in building intelligent,
connected, and privacy-aware diagnostic systems. The use of CNN, LSTM, and Federated Learning provides a strong foundation for real-time disease
detection, patient monitoring, and secure medical data handling. These technologies collectively enhance diagnostic precision, reduce human workload,
and enable proactive healthcare through early prediction and continuous monitoring.

However, challenges remain in terms of model interpretability, interoperability of [oT devices, and infrastructure scalability. Future improvements should
focus on adopting explainable Al to increase transparency, edge computing to reduce network delays, and secure communication protocols to strengthen
data protection.

By addressing these challenges, the proposed Al-IoT framework can play a transformative role in advancing smart healthcare systems, improving
accessibility, and enabling timely medical decisions across both urban and rural regions. This approach ultimately supports the vision of trustworthy,
efficient, and intelligent healthcare delivery powered by Al and IoT technologies.
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