

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Review Paper on Microstructure and Mechanical Properties of Geocement Incorporating Nano Silica and Industrial By-Products

¹M R Nikhil Prasath, ²Dr. A. Vennila

ABSTRACT

Gecement concrete (Geocrete) represents an emerging class of eco-friendly construction materials offering a sustainable alternative to ordinary Portland cement (OPC) concrete. This review paper investigates the influence of nano silica and industrial by-products—particularly foundry sand—on the microstructure and mechanical properties of Geocrete. The incorporation of nano silica enhances polymerization reactions, refines pore structure, and significantly improves compressive and tensile strength. Foundry sand, as a partial replacement for fine aggregates, contributes to sustainable material use while maintaining satisfactory mechanical performance. This review synthesizes findings from various studies on geopolymer technology, nano-material modification, and industrial waste utilization to highlight advancements in microstructural development and mechanical behavior.

Keywords: Geocrete, Nano Silica, Foundry Sand, Industrial By-Products, Microstructure, Mechanical Properties, Sustainability.

1. Main text

The construction industry is one of the largest consumers of natural resources and a major contributor to CO₂ emissions. The global search for sustainable alternatives has driven attention toward geopolymer concrete, or Geocrete, which uses alumino-silicate-based materials activated by alkaline solutions instead of conventional cement. Developed initially by Davidovits [5], geopolymer technology offers significant reductions in embodied energy and greenhouse gas emissions. The performance of Geocrete is strongly influenced by its source materials, activator chemistry, and microstructural refinement. Among these, nano silica has emerged as a crucial additive, improving reactivity and densification of the geopolymer matrix. Additionally, industrial by-products such as foundry sand serve as sustainable aggregate replacements, minimizing environmental impact while maintaining desirable mechanical properties.

e page inside the text box	
	e page inside the text box

 $^{^{}st_l}$ PG Scholar, Kumaraguru College of Technology, Coimbatore , Tamil Nadu ,India .

^{*2} Associate professor, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.

2.3 Section headings

Study on Microstructure and Mechanical Properties of Geocement Incorporating Nano Silica and Industrial By-Products

2.4 General guidelines for the preparation of your text

Avoid hyphenation at the end of a line. Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics. Weights and measures should be expressed in SI units. All non-standard abbreviations or symbols must be defined when first mentioned, or a glossary provided.

2.5 File naming and delivery

Please title your files in this order 'procediaacronym_conferenceacronym_authorslastname'. Submit both the source file and the PDF to the Guest Editor.

Artwork filenames should comply with the syntax "aabbbbbb.ccc", where:

a = artwork component type

b = manuscript reference code

c = standard file extension

Component types:

gr = figure

pl = plate

sc = scheme

fx = fixed graphic

2.6 Footnotes

Footnotes should be avoided if possible. Necessary footnotes should be denoted in the text by consecutive superscript letters¹. The footnotes should be typed single spaced, and in smaller type size (7pt), at the foot of the page in which they are mentioned, and separated from the main text by a one line space extending at the foot of the column. The Els-footnote style is available in the MS Word for the text of the footnote.

Please do not change the margins of the template as this can result in the footnote falling outside printing range.

3. Illustrations

. Role of Nano Silica in Geocrete

Nano silica (SiO₂) acts as a pozzolanic and nucleation agent in geopolymer systems. Its ultra-fine particle size accelerates geopolymerization by providing additional reactive surfaces for alumino-silicate bonding. When incorporated into Geocrete, nano silica enhances polymeric chain formation and improves matrix compactness. Studies report substantial improvements in compressive and flexural strength with nano silica addition due to pore refinement and reduced micro-cracking. Furthermore, nano silica contributes to higher early-age strength and improved durability under aggressive environments. SEM and XRD analyses indicate denser gel structures and reduced porosity in nano silica-modified geopolymer matrices, confirming its effectiveness in improving both microstructure and mechanical performance.

4. Role of Foundry Sand and Other Industrial By-Products

Foundry sand, an industrial by-product generated from metal casting industries, consists mainly of high-quality silica sand coated with residual binders such as bentonite or carbonaceous materials. According to Carnin et al. [3], its physicochemical properties make it a viable candidate for partial replacement of fine aggregates in concrete. Khatib et al. [9] and Salokhe et al. [11] observed that up to 30% replacement of natural sand with foundry sand can maintain satisfactory mechanical performance while improving sustainability. The reuse of foundry sand reduces landfill disposal and the extraction of virgin aggregates. When incorporated in Geocrete, it interacts with alkaline activators to form secondary binding gels, further enhancing mechanical strength and microstructural uniformity. Other industrial by-products, such as fly ash, slag, and red brick waste, have also shown synergistic effects in geopolymer systems by optimizing alumino-silicate ratios and enhancing polymerization kinetics.

_

¹ Footnote text.

5. Microstructural Analysis and Mechanical Properties

Microstructural refinement in geopolymer concrete depends on the balance between reactive alumino-silicate materials and the activator concentration. Nano silica reduces the pore size distribution and refines the interfacial transition zone (ITZ) between binder and aggregates. The combined addition of nano silica and foundry sand leads to denser matrices, which directly correlates with improved compressive, tensile, and flexural strengths. According to IS 516:1959 [6], standard testing of compressive strength reveals up to 25–35% enhancement when nano silica is added at 2–4% by weight of binder. The durability performance, including resistance to acid attack and thermal stability, is also significantly improved due to the dense polymeric network formed during geopolymerization.

Microstructural investigations using SEM and XRD indicate a reduction in unreacted fly ash particles and an increase in the amorphous geopolymer gel phase. Nano silica acts as a seed for gel nucleation, while foundry sand contributes to particle packing and dimensional stability. This synergistic effect enhances both microstructure and macro-performance of the Geocrete, making it a promising alternative for sustainable construction applications.

6. Sustainability and Practical Implications

The use of nano silica and foundry sand in Geocrete promotes sustainable construction by reducing the demand for cement and natural aggregates. By utilizing industrial by-products, the carbon footprint associated with concrete production can be significantly reduced. The integration of these materials aligns with the principles of circular economy and resource efficiency. Moreover, improved durability and strength contribute to longer service life, minimizing maintenance and replacement needs.

All authors are required to complete the Procedia exclusive license transfer agreement before the article can be published, which they can do online. This transfer agreement enables Elsevier to protect the copyrighted material for the authors, but does not relinquish the authors' proprietary rights. The copyright transfer covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microfilm or any other reproductions of similar nature and translations. Authors are responsible for obtaining from the copyright holder, the permission to reproduce any figures for which copyright exists.

Acknowledgements

Acknowledgements and Reference heading should be left justified, bold, with the first letter capitalized but have no numbers. Text below continues as normal.

An example appendix

Authors including an appendix section should do so before References section. Multiple appendices should all have headings in the style used above. They will automatically be ordered A, B, C etc.

Example of a sub-heading within an appendix

There is also the option to include a subheading within the Appendix if you wish.

Conclusion:

This review highlights the critical role of nano silica and foundry sand in enhancing the microstructural and mechanical properties of Geocrete. Nano silica, through its nano-scale activity, refines the geopolymer matrix, increases gel formation, and enhances strength and durability. Foundry sand serves as a sustainable fine aggregate replacement, improving particle packing and contributing to environmental conservation. The synergistic effect of both additives results in dense, high-performance geopolymer concrete with superior mechanical and durability characteristics. Future research should focus on optimizing mix proportions, understanding long-term durability, and developing standard guidelines for large-scale applications.

References

- 1. Aziz Hasan Mahmood, Stephen J. Foster, Arnaud Castel, Effects of mixing duration on engineering properties of geopolymer concrete. Cement and Concrete Research, 303 (2021) 124449.
- 2. B. Singh, Ishwarya G, M. Gupta, S.K. Bhattacharyya, Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85 (2015) 78–90.
- 3. Carnin R. L. P. et al., Use of an integrated approach to characterize the physicochemical properties of foundry green sands. Thermochimica Acta 543 (2012) 150–155.
- 4. M. S. Shetty, Concrete Technology: Theory and Practices (Revised Edition).
- 5. Davidovits J., Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis 37 (1991) 1633-56.