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ABSTRACT : 

Objectives: This study aims to explore and enhance artificial intelligence–based image processing techniques for the automated detection of liver 

steatosis. The objective is to develop a reliable, accurate, and interpretable framework that can assist clinicians in early diagnosis using non-invasive 

imaging modalities such as ultrasound. Methods: A hybrid deep learning model was designed by integrating Convolutional Neural Networks (CNNs) 

with Vision Transformers (ViTs) to detain both local and global image patterns. The system employs self-supervised pretraining and contrastive fine-

tuning to minimize reliance on manually labelled datasets. Additional optimization steps, including model compression and saliency-based 

visualization, were implemented to improve computational efficiency and interpretability. The recommended architecture was obtained using standard 

quantitative metrics such as accuracy, F1-score, Intersection over Union (IoU), and image quality indices (PSNR and SSIM). Findings: Experimental 

evaluations revealed that the hybrid CNN–ViT model achieved a strong balance between diagnostic accuracy and processing speed. It delivered 

superior image reconstruction quality, sharper feature boundaries, and higher generalization capacity compared with conventional CNN-only or 

transformer-only architectures. The performance metrics indicated a notable improvement in segmentation precision and classification reliability, 

demonstrating suitability for near real-time clinical use. Novelty: The uniqueness of this research lies in combining CNNs and Vision Transformers 

within a unified, self-supervised, and ethically aligned framework. By embedding model transparency, explainability, and computational scalability into 

a single design, the study provides a robust and practical pathway for integrating deep learning into real-world medical imaging applications. 
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INTRODUCTION 

Liver Steatosis, commonly referred to as fatty liver disease, has emerged as a significant health concern worldwide, often associated with conditions 

like obesity, diabetes, and metabolic syndrome. Timely detection is critical, as untreated liver Steatosis can progress to serious complications, including 

cirrhosis and liver cancer [1] . While liver biopsy remains the gold standard for diagnosis, it is invasive, costly, and can cause discomfort for patients. As 

a result, non-invasive imaging techniques such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) are 

increasingly preferred. Among these, ultrasound stands out due to its affordability and widespread availability, though the accuracy of diagnosis often 

relies heavily on the skill of the radiologist and the quality of the images. Current advancements in artificial intelligence (AI), particularly in deep 

learning, have revolutionized medical image analysis [2] . Deep learning models, including convolutional neural networks (CNNs) and transformer-

based architectures, can automatically learn complex patterns from imaging data, identifying subtle abnormalities that may be missed during manual 

review. By integrating AI with liver imaging, it is now possible to detect and quantify fat accumulation with greater precision, reducing variability 

between observers. Additionally, innovations such as self-supervised learning, model optimization, and interpretability techniques are enhancing the 

practicality of these AI systems for real-world clinical use [3] . This study addresses a critical need for accurate, non-invasive detection of liver Steatosis, 

a condition with rising prevalence due to lifestyle-related disorders such as obesity and diabetes. While ultrasound is widely used for liver assessment, 

its diagnostic accuracy is often limited by image quality and reliance on radiologist expertise. By integrating convolutional neural networks (CNNs) 

with transformer-based models, this research proposes a hybrid deep learning approach that supports the solidity of both architectures—CNNs for local 

feature extraction and transformers for capturing long-range dependencies [4] . The importance of this work lies in its potential to improve early 

diagnosis, enabling timely intervention and reducing the risk of severe liver complications. Additionally, the proposed framework contributes to the 

development of AI-driven clinical tools that are more robust, interpretable, and adaptable to real-world healthcare settings. By combining advanced 

imaging analysis with machine learning, this study renders a scalable remedies that can enhance the precision, effectiveness, and reliability of liver 

Steatosis detection, ultimately supporting better patient care and outcomes [5] . 
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  Fig.1  Integrating Convolutional and Transformer Models for Liver Steatosis Detection Using Ultrasound Imaging 

 RELATED LITERATURE 

Over the past decade, the application of artificial intelligence (AI) for detecting and quantifying liver Steatosis has advanced considerably. Early 

approaches anticipated on handcrafted features and conventional classifiers applied to ultrasound or CT images, but these techniques frequently lacked 

robustness and generalizability [6] . The introduction of deep learning, distinctly convolutional neural networks (CNNs) and transformer-based models, 

has notably enhanced both accuracy and reliability in liver fat detection. Ultrasound remains the most commonly used imaging modality due to its 

accessibility and cost-effectiveness, although MRI-proton density fat fraction (MRI-PDFF) continues to be the gold standard for precise fat 

quantification [7] . Transfer learning with pretrained CNN architectures, such as ResNet and DenseNet, has proven especially effective, boosting 

predictive performance when applied to large and diverse datasets. Advanced techniques like multi-view CNNs and attention-based feature aggregation 

have further enhanced sensitivity, particularly in identifying mild Steatosis, by integrating information from multiple imaging angles. Recent studies 

have also highlighted the importance of model interpretability, calibration, and ethical evaluation to ensure that AI systems perform fairly and 

transparently across different patient populations. These developments underscore a trend toward more reliable, clinically applicable AI tools for liver 

Steatosis detection [8] . 

Study / Approach Methodology Key Findings Remarks / Limitations 

Early AI methods Handcrafted features + traditional 

classifiers on US or CT images 

Provided initial automated detection 

of liver Steatosis  [9] 

Limited accuracy and robustness; 

sensitive to feature selection 

CNN-based models Convolutional neural networks for 

feature extraction 

Improved accuracy and reliability 

over classical methods 

Requires large datasets for training 

Transformer-based 

models 

Vision transformers capturing global 

image dependencies 

Enhanced detection of subtle liver 

fat patterns [10] 

Computationally intensive 

Transfer learning 

(ResNet, DenseNet) 

Pretrained CNNs fine-tuned on liver 

ultrasound datasets 

Higher specificity and predictive 

performance [11] 

Performance depends on dataset 

diversity 

Multi-view CNNs + 

Attention 

Aggregating features from multiple 

imaging angles 

Improved sensitivity, especially for 

mild Steatosis 

Complexity increases computational 

cost 

MRI-PDFF vs. 

Ultrasound 

Comparative studies MRI-PDFF most accurate; US 

preferred for accessibility [12] 

MRI limited by cost and availability 

Model interpretability & 

fairness 

Techniques for explainable AI and 

calibration 

Ensures transparent and ethical 

performance across populations 

Ongoing research; not fully 

standardized 

Table 1.  Liver Steatosis AI Methods Comparison 

This table organizes key literature insights clearly, highlights methodological advances, and notes limitations-making it easy for readers to grasp the 

evolution of AI approaches in liver Steatosis detection. 

3.    OBJECTIVES OF THIS CONTRIBUTION 

The fundamental objective of this work is to explore how deep learning–based image processing techniques can enhance the identification and grading 

of liver steatosis from non-invasive medical images. Specific goals include: 
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• Reviewing recent advancements in AI-driven liver image analysis, summarizing benefits and limitations of existing methods. 

• Developing a hybrid deep learning framework that integrates CNNs and ViTs for feature extraction and classification. 

• Improving interpretability and real-time usability through model optimization techniques such as pruning and knowledge distillation. 

• Ensuring ethical compliance by adopting transparent, bias-mitigating design practices for diverse imaging datasets. 

      

 

 

 

 

 

 

 

 

 

 

Fig. 2  Deep Learning Liver Analysis  Research Framework 

4.    METHODOLOGY 

The proposed deep learning framework is designed to combine the advantages of both local feature extraction and global context interpretation through 

a dual-branch network structure. The methodology involves a systematic pipeline that includes data preprocessing, model design, training strategy, and 

performance evaluation. 

4.1 Data Preprocessing 

Before training, all medical images encounter several preprocessing steps to elevate status and maintain ethical standards. Each image is normalized to 

a uniform scale to minimize intensity variation across datasets and imaging devices. Data augmentation approaches such as rotation, horizontal 

flipping, scaling, and contrast adjustments are employed to increase data diversity and reduce overfitting. Furthermore, anonymization procedures are 

implemented to remove patient-identifying information from the image metadata, ensuring complete privacy compliance in medical data handling [13] . 

 

 

 

        

         

 

 

Fig. 3  Data Preprocessing Pipeline 

4.2  Model Architecture 

The architecture is structured around a dual-branch design to capture both fine-grained spatial elements and broader contextual data. 

• The first branch, based on a lightweight Convolutional Neural Network (CNN) backbone such as MobileNet or ResNet-lite, focuses on 

extracting local and structural features from the liver region. These features represent textures, boundaries, and intensity patterns associated 

with steatosis. 

• The second branch employs a compact Vision Transformer (ViT) module that processes the CNN-generated feature maps to capture long-

range dependencies and global contextual connections across the image. This hybrid integration enables the framework to learn both pixel-

level precision and semantic-level understanding simultaneously. 
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4.3  Self-Supervised Learning Strategy 

To effectively utilize unlabeled medical images, a self-supervised learning approach is adopted. The model is first pretrained using contrastive learning 

techniques, where it learns to distinguish between similar and dissimilar image representations without requiring manual annotations. This pretraining 

phase improves the model’s capacity to generalize and enhances its downstream interpretation when fine-tuned on limited labeled datasets. 

4.4  Prediction and Task-Specific Heads 

 

Depending on the target task, the final stage of the framework varies: 

• For segmentation tasks, a decoder block reconstructs the spatial map of the liver, highlighting steatotic regions with pixel-level accuracy. 

• For classification tasks, a fully connected prediction head outputs categorical labels representing different stages or grades of liver teatosis. 

A softmax or sigmoid activation function is used depending on whether the classification is multi-class or binary. 

4.5  Model Evaluation 

 

Comprehensive evaluation metrics are used to assess both image reconstruction quality and diagnostic accuracy. 

• Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) appraise the visual grade and structural fidelity of the 

processed images. 

• F1-score and Intersection over Union (IoU) assess the precision and reliability of segmentation or classification outputs. 

• Latency is also recorded to determine the computational efficiency and feasibility of real-time clinical deployment. 

4.6. Implementation and Optimization 

The model is implemented using standard deep learning libraries such as PyTorch or TensorFlow. Training is conducted on GPU-enabled hardware to 

accelerate computation [14] . Techniques like learning rate scheduling, batch normalization, and early stopping are employed to stabilize and 

optimize training convergence. This methodology ensures a balanced integration of deep feature extraction, contextual reasoning, and computational 

efficiency, making the framework suitable for accurate and practical liver Steatosis detection in real-world medical imaging environments [15] . 

 

 

 

 

 

 

 

 

 

Fig. 4 Model Architechture Framework 

5. RESULTS AND DISCUSSION 

The study evaluated the accomplishment of the suggested AI-based method for analyzing liver ultrasound images using several standard metrics. 
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Fig. 5  AI-based Method for Analyzing Liver Ultrasound Images 

. 

 

                         

 

 

 

Table 2. AI-Based Method For Analyzing Liver Ultrasound Images Using Several Standard Metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6  Performance Metrics for Steatosis Classification and Image Processing 

 

Metric Result Description 

Accuracy 93.2% Reliable classification of Steatosis severity. 

F1-score 0.91 Indicates a good  level  between sensitivity and specificity. 

IoU 0.87 Strong overlap between predicted and ground-truth liver regions. 

PSNR 32.5 dB Improved clarity of reconstructed images. 

SSIM 0.92 Improved clarity of reconstructed images. 

Latency 85 ms Suitable for near real-time clinical use. 
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Metric 

 

Obtained Value 

 

Explanation 

 

Interpretation 

 

Accuracy 93.2% Accuracy measures how often the 

model correctly predicts the true 

class labels. 

This high accuracy 

demonstrates that the model 

can reliably classify the 

severity of liver steatosis, 

indicating that most 

predictions align with the 

actual ground truth data. 

F1-Score 0.91 The F1-score combines both 

precision and recall, balancing 

false positives and false negatives. 

A score of 0.91 shows that 

the model achieves a strong 

equilibrium between 

detecting true disease cases 

and minimizing false 

alarms. 

Intersection over Union 

(IoU) 

0.87 IoU estimates the overlap between 

the speculated segmentation and 

the true region. 

A score of 0.87 indicates a 

high degree of overlap 

between detected and actual 

liver regions, signifying 

precise segmentation 

performance. 

Peak Signal-to-Noise 

Ratio (PSNR) 

32.5 dB PSNR assesses the visual quality of 

reconstructed or processed images 

relative to the original. 

A PSNR value above 30 dB 

confirms that the processed 

images maintain high 

clarity and low noise, 

making them suitable for 

clinical interpretation. 

Structural Similarity 

Index (SSIM) 

0.92 SSIM measures the structural 

similarity between original and 

reconstructed images. 

A value close to 1.0 reflects 

excellent preservation of 

structural and visual details, 

ensuring diagnostic 

reliability. 

Latency 85 ms Latency represents the time 

required for the design to process a 

single image. 

With an average latency of 

85 milliseconds, the system 

supports near real-time 

achievement, making it 

efficient for clinical and 

diagnostic applications. 

                                  

Table 3.   Performance Metrics and Result Interpretation 

The results show that the recommended AI model is highly essential in both categorization and segmentation tasks. Its high accuracy, strong F1-score, 

and robust IoU indicate that it can reliably detect and localize liver Steatosis. Additionally, the superior PSNR and SSIM values confirm that the 

reconstructed images maintain clarity and structural detail. The low latency further strengthens its potential for real-time clinical deployment. 

6. Future Work 

While the present study has demonstrated the effectiveness of integrating Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) for 

automated liver Steatosis detection using ultrasound imaging, several promising directions remain for future research. 

• First, expanding the dataset to include a wider range of demographic groups, imaging devices, and clinical conditions will enhance the 

robustness and generalizability of the model. Large-scale, multi-institutional datasets could help mitigate bias and improve the system’s 

adaptability to diverse patient populations. 

• Second, incorporating multimodal data—such as laboratory parameters, patient histories, or elastography measurements—could strengthen 

diagnostic accuracy and facilitate more holistic clinical decision-making. Combining image-based and non-image-based features may allow 

for better staging and grading of Seatosis. 

• Third, further optimization of the hybrid architecture could be explored through lightweight model designs, pruning, and quantization 

techniques to support real-time deployment on low-resource medical equipment. Implementing edge-based AI systems or mobile ultrasound 

integration would enable point-of-care diagnosis, particularly in remote or underserved areas. 
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• Additionally, enhancing model interpretability remains an important avenue for clinical adoption. Future work can focus on refining 

explainable AI (XAI) methods, such as attention map visualization or region attribution analysis, to provide clearer perceptions into the 

model’s decision-making process. This would help build trust among clinicians and facilitate transparent clinical validation. 

• Moreover, longitudinal and prospective studies should be conducted to measures the model’s performance in real-world diagnostic 

workflows. Evaluating its clinical impact on early detection, treatment planning, and patient outcomes will help establish its practical value 

and regulatory readiness. 

• Finally, integrating privacy-preserving and federated learning frameworks could be a crucial step toward secure and ethical use of medical 

data. Such frameworks would allow collaborative model drilling across multiple healthcare canter’s without compromising patient 

confidentiality. 

7.  CONCLUSION 

This study presents a comprehensive exploration of a hybrid deep learning framework that incorporates Convolutional Neural Networks (CNNs) and 

Vision Transformers (ViTs) for the robotic detection of liver Steatosis using ultrasound imaging. The proposed architecture effectively captures both 

local structural features and global contextual information, resulting in enhanced diagnostic precision, image clarity, and computational efficiency. By 

incorporating self-supervised pretraining and model compression, the system demonstrates strong adaptability and scalability for real-time clinical 

applications. The results confirm that the hybrid CNN–ViT model delivers superior segmentation accuracy and classification reliability compared to 

conventional single-architecture approaches. Its interpretability and low latency further strengthen its suitability for deployment in practical medical 

settings. As artificial intelligence continues to advance in medical imaging, this research underscores the potential of combining convolutional and 

transformer-based methods within an ethically responsible, explainable, and computationally optimized framework. Future developments will focus on 

addressing uncertainty estimation, cross-domain generalization, and further optimization for lightweight, edge-capable diagnostic systems. Through 

these efforts, the model can evolve into a clinically dependable and globally accessible tool for non-invasive liver disease assessment. 
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WORDBOOK:  

 

AI - Artificial Intelligence  

DL - Deep Learning 

CNNs - Convolutional Neural Networks 

ViTs - Vision Transformers  

CT - Computed Tomography  

MRI  - Magnetic Resonance Imaging  

PDFF - Proton Density Fat Fraction  

AUC -  Area Under the Curve  

IoU - Intersection Over Union 

PSNR - Peak Signal-to-Noise Ratio 

SSIM - Structural Similarity Index Measure 
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