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ABSTRACT:

Ultra-sound (US)is one of the most important imaging technique used in medicine for the diagnosis of internal abnormalities. Due to some phenomenon; noise
signals are introduced which is called as speckle noise. Introduction of noise deteriorates the quality of images by suppressing the anatomical information. This
information is useful for correct interpretation of US images. Hence it required to remove speckle noise from US images. In this research paper, reduction of
speckle noise from US image is done. For this purpose; Spatio-Spectral Total Variation (SSTV) technique is used. To evaluate the performance of de-noising
technique three most important parameters have been calculated viz. Power Signal to Noise Ratio (PSNR), Signal to Noise Ratio (SNR) and Structural Similarity
Index Measure (SSIM).
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Introduction:

US is one of the most important medical images which is used to diagnose any abnormality or disease in the internal body[1-3]. To take US image;
imaging technique is used which uses radio frequency called ultrasound frequency signal[4]. Due to some interference of the signal; noise signal is
introduced which appears as patches in the US images[5-6]. This noise signals are referred as speckle noise[7]. It is multiplicative in nature; i. e. noise
signals are direct multiplied to the pixel values of the original images[8-10]. Its Probability Density Function (PDF) follows gamma distribution[11].
Introduction of noise deteriorates the quality of US images; as a result image information is affected; due to which false interpretation may be done by
the radiologists[7]. Hence it is essential to remove speckle noise from USimages[12-15]. However; it is almost impossible to remove noise from any
images completely but it should be reduce to such an extent so that diagnosis purpose must be done properly[16-18]. Various techniques have been
proposed to reduce speckle from images; in which SSTV method give better results among many traditional techniques[5]. Fig. 1.1 illustrates some
noise free US images taken from the public database.

@ (b) (c)
Fig. 1.1 CT images

If some amount of speckle is introduced in these images than their quality are deteriorate.

Methodology:

In this section; US image de-noising using SSTV method is explained[19-20].

Below is the description of SSTV technique.
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Let us consider an image is corrupted by speckle noise. The image acquisition model can be expressed as:
y = X+s

where,x and are the original and noisy image respectively and s is the speckle noise.

The SSTV model exploits both spatial and spectral correlation which is given as:

SSTV(x) = [|dwxd]|x + ||dvxd]|2

whered;, andd,are the horizontal and vertical 2D finite differencing operator andd is a 1D finite differencing operator.

Using SSTV model, de-noising problem can be expressed as:

min ,
X.N ” y_X_nsp ”F +ﬂ“ ” nsp ”1 +l'l SSTV (X)
1 Hsp
where, A and H are regularization parameters.

From eq. (3.29)
g=y-X-ng

From eq. (3.32) it is clear that the effect of Gaussian noise can be minimized by minimizing the Frobenius norm of

y—X—n

De-noising algorithm:
From eq. (3.30) and eg. (3.31), de-noising problem can be given as:

min ,
|y =x=ng [[z +2[Ing, ||, +K[[d,xd [, +I/d, xd ||
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It is a high dimensional non differentiable optimization problem in x and ng, Since variable x is non separable hance it can be rewritten into a

constrained formulation:

Iy =x=ng Il +21Ing Il +ill pll +2 /gl
p:dﬁdmdq:dﬁd

.(6)

where
The constrained optimization problem can be expressed in an unconstrained optimization problem using quadratic penalty functions as given
below:
minimize ) 5 )
0., X Iy =x=ng Il +21Ing [l +Rll Pl +2 N1l +v Il p—d, Xd [Iz +v[lg—d,Xd ||
1 L 1 Sp

.(7D
where \ is the regularization parameter.

(p.a,x,ny)

Eq. (3.35) has 4 variables but now they are separable.

B B
The above problem can be rewritten using Bregman variables Land 2 as given below:
minimize

o.qxn VXN I +21ng ll +pll pll +2 [ Qll, +v]l p—dyxd =By Jlc +v]ig—d,xd - B, i
1 M M g

...(3.36)

The above problem can be split into four easy sub problems.

“min )
P1: 0 wil pll, +vi p—dxd-B, ||z

(8
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min
P2: q H||Q||1 +V|| p_ded_Bz ”122 )
min ,
P3: ” y_X_nsp ”F +ﬂ“”nsp ”1 --(10)
sp
. min 2 2 2
P4: X ” y_x_nsp “F +V” p_dth - B1 ”F +V” q_ded - Bz ”F (1)
argmin
Iy = +a [l 1,
The sub problems P1 P2, P3 are of the form , which can be solved by using a soft thresholding.
X = softTh(y, «) =sgn(y) x max{0,l y| —%} (12)

Sub problem P4 is a least square problem which can be solved using iterative least square solvers. Bergman variables B; and B, can be updated in
each iteration as follows:

B/ =B +d,xd —p S

B, =Bj +d,xd —q (9
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Fig. 3.1 flow diagram of US image de-noising



International Journal of Research Publication and Reviews, Vol 6, Issue 10, pp 2920-2926 October, 2025 2923

In this technique; first of all US images are taken from database. This image is noise free. Now some amount of speckle is added in the noise free
image; as a result noisy image is obtained. Now SSTV technique is applied which removes the speckle noise from the US images and de-noised image
is obtained. To know the efficacy of SSTV method for de-speckling the US images; some performance evaluation parameters must be calculated. In
this paper three most important parameters have been taken viz. PSNR and SSIM.

Results & Discussion:

This section contains the results of proposed technique. Results are illustrated in the form of images, calculated parameters values and graphs. Three
important parameters have been calculated viz. PSNRand SSIM. Fig 4(a) to 6(a) are noise free images, fig. 4(b) to 6(b) are noisy images and 4(c) to
6(c) are de-noised images of CT image 1, 2 and 3 respectively.

Fig. 4.1 (a) Test image CT 1 (b) noisy image with 62, ;y=0.01 (c) de-noised image

Fig. 4.2 (a) Test image CT 1 (b) noisy image with g,y =0.5 (c) de-noised image

Table 4.1 PSNR values for US images for different values of speckle noise

Test SSNR AWGN Noise Variance (6%,¢x)

Image 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.5
Noisy PSNR 32.702 | 32101 | 32112 | 31.651 | 31.342 | 31.004 | 30.221 | 29.743 | 29.102

st Denoised PSNR | 37.315 | 36.812 | 36.417 | 36.128 | 35973 | 35611 | 35312 | 34.918 | 34.541
Noisy PSNR 30.735 | 30.321 | 30.065 | 29.243 | 28524 | 28010 | 27.338 | 26.614 | 26.413

e Denoised PSNR | 35.291 | 34795 | 35.112 | 33.922 | 33.631 | 33.027 | 33319 | 32715 | 32.483
Noisy PSNR 33.763 | 33.146 | 33274 | 32536 | 32.323 | 32112 | 31.247 | 30.866 | 30.091

us3 Denoised

PSNR 36.976 | 36.423 35.778 34.817 34.657 34.332 34.012 33.862 33.531
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Table 4.2 SSIM values for US test images for different values of AWGN

AWGN Noise Variance (65y¢x)

Test
SSIM
Image 001 | 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.5
Noisy SSIM 0.860 | 0.819 0.782 0.795 0.745 0.731 0.729 0.715 0.778
US1
De-noised SSIM 0.976 | 0.955 0.947 0.926 0.974 0.906 0.907 0.893 0.844
Noisy SSIM 0.756 | 0.674 0.629 0.583 0.560 0.546 0.526 0.525 0.506
Us 2
De-noised SSIM 0.940 | 0.911 0.889 0.815 0.823 0.841 0.826 0.818 0.811
Noisy SSIM 0.743 | 0.683 0.611 0.587 0.562 0.544 0.524 0.525 0.514
uUsS3
De-noised SSIM 0.952 | 0.931 0.923 0.891 0.854 0.853 0.8321 0.825 0.834
Plots between noise variance and PSNR and SSIM are plotted for US1 image which are illustrated in fig. 4 and 6 respectively.
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Fig. 4.5 SSIM values for noisy and de-noised test image US 1
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From these two graphs it is clear that SSTV technique gives higher PSNR and SSIM values. This technique reduces not only effect of speckle noise but
retains image information also.

Conclusion:

From the abovediscussion and performance evaluation parameters it is clear that; SSTV method suppresses speckle from US images. It also retains

image information which is very important feature to diagnose diseases or internal body structures. US images are very useful in medicine for the study

of internal organs. Introduction of noise may affect the diagnosis process done by the radiologists. Any misinterpretation may mislead the doctors and

further treatments. This technique can be used to de-noise other medical images also but it is important to study about those imaging systems and noise
introduced in those images; then only image de-noising may be done by the proposed technique.
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