

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Exploring Study on Etiology, Diagnosis, and Management of Sinusitis

Sohib Khan¹, Shreya Samanta², Dr. Nakul Gupta³, Sapna Chaudhar⁴

IIMT College Of Pharmacy, Greater Noida

ABSTRACT:

A common but occasionally ignored ailment that significantly affects overall health and quality of life is sinusitis. This paper offers a comprehensive evaluation of the problem, focusing on its underlying pathophysiology, clinical manifestation, diagnostic challenges, and potential therapies. All types of sinusitis—acute, subacute, recurrent, and chronic—are essentially inflammation of the paranasal sinuses, with varying clinical signs and severity. In order to assess the severity of the condition and guide treatment, physicians commonly employ imaging techniques such as CT scans and nasal endoscopies, even though the diagnosis is primarily clinical. The difficult therapy of sinusitis depends on its type and severity. Adjuvant medications, such as saline irrigation to alleviate symptoms, intranasal corticosteroids to reduce mucosal inflammation, and antibiotics in cases of confirmed bacterial infection, continue to be the first line of treatment. Restoring sinus drainage and ventilation in patients who do not react effectively requires surgical techniques such functional endoscopic sinus surgery (FESS). New treatment techniques outside of traditional therapy, like balloon sinuplasty, biologics, and other minimally invasive procedures, have been investigated recently. These approaches may be helpful for patients with refractory disease. By discussing both existing procedures and emerging developments, this article emphasizes the importance of a tailored, evidence-based approach in the effective treatment of sinusitis.

Keywords- Sinusitis, Rhinosinusitis, Etiology, Chronic

INTRODUCTION

Rhinosinusitis is an inflammation of the nasal cavity and paranasal sinuses that is frequently brought on by an infection, allergies, or other conditions. Based more on consensus than on empirical research, the following classifications of rhinosinusitis have been established: [1]

Symptoms lasting less than four weeks are considered acute: [1]

- Acute: Symptoms lasting less than 4 weeks
- Subacute: Symptoms lasting between 4 and 12 weeks
- Chronic: Symptoms lasting more than 12 weeks
- Recurrent: Four episodes lasting less than 4 weeks with complete symptom resolution between episodes

Acute sinusitis is characterized by inflammation of the paranasal sinus lining. Because the sinus and nasal passages are connected, the term "rhinosinusitis" is often more accurate. Acute rhinosinusitis is a frequently diagnosed condition that accounts for an estimated 30 million primary care visits and \$11 billion in medical costs. This condition is also the primary reason for antibiotic prescriptions in the US and other countries. The identification of this common disease depends on having established treatment plans, particularly in view of recent recommendations and worries about antibiotic resistance and responsible antibiotic use .[2][3]

In chronic sinusitis, the sinus lining expands, causing pain, swelling, and difficulty breathing around the head and eyes. The sinuses remain swollen and inflamed for at least three months despite treatment. This frequent ailment obstructs mucus outflow, which causes a stuffy nose. Breathing through your nose may become difficult, and the area around your eyes may feel irritated or inflamed. Chronic sinusitis can be caused by an infection, sinus growths (nasal polyps), or edema of the sinus lining. Another name for the same symptoms is chronic rhinosinusitis. The sickness may affect youngsters as well as adults. Sinusitis is considered chronic if it lasts more than 12 weeks. Allergens not only cause colds but also increase your risk of chronic sinusitis. Chronic sinusitis can linger for months or even years and can be caused by bacteria, viruses, fungi, or allergies [2].

Chronic rhinosinusitis (CRS) is a frequent illness with substantial annual treatment expenditures. Immune deficiencies are more common in people with CRS, and those who are resistant to surgery and treatment should receive extra attention [3].

We are at a critical point in the treatment of complicated regional pain syndrome (CRS). It is now clear that many individuals present with a steroid-resistant form of the disease, which requires early detection to prevent unnecessary exposure to corticosteroids and their side effects. With the advent of tailored biologic therapies such as anti-IgE and anti-cytokine antibodies, the significance of identifying specific endotypes has increased.

These customized medications are likely to benefit patients who express the right mediators, even if they may also have central effects. Many new medications are being researched and show promise for afflicted patients; nonetheless, therapy tailored to the proper endotype will be necessary for their successful implementation [4]. For instance, serum periostin has been shown to assist in the diagnosis of chronic rhinosinusitis with nasal polyps and to predict the severity of the disease on imaging in asthmatic patients [5]. Although anosmia has been linked to a type 2 inflammatory endotype, more research is needed to determine whether other clinical features can potentially serve as predictors of inflammatory subtypes [6].

2. ETIOLOGY

Previously, it was believed that the paranasal sinuses were biologically sterile, but recent studies show that even healthy individuals may have microbial colonization in their sinuses [15]. It is generally accepted that sinusitis arises when mucus outflow is obstructed and retained, supporting the growth of pathogenic microorganisms. A second perspective states that germs that reside in the nasal cavity or nasopharynx may reach the sinuses if mucociliary clearance is impaired or disrupted [16][17].

One important determinant of whether sinusitis is categorized as acute or chronic is the duration of symptoms. Acute sinusitis is typically linked to infection, whereas chronic sinusitis is more closely linked to persistent inflammation [18]. Although there is continuous debate on the precise origins of each type, it is generally accepted that infectious organisms, such as viruses, bacteria, and, in rare cases, fungus, are frequently to blame for acute sinusitis

Common Etiologic Agents in Rhinosinusitis

- Viruses (most common) [19]
- Bacteria [20]
- Fungi: Rare, typically associated with allergic fungal sinusitis and similar to allergic bronchopulmonary aspergillosis [26]

Staphylococcus aureus is one of the infections commonly found in CRS patients, and S. Aureus biofilms are frequently associated with recalcitrant or recurrent disease. It has been demonstrated that S. The inflammatory process is sped up because aureus can penetrate the columnar epithelial barrier of the paranasal sinuses. In this issue of JCM, Hu et al. investigated how azithromycin and sub-inhibitory clindamycin affected S production. aureus exoproteins and the ensuing decrease in inflammation, invasion, and epithelial barrier disruption. The study used primary human nasal epithelial cells (HNECs) from patients having endoscopic skull base operations who did not show any clinical or radiological symptoms of CRS. This study emphasizes that S. In addition to causing significant cytotoxicity, aureus exoproteins interfere with the mucosal barrier's normal function and lower inflammation. Immunocompromised people with uncontrolled diabetes mellitus, HIV-positive status, active cancer treatment, immunocompromised people after organ transplantation, or immunocompromised people managing rheumatologic conditions may experience invasive fungal sinusitis, a rare form of acute fungal sinusitis [28].

Invasive fungal sinusitis is an extremely aggressive infection with unidentified treatment parameters and poor outcomes. The fungal species Aspergillus, Mucor, Rhizopus, and Rhizomucor are commonly linked to these cases. It's critical to differentiate between acute invasive fungal sinusitis, which typically affects immunocompromised individuals, and allergic fungal sinusitis, which affects immunocompetent individuals as a mass-like lesion in the sinus canal and frequently presents with persistent symptoms.

DIAGNOSIS

Sinusitis, often called rhinosinusitis, is an inflammation of the sinuses that surround the nose and the nose lining. Acute rhinosinusitis (ARS) is a four-week or shorter illness that usually starts as a virus but can sometimes develop into a bacterial infection. Chronic rhinosinusitis (CRS), which involves both symptoms and clear signs of sinus swelling, lasts for 12 weeks or longer even after therapy. CRS is further separated into CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP) based on what can be seen using an endoscope in both nostrils. To diagnose CRS, a patient must have at least two of the four symptoms—blocked nose, mucus drainage, facial pressure, or diminished smell—as well as endoscopic or X-ray evidence of the illness [1–4].

ARS is diagnosed in those who have a blocked nose, face pain or pressure, and pus coming out of their nose for less than four weeks [1,2]. If symptoms are severe for three to four days in a row (high temperature, pus discharge), improve and then worsen after starting to improve, or last longer than ten days without getting better, it is probable that the patient has acute bacterial rhinosinusitis (ABRS) [1, 2, 5]. ARS caused by viruses usually goes away after 7–10 days.

Coughing, facial pressure or pain, a runny or congested nose (often with pus), a reduced sense of smell, and rarely a fever are common symptoms. There may also be toothache in the upper jaw, exhaustion, and ear stuffiness. It's possible for the nose lining to seem red, swollen, and leaking pus. The face may feel sensitive to touch, though this is not particular. Eye swelling, impaired vision, or nerve problems are serious symptoms that need to be scanned and seen by a specialist right away [1,2].

CRS is diagnosed when swelling is clearly visible and symptoms last for 12 weeks or longer. EPOS 2020 and AAO-HNS guidelines state that clear proof can be obtained via a nasal endoscopy (polyps, swollen lining, or pus) or a CT scan (blocked sinuses, thick lining, or blocked sinus apertures) [3,4]. CRSwNP necessitates polyps in both nostrils, whereas CRSsNP can be diagnosed without them. It's important to check for other causes, including fungal sinus infections or growths, if only one side is affected [3, 5].

X-rays are usually not needed for simple ARS [1,2]. A CT scan is the most effective method for identifying CRS and scheduling surgery. It also shows the degree of the illness's spread and any uncommon forms. MRI scanning is necessary in rare circumstances (such suspected fungal infections or growths). Routine laboratory procedures like as immune system examinations, allergy tests, or gene tests (for cilia or CF) may be used in cases of CRS that do not improve, albeit they are rarely necessary [4,5].

Whether ARS is caused by a virus or bacteria affects treatment; basic care is employed for viral ARS, while antibiotics may be needed for ABRS. When needed, stronger treatments like long-term medication or surgery are carried out in CRS, and an endoscope or CT scan guarantees this [1–5].

4.MANAGEMENT

When upper respiratory infection symptoms appear, many people think they have severe sinusitis and need needless antibiotics. The majority of people want their symptoms to decrease or go away faster. In addition, doctors should work to eliminate the infection and avoid complications, especially those related to worsening physical ailments or issues with the eyes or brain.

MANAGEMENT OF ACUTE RHINOSINUSITIS (ARS)

When ARS is virus-induced or not complex, the main goal is to reduce the symptoms rather than cure it. Patients are recommended to use decongestants or pain relievers, saltwater washes or sprays, and steroid sprays for the nose to alleviate symptoms. It has been demonstrated that nasal steroid sprays are safe and can reduce the length of the sickness [4]. Additional ways to help you feel better include applying warm cloths, using moist air, drinking enough water, and taking NSAIDs for pain relief.

Antihistamines are frequently not used until a person also has allergies that affect the nose, even if decongestants such oxymetazoline can be administered for a short time (3–5 days or less) [3].

Since evidence shows that antibiotics are only marginally more effective than a fake medicine for simple ARS[3] and that using them when unnecessary can make bacteria more robust and harder to eliminate, regular use of antibiotics is not advised.

Currently, it is advised to wait and see if ARS is moderate and to use antibiotics only when a bacterial sinus infection is suspected to be the cause. This is often considered to be the case if symptoms include a high fever and pus-like discharge for 3–4 days or more in a row, worsen after first appearing to improve ("double-worsening"), or continue for 10 days or more without getting better [2, 3].

If someone seems to have a bacterial infection in their sinuses, amoxicillin–clavulanate is the first drug that should be taken for 5–10 days [2]. Other options, such fluoroquinolones or doxycycline, may be used if a patient has an allergy or a hard-to-treat infection. People should be reassessed after a week; if their symptoms worsen or continue, they might need to see a specialist or have an imaging test [2, 3].

Extremely serious but rare side effects of ARS include brain abscesses, eye infections, brain edema, and blood clots in the sinuses near the brain. Prompt imaging examinations, intensive intravenous antibiotic treatment, and even surgery are necessary for warning signs including eye edema, alterations in vision, or problems with the nerve system [3].

MANAGEMENT OF CHRONIC RHINOSINUSITIS (CRS)

CRS is the term used when symptoms last 12 weeks or more and there are signs of nasal hypertrophy [6]. The primary goals of treatment are to reduce nasal edema, improve sinus outflow, and address any underlying medical conditions.

Nasal Saline Irrigation: It is recommended to rinse the nose with a lot of saltwater (with normal or strong salt levels) every day in order to clear out mucus and allergies. There is also evidence that this can enhance overall health [5].

Intranasal corticosteroids are the most effective first line of treatment for CRS, regardless of the presence of nasal growths. Steroid sprays applied to the nose over an extended period of time can lessen the growths' size and ease symptoms [6]. Steroids can be used for a brief amount of time if CRS with growths becomes really severe, but prolonged use of steroids is dangerous because they affect the entire body [6]. Only in cases where a bacterial illness unexpectedly worsens are antibiotics recommended. Treatment is based on laboratory testing (for 3–4 weeks). Long-term low doses of macrolide antibiotics (such clarithromycin) may help certain CRS patients without growths because they lessen edema [6]. Regular antifungal drugs are not recommended unless the patient has a fungal infection in their sinuses as a result of allergies [6].

Adjunctive Therapy: Reflux, asthma, allergies, and quitting smoking must all be addressed. Even following surgery, long-term nasal medication use persists [6].

Biologics: Newer drugs such dupilumab, omalizumab, and mepolizumab have been shown to be successful in reducing the size of growths, easing symptoms, and reducing the requirement for body-wide steroid tablets in cases of severe CRS with growths [9]. Patients who cannot have surgery or who do not respond to other treatments are given consideration for these.

SURGICAL MANAGEMENT

Sinusitis is a serious condition. One of our most basic bodily processes, breathing, is hampered by this illness. It wears you out, causes pain that makes it difficult to think clearly, and takes away the fundamental pleasure of feeling good. But we can also understand, treat, and often eliminate this disease.

By learning about the causes, paying attention to their bodies, getting the right diagnosis, and choosing the best treatment, people with sinusitis may take back control of their health. A vital point is brought to light by our efforts to treat sinusitis, which range from conventional steam treatments to the newest drugs made from living things: the desire to fully experience life is inextricably linked to the need for easy breathing.

Early diagnosis and rapid treatment are crucial because, despite their rarity, genetic abnormalities can create serious complications. Infections of the frontal bone, brain swelling, blood clots in the brain's veins, infections around the eyes, and pockets of infection inside, around, or between layers of the

brain can all result from either short-term or long-term sinusitis. Despite all of the recent medical breakthroughs, many problems still have the potential to be lethal. Research indicates that even after therapy, more than 30% of these disorders, which include leg paralysis, convulsions, and vision impairment, persist.

6. REFERENCE

- Hastan, D., Fokkens, W. J., Bachert, C., Newson, R. B., Bislimovska, J., Bockelbrink, A., Bousquet, P. J., Brożek, G. M., Bruno, A., Dahlen, S. E., et al. (2011). Chronic rhinosinusitis in Europe—An underestimated disease. A GA(2)LEN study. Allergy, 66(9), 1216–1223. https://doi.org/10.1111/j.1398-9995.2011.02646.x
- Palmer, J. N., Messina, J. C., Biletch, R., Grosel, K., & Mahmoud, R. A. (2019). A cross-sectional, population-based survey of U.S. adults with symptoms of chronic rhinosinusitis. Allergy and Asthma Proceedings, 40(1), 48–56. https://doi.org/10.2500/aap.2019.40.4182
- 3. Hirsch, A. G., Stewart, W. F., Sundaresan, A. S., Young, A. J., Kennedy, T. L., Greene, J. S., Feng, W., Tan, B. K., Schleimer, R. P., Kern, R. C., et al. (2017). Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy, 72(2), 274–281. https://doi.org/10.1111/all.13042
- 4. Schlosser, R. J., Gage, S. E., Kohli, P., & Soler, Z. M. (2016). Burden of illness: A systematic review of depression in chronic rhinosinusitis. American Journal of Rhinology & Allergy, 30(4), 250–256. https://doi.org/10.2500/ajra.2016.30.4343
- Gliklich, R. E., & Metson, R. (1995). The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngology–Head and Neck Surgery, 113(1), 104–109. https://doi.org/10.1016/S0194-5998(95)70152-4
- Rudmik, L. (2017). Economics of chronic rhinosinusitis. Current Allergy and Asthma Reports, 17(20). https://doi.org/10.1007/s11882-017-0690-5
- Bhattacharyya, N. (2011). Incremental health care utilization and expenditures for chronic rhinosinusitis in the United States. Annals of Otology, Rhinology & Laryngology, 120(7), 423–427. https://doi.org/10.1177/000348941112000701
- 8. Foreman, A., Jervis-Bardy, J., & Wormald, P. J. (2011). Do biofilms contribute to the initiation and recalcitrance of chronic rhinosinusitis? Laryngoscope, 121(5), 1085–1091. https://doi.org/10.1002/lary.21438
- Ou, J., Drilling, A., Singhal, D., Tan, N. C., Wallis-Hill, D., Vreugde, S., Psaltis, A. J., & Wormald, P. J. (2016). Association of intracellular Staphylococcus aureus with prognosis in chronic rhinosinusitis. International Forum of Allergy & Rhinology, 6(8), 792–799. https://doi.org/10.1002/alr.21758
- 10. Tan, N. C., Cooksley, C. M., Roscioli, E., Douglas, R., Wormald, P. J., & Vreugde, S. (2014). Small-colony variants and phenotype switching of intracellular Staphylococcus aureus in chronic rhinosinusitis. Allergy, 69(10), 1364–1371. https://doi.org/10.1111/all.12457
- 11. Hu, H., Ramezanpour, M., Hayes, A. J., Liu, S., Psaltis, A. J., Wormald, P. J., & Vreugde, S. J. (2019). Sub-inhibitory clindamycin and azithromycin reduce S. aureus exoprotein-induced toxicity, inflammation, barrier disruption, and invasion. Journal of Clinical Medicine, 8(10), 1617. https://doi.org/10.3390/jcm8101617
- Eby, G. A. (2006). Strong humming for one hour daily to terminate chronic rhinosinusitis in four days: A case report and hypothesis for action by stimulation of endogenous nasal nitric oxide production. Medical Hypotheses, 66(4), 851–854. https://doi.org/10.1016/j.mehy.2005.11.035
- Taruya, T., Takeno, S., Kubota, K., Sasaki, A., Ishino, T., & Hirakawa, K. (2015). Comparison of arginase isoform expression in patients
 with different subtypes of chronic rhinosinusitis. Journal of Laryngology and Otology, 129(12), 1194–1200.
 https://doi.org/10.1017/S0022215115002728
- Bommarito, L., Guida, G., Heffler, E., Badiu, I., Nebiolo, F., Usai, A., De Stefani, A., & Rolla, G. (2008). Nasal nitric oxide concentration in suspected chronic rhinosinusitis. Annals of Allergy, Asthma & Immunology, 101(4), 358–362. https://doi.org/10.1016/S1081-1206(10)60310-9
- Vlad, D., & Albu, S. (2019). Arginase isoform expression in chronic rhinosinusitis. Journal of Clinical Medicine, 8(11), 1809. https://doi.org/10.3390/jcm8111809
- Kim, D., Assiri, A. M., & Kim, J. H. (2019). Recent trends in bacteriology of adult patients with chronic rhinosinusitis. Journal of Clinical Medicine, 8(11), 1889. https://doi.org/10.3390/jcm8111889
- 17. Lu, Y. T., Wang, S. H., Liou, M. L., Shen, T. A., Lu, Y. C., Hsin, C. H., Yang, S. F., Chen, Y. Y., & Chang, T. H. (2019). Microbiota dysbiosis in fungal rhinosinusitis. Journal of Clinical Medicine, 8(11), 1973. https://doi.org/10.3390/jcm8111973
- 18. Chang, G. H., Chen, Y. C., Lin, K. M., Yang, Y. H., Liu, C. Y., Lin, M. H., Wu, C. Y., Hsu, C. M., & Tsai, M. S. (2019). Real-world database examining the association between Sjögren's syndrome and chronic rhinosinusitis. Journal of Clinical Medicine, 8(2), 155. https://doi.org/10.3390/jcm8020155
- 19. Bequignon, E., Dupuy, L., Zerah-Lancner, F., Bassinet, L., Honoré, I., Legendre, M., Devars du Mayne, M., Escabasse, V., Crestani, B., & Maître, B. (2019). Critical evaluation of sinonasal disease in 64 adults with primary ciliary dyskinesia. Journal of Clinical Medicine, 8(5), 619. https://doi.org/10.3390/jcm8050619
- 20. Bequignon, E., Dupuy, L., Escabasse, V., Zerah-Lancner, F., Bassinet, L., Honoré, I., Legendre, M., Devars du Mayne, M., Crestani, B., & Escudier, E. (2019). Follow-up and management of chronic rhinosinusitis in adults with primary ciliary dyskinesia: Review and experience of our reference centers. Journal of Clinical Medicine, 8(9), 1495. https://doi.org/10.3390/jcm8091495
- Hildenbrand, T., Weber, R., Mertens, J., Stuck, B. A., Hoch, S., & Giotakis, E. (2019). Surgery of inverted papilloma of the maxillary sinus via translacrimal approach: Long-term outcome and literature review. Journal of Clinical Medicine, 8(11), 1873. https://doi.org/10.3390/jcm8111873
- 22. Manciula, L. G., Berce, C., Tabaran, F., Trombitaş, V., & Albu, S. (2019). The effects of postoperative astaxanthin administration on nasal mucosa wound healing. Journal of Clinical Medicine, 8(11), 1941. https://doi.org/10.3390/jcm8111941
- 23. Trombitas, V., Zolog, A., Toader, M., & Albu, S. (2019). Maxillary antrostomy patency following intraoperative use of spray cryotherapy. Journal of Clinical Medicine, 9(1), 88. https://doi.org/10.3390/jcm9010088
- **24.** Rosenfeld, R. M., Piccirillo, J. F., Chandrasekhar, S. S., Brook, I., Kumar, K. A., Kramper, M., Orlandi, R. R., Palmer, J. N., Patel, Z. M., Peters, A., Walsh, S. A., & Corrigan, M. D. (2015). *Clinical practice guideline (update): Adult sinusitis. Otolaryngology—Head and Neck*

- Surgery, 152(2 Suppl), S1-S39.
- 25. Aring, A. M., & Chan, M. M. (2016). Current concepts in adult acute rhinosinusitis. American Family Physician, 94(2), 97–105.
- 26. DeMuri, G., & Wald, E. R. (2013). Acute bacterial sinusitis in children. Pediatrics in Review, 34(10), 429-437.
- 27. Lacroix, J. S., Ricchetti, A., Lew, D., Delhumeau, C., Morabia, A., Stalder, H., Terrier, F., & Kaiser, L. (2002). Symptoms and clinical and radiological signs predicting the presence of pathogenic bacteria in acute rhinosinusitis. Acta Oto-Laryngologica, 122(2), 192–196.
- 28. Axelsson, A., & Runze, U. (1976). Symptoms and signs of acute maxillary sinusitis. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 38(5), 298–308.
- 29. Williams, J. W., Simel, D. L., Roberts, L., & Samsa, G. P. (1992). Clinical evaluation for sinusitis: Making the diagnosis by history and physical examination. Annals of Internal Medicine, 117(9), 705–710.
- 30. Gwaltney, J. M. (1996). Acute community-acquired sinusitis. Clinical Infectious Diseases, 23(6), 1209–1224.
- 31. Ah-See, K. (2008). Sinusitis (acute). BMJ Clinical Evidence, 2008, 1-7.
- 32. Ahovuo-Saloranta, A., Rautakorpi, U. M., Borisenko, O. V., Liira, H., Williams, J. W., & Mäkelä, M. (2014). Antibiotics for acute maxillary sinusitis in adults. Cochrane Database of Systematic Reviews, 2014(2), CD000243.
- 33. Henry, D. C., Riffer, E., Sokol, W. N., Chaudry, N. I., & Swanson, R. N. (2003). Randomized double-blind study comparing 3- and 6-day regimens of azithromycin with a 10-day amoxicillin-clavulanate regimen for treatment of acute bacterial sinusitis. Antimicrobial Agents and Chemotherapy, 47(9), 2770–2774.
- **34.** Luterman, M., Tellier, G., Lasko, B., Leroy, B. (2003). Efficacy and tolerability of telithromycin for 5 or 10 days vs amoxicillin/clavulanic acid for 10 days in acute maxillary sinusitis. Ear, Nose & Throat Journal, 82(8), 576–586.
- 35. DelGaudio, J. M., Evans, S. H., Sobol, S. E., & Parikh, S. L. (2010). Intracranial complications of sinusitis: What is the role of endoscopic sinus surgery in the acute setting? American Journal of Otolaryngology, 31(1), 25–28.
- 36. Brook, I. (1981). Aerobic and anaerobic bacterial flora of normal maxillary sinuses. Laryngoscope, 91(3), 372–376.