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ABSTRACT: 

Since the last century, the postulational method and an abstract point of view have played a vital role in the development of modern mathematics. The experience 

gained from the earlier concrete studies of analysis point to the importance of passage to the limit. The basis of this operation is the notion of distance between 

any two points of the line or the complex plane. The algebraic properties of underlying sets often play no role in the development of analysis; this situation 

naturally leads to the study of metric spaces. Some key types of metric spaces are Euclidean Metric Spaces, Normed Metric Spaces and Discrete Metric Space etc. 

The abstraction not only simplifies and elucidates mathematical ideas that recur in different guises, but also helps economize the intellectual effort involved in 

learning them. However, such an abstract approach is likely to overlook the special features of particular mathematical developments, especially those not taken 

into account while forming the larger picture. Hence, the study of particular mathematical developments is hard to overemphasize. 
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Introduction and Concept: 

The metric space is the transitional stage between real line R and the topological space. An essential pre-requisite for metric is clear understanding of 

basic topology on R i.e. the notion of open sets, closed sets, limit points, convergence and continuity in R metric Space, the idea is to carry these and 

other related concepts from real line to a general set. 

If I wish to travel from Araria to Patna, then I may be interested in one or more of the following numbers.. 

(1) The distance, in kilometers, from Araria to Patna by road. 

(2) The time, in minutes, of the shortest journey from Araria to Patna by rail. 

(3) The cost of the cheapest journey from Araria to Patna by rail. 

   

Each of these numbers is of interest to someone and none of them is easily obtained from another. However, they do have certain properties in common 

which we try to isolate in the following definition. 

   

Metric spaces can be thought of as very basic spaces, with only a few axioms, where the ideas of convergence and continuity exist. The fundamental 

ingredient that is needed to make these concepts rigorous is that of a distance, also called a metric, which is a measure of how close elements are to 

each other. 

Definition: 

 Let X be a non empty set and d be a real valued function on X × X i.e. d: X × X → R a function with the following properties:- 

 (i) d(x, y) ≥ 0 for all x, y ∈ X. 

 (ii) Null condition 

  d(x, y) = 0 if and only if x = y. 

 (iii)  Symmetric condition 

   (x, y) = d(y, x) for all x, y ∈ X. 

 (iv) Triangular inequality 

  d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. (This is called the triangle inequality after the result in Euclidean geometry that the 

sum of the lengths of two sides of a triangle is at least as great as the length of the third side.) 

Then we say that d is a metric on X and that (X, d) is a metric space. 
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Definition:  

Let V be a vector space over F (with F = R or F = C) and N: V → R a map such that, writing N(u) = ||u||, the following results hold. 

(i) ||u|| ≥ 0 for all u ∈ V  

(ii) If ||u|| = 0, then u = 0 

(iii) If λ ∈ F and u ∈ V, then ||λu || = |λ| ||u|| 

(iv) [Triangle law.] If u, v ∈ V, then ||u|| + ||v ||≥ ||u + v|| 

Then we call || ||  a norm and say that (V, ||  || ) is a Normed Metric Space. 

Discrete metric space: 

 We take any set X and on it the so-called discrete metric for X, defined by 

d(x, x) = 0,    

d(x, y) = 1  (x≠ y) 

This space (x, d) is called a discrete metric space. This is useful to explain in finer point of theory. 

 

Examples- 

Real line R- This is the set of all real numbers, taken with the 

usual metric defined by 

 
   d(x, y) = | x - y| where x, y ∈  R 

 
Then d is called usual metric. This real line metric space is model for generalization to metric space. 

 
Example 

Let R2 be set of ordered pairs of real numbers and we define the following functions  

Let x =( x1, x2)  ∈  R2  and y = (y1, y2) ∈  R2   

Define 

A- d1 (x, y) = | x1- y1| +| x2 – y2| 

B- d2 (x, y) = √|𝑥1 − 𝑦1|2 + |𝑥2 − 𝑦2|2 

C- d∞ (x, y) = max. {| x1- y1| , | x2 – y2|} 

Then each of d1, d2, d∞ is a metric on plane R2-The metric space R2 (the natural distance between two points in a plane) called the Euclidean plane. 

 

Proof:  

A:  d1 (x,y) is a metric. 
Now we verify condition of metric space one by one 

Let x,y, z ∈  R2   

1- Symmetric condition 

d1 (x, y) = | x1- y1| +| x2 – y2| 

 = | y1- x1| +| y2 – x2| 
  = d1 (y, x) 

2- Null condition 
d1 (x, y) = 0 

⇔ | x1- y1| +| x2 – y2| = 0 

⇔ | x1- y1| = 0 and | x2 – y2| = 0 

⇔  x1= y1  and  x2 = y2 

⇔(x1, x2) = (y1, y2) 

⇔ x=y 

3- Triangular inequality 

d1 (x, y) = | x1- y1| +| x2 – y2| 

since | x1- y1|  ≤ | x1- z1| +| z1 – y1| 

and | x2- y2|  ≤ | x2- z2| +| z2 – y2| 

by the Triangular inequality or R with usual metric 

Therefore d1 (x, y) ≤ | x1- z1| +| z1 – y1| +| x2- z2| +| z2 – y2| 

                      = d1 (x, z) + d1 (z, y) 

Thus the all condition of metric space holds. Hence d1 (x, y) is a metric space. 
 

B- d2 (x, y) is a metric. 

1- Symmetric condition 

d2 (x, y) = √|𝑥1 − 𝑦1|2 + |𝑥2 − 𝑦2|2 

 =√|𝑦1 − 𝑥1|2 + |𝑦2 − 𝑥2|2 

By the symmetric condition on R with usual metric 
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d2 (x, y) = d2 (y, x) 

2- Null condition 

d2 (x, y) = 0 

⇔√|𝑥1 − 𝑦1|2 + |𝑥2 − 𝑦2|2 = 0 
⇔| x1- y1|

2 +| x2 – y2|
2  = 0 

⇔| x1- y1|
2 = 0  and | x2 – y2|

2  = 0 
⇔ x1= y1  and  x2 = y2 
⇔(x1, x2) = (y1, y2) 

⇔  x= y 
3- Triangular inequality 

Now we have to show that  
d2 (x, y) ≤ d2 (x, z)+ d2 (z, y) 
We take x1- z1= a1, x2  - z2= a2, z1 - y1= b1 , z2 - y2= b2 

Then above condition can be written as 

d2 (x, y) = √|𝑥1 − 𝑦1|2 + |𝑥2 − 𝑦2|2 

 =√|𝑎1 + 𝑏1|2 + |𝑎2 + 𝑏2|2 

d2 (x, z) = √|𝑥1 − 𝑧1|2 + |𝑥2 − 𝑧2|2  =√𝑎1
2 + 𝑎2

2 

d2 (z, y) = √|𝑧1 − 𝑦1|2 + |𝑧2 − 𝑦2|2  =√𝑏1
2 + 𝑏2

2
 

Thus in assume form we have to show that √|𝑎1 + 𝑏1|2 + |𝑎2 + 𝑏2|2  ≤ √𝑎1
2 + 𝑎2

2 + √𝑏1
2 + 𝑏2

2
 

On squaring both side, we get  

|𝑎1 + 𝑏1|2 + |𝑎2 + 𝑏2|2 ≤ 𝑎1
2 + 𝑎2

2 +𝑏1
2 + 𝑏2

2
     +2√𝑎1

2 + 𝑎2
2  × √𝑏1

2 + 𝑏2
2
 

⇒𝑎1
2 +𝑏1

2+ 2a1b1 + 𝑎2
2 +𝑏2

2 + 2a2b2 ≤  𝑎1
2 + 𝑎2

2+𝑏1
2 + 𝑏2

2
 +√𝑎1

2 + 𝑎2
2 × √𝑏1

2 + 𝑏2
2
 

a1b1+ a2b2≤  √𝑎1
2 + 𝑎2

2 × √𝑏1
2 + 𝑏2

2
 

 

again squaring on both side 

 

(a1b1+ a2b2)2 ≤ (𝑎1
2 + 𝑎2

2) ×(𝑏1
2 + 𝑏2

2) 

⇒a1 2 b1 2+ a2 2 b2 2 + 2 a1b1 a2b2≤ a1 2 b1 2+ a2 2 b2 2+ a1 2 b2 2+ a2 2 b1 2 

⇒  0≤  a1 
2 b2 

2+ a2 
2 b1 

2 -2 a1b1 a2b2 

=  (a1b2 - a2b1)2 

This is true because whole square is always positive. 

Thus the all condition of metric space holds. Hence d2 (x, y) is a metric space. 
 

C- d∞ (x, y) is metric. 

We verify all condition one by one. 

Let x, y, z ∈ R2 

1- Symmetric condition 
d∞ (x, y) = max. {| x1- y1| , | x2 – y2|} 

   = max. {| y1- x1| , | y2 – x2|} 

    = d∞ (y, x) 
2- Null condition 

     d∞ (x, y) = max. {| x1- y1|, | x2 – y2|} = 0 

 ⇔ | x1- y1| = 0 and | x2 – y2| = 0 

 ⇔ (x1, x2) = (y1, y2) 

⇔ x = y 
3-Triangular inequality 

  Since | x1- y1| ≤  | x1- z1|   + | z1- y1|   
  ≤  d∞ (x, z) + d∞ (z, y) 

   And | x2- y2| ≤  | x2- z2|   + | z2- y2|   

  ≤  d∞ (x, z) + d∞ (z, y) By triangular in R 

Max. {| x1- y1|, | x2 – y2|}≤  d∞ (x, z) + d∞ (z, y)  

 d∞ (x, y) ≤  d∞ (x, z) + d∞ (z, y) 

Thus the all condition of metric space holds. Hence d∞ (x, y) is a metric space. 

  
Euclidean Metric Space: 

 

Euclidean plane is obtained if we take the set of ordered pairs of real numbers, written x = (ξ1 ,ξ2), and  y = (η1,η2), etc., and the Euclidean metric 
defined by 

 

d(x, y) = √(𝜉1 − 𝜂1)2 + (𝜉2 − 𝜂2)2 

 
Another metric space is obtained if we choose the same set as before but another metric d1 defined by 

 

d(x, y) = |(𝜉1 − 𝜂1) + (𝜉2 − 𝜂2)| 
 
Sequence metric space: 

 

Now we define the following set 
S = {x = (xk): (xk) is a sequence of real number or complex number} 
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l∞ = {x = (xk): (xk) is a bounded sequence of real number or complex number} 

c = {x = (xk): (xk) is a convergent sequence of real number or complex number} 

c0 = {x = (xk): (xk) is a null sequence of real number or complex number, i.e. xk → 0 as k→ ∞} 

Here it is clear that 

c0 ⊂ c ⊂ l∞ ⊂ S 

On c0, c and l∞, we define the metric 

d∞ (x, y) = Sup
𝑗≥𝑛

|𝑥𝑗 − 𝑦𝑗| 

Where d∞ is a metric on c0, c and l∞ and can be proved in the same way as example A, B and C. c0 and c are relatively metric sub space of 𝑙∞. 

Conclusion: 

In many branches of mathematics, it is convenient to have available a notion of distance between elements of an abstract set. For example, the proofs of 

some of the theorems in real analysis or analytic function theory depend only on a few properties of the distance between points and not on the fact that 

the points are in R or C. When these properties of distance are abstracted, they lead to the concept of a metric space. The notion of distance between 

points of an abstract set leads naturally to the discussion of convergence of sequences and Cauchy sequences in the set. 

   
These are fundamental in functional analysis because they play a role similar to that of the real line R in calculus. In fact, they generalize R and have 

been created in order to provide a basis for a unified treatment of important problems from various branches of analysis. 
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