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ABSTRACT

The exponential growth of unstructured and multimodal document data in domains such as law, education, and enterprise poses serious challenges to information
retrieval, knowledge utilization, and decision-making. Traditional Retrieval-Augmented Generation (RAG) systems are limited by their reliance on cloud
infrastructure, lack of adaptability to user specific query contexts, and inability to process complex document formats containing text, tables, and images. These
constraints restrict their applicability in privacy-sensitive and offline environments. To address these challenges, this study introduces a Smart Document Q&A
Assistant powered by a Multi-Level Retrieval Augmented Generation (ML-RAG) framework. The system operates fully offline to ensure privacy and security,
while supporting multimodal content for comprehensive document understanding. A layered retrieval process—spanning document level, section level, and entity-
level—enables precise and efficient information extraction. Furthermore, context-aware personalization enhances the relevance and accuracy of responses by
adapting to user-specific query needs. The assistant’s performance is benchmarked against conventional RAG systems, demonstrating improved precision in
handling complex documents and delivering real-time, secure, and contextually rich answers. Beyond its technical contributions, the system advances organizational
capabilities in managing valuable knowledge assets while fostering critical problem solving (PO1, PO2), engineering design (PO3), and the application of modern
computational tools (PO5). This research aligns with the United Nations Sustainable Development Goals (SDGs) by promoting Quality Education (SDG 4),
Industry, Innovation, and Infrastructure (SDG 9), and Peace, Justice, and Strong Institutions (SDG 16).
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1L.INTRODUCTION

In the modern world, huge amounts of documents are created every day in areas like education, business, and law. These documents may contain text,
tables, and images, making it difficult for users to quickly find the exact information they need. Traditional search methods are not enough because they
cannot understand the context of the query and often give irrelevant results. Existing Retrieval-Augmented Generation (RAG) systems can answer
questions from documents, but they mostly work online using cloud services. This creates problems such as privacy issues, internet dependency, and
limited support for complex documents.
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3.METHODOLOGY

1.Data Collection and Preprocessing: Relevant documents such as PDFs, Word files, and text data are gathered from trusted sources.
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2. Embedding Generation: The preprocessed text is divided into smaller chunks and converted into numerical vector representations using a pre-
trained embedding model (e.g., OpenAl, Sentence-BERT, or similar).

3. Vector Database Integration:The generated embeddings are stored in a vector database such as FAISS, Pinecone, or ChromaDB.

4. Retrieval-Augmented Generation (RAG) Process:When a user inputs a query, the system retrieves the top relevant document chunks from the vector
database and feeds them into a Large Language Model (LLM).

5. Evaluation and Optimization:The system’s performance is evaluated based on accuracy, relevance, and response quality

4. MODELING AND ANALYSIS
4.1 Functional Requirements

e The system extracts text, tables, and images from uploaded documents.
. It generates embeddings and stores them locally using FAISS.

. When the user submits a query, the system retrieves the most relevant document parts through multi-level retrieval (document — section —
entity).

e The offline language model then generates a precise and context-aware answer.
4.2 Non-Functional Requirements

e  The system should provide fast and accurate responses to user queries.
. It should operate continuously without failures and ensure consistent output quality.
e All user data and documents must be encrypted and protected from unauthorized access.

e The system should have a clean, easy-to-use interface that allows users to ask questions and view results effortlessly.

4.3 Hardware and Software

Hardware: Processor (CPU),RAM,GPU (Optional but Recommended),Storage,Operating System.
Software:
e  Frontend:HTML, CSS, JavaScript, and React
e  Backend: Python 3.10+.
e Database: FAISS vector similarity search .

e APIs:Sentence-Transformers,FAISS,PyPDF2, python-docx, Pillow (PIL), pytesseract OCR ,FastAPI

Simple Architecture Diagram for Offline RAG App
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Fig. 1 - Architecture Diagram
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5.RESULTS AND DISCUSSION

The Smart Document QA Assistant uses a FAISS vector database for storing semantic embeddings, combined with BM25 for keyword search in a hybrid
retrieval system. APIs include FastAPI for the backend, Sentence-Transformers for embedding, pytesseract for OCR, and llama-cpp-python for running
local LLMs like quantized LLaMA. This setup enables offline, context-aware document Q&A with citations and confidence scoring, processing PDFs,
images, and tables securely without internet dependency.
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6.Conclusion and Future Works

The Smart Document Q&A Assistant using Al (ML-RAG System) provides an intelligent and secure way to retrieve information from complex and
multimodal documents. By combining document-level, section-level, and entity-level retrieval with offline processing, the system delivers accurate,
context-aware, and privacy preserving answers.Unlike traditional search engines or online RAG systems, this assistant works completely offline, ensuring
data security and user privacy. It can handle text, tables, and images, making it suitable for a wide range of applications in education, law, healthcare, and
enterprise sectors.Its multi-level retrieval approach enhances both the speed and precision of information access, helping users efficiently extract
knowledge from large and unstructured datasets. The system demonstrates how Al and NLP can be used responsibly to manage data securely while
providing high accuracy and usability.SDG 9: Industry, Innovation, and Infrastructure, by promoting the use of Al for intelligent document management.
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