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ABSTRACT

Now-a-days Traffic congestion is one of the most pressing problems in modern cities, causing delays, fuel wastage, and environmental pollution. Conventional
traffic monitoring systems often depend on manual observation or sensor-driven methods, which generally suffer from limited accuracy and flexibility. With recent
progress in deep learning, more effective solutions have emerged for real-time vehicle detection, classification, and traffic control. This study explores use of
advanced deep learning architecture and Convolutional Neural Networks (CNNs), YOLO, and Faster R-CNN—for vehicle image classification and their potential
integration into intelligent traffic management and congestion reduction systems.. The methodology includes dataset collection, preprocessing, model selection,
training, and real-time deployment for adaptive traffic signal control. Experimental insights suggest that deep learning can significantly improve classification
accuracy and support congestion reduction strategies, especially when combined with smart traffic signal systems.
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1. Introduction

Urban traffic congestion is a global concern, particularly in developing countries with rapidly increasing vehicle populations. Traditional systems such
as inductive loop sensors, RFID, and manual monitoring are not effective for managing constantly changing traffic conditions. Deep learning—based
computer vision provides new ways to detect, classify, and make intelligent decisions about vehicles in real time

This study focuses on applying deep learning techniques for vehicle image classification, with the ultimate goal of reducing congestion through adaptive
traffic control.

Problem Statement:
Traffic congestion occurs due to inefficient traffic signal management and lack of vehicle-specific classification.
Need for Research:
e Real-time vehicle classification for smart traffic signals.
e Automation to replace error-prone manual monitoring.
e  Application of advanced deep learning models (CNN, YOLO, Faster R-CNN).
Objectives:
1.  Study deep learning methods for vehicle classification.
2. Develop a classification model for cars, buses, trucks, and motorcycles.
3. Integrate classification results with traffic signal decongestion strategies.

Hypothesis:
If vehicle classification using deep learning is implemented effectively, traffic signals can be optimized dynamically, reducing congestion and improving
traffic flow.
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2. Literature Review

e  Traditional Approaches: Background subtraction, edge detection, and SVM classifiers. Limitation: poor accuracy in varied lighting/weather.

®  Deep Learning Approaches: CNN models achieve high accuracy for classification tasks. Object detection frameworks like YOLO (You
Only Look Once), SSD, and Faster R-CNN balance speed and accuracy.

e  Transfer Learning: Models like ResNet, VGG16, and MobileNet have been used to improve performance on small datasets.

Comparative Analysis:

Method Pros Cons

Traditional (SVM, Edge Detection) Simple, low-cost Low accuracy, sensitive to environment
CNN Classification High accuracy Requires large dataset

YOLO Fast, real-time detection Slightly less accurate

Faster R-CNN Very accurate Slower for real-time use

Research Gap:
e  Most works focus only on detection, not on traffic decongestion control.

®  Lack of datasets covering Indian traffic conditions.

3. Research Methodology
3.1 Research Design

experimental methodology was utilized to analyze classification performance and real-time deployment efficiency.

Performance Comparison of Object Detectors

Table 1 presents a comparison of four object detection algorithms-—Haar Cascade, SSD, YOLOv3, and Mask
R-CNN—based on their processing time and vehicle detection accuracy across three videos from the

GRAM dataset: M-30, M-30-HD, and Urban1.

Detector Metric M-30 M-30-HD Urban1

Haar Cascade Time (s) 0.08-0.13 0,30-0.44 0.02-0.06
Accuracy 43% 75% 40%
Time (s) 1114 2.6-56
Accuracy 70% 69%
Time {s) 1.8 1.0-1.8
Accuracy 86%

Mask R-CNN Time (s) 4-3 24-3(

Accuracy

Data Collection
. Public Datasets:

O UA-DETRAC: Provides 140,000 frames with vehicle bounding box annotations under varying conditions.
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O  MIO-TCD: Includes over 600,000 vehicle images across 11 categories (cars, trucks, buses, motorcycles, etc.).

o  KITTI Vision Benchmark: Offers real-world urban driving data with images, LiDAR, and GPS, useful for traffic-related
Al research.

e  Local Traffic Data:
o Surveillance video collected from urban intersections using closed-circuit cameras.
o  Focused on heterogeneous traffic environments (e.g., two-wheelers, auto-rickshaws, buses, pedestrians intermingling with
vehicles), which better reflects Indian traffic conditions.

3.2 Data Preprocessing

®  Resizing & Normalization: Ensures input consistency and model stability.

e  Data Augmentation: Random noise, Gaussian blur, and motion blur (to simulate moving vehicles) in addition to rotation, flipping,
and brightness adjustments.

e  Annotation: Bounding boxes labeled for cars, trucks, buses, two-wheelers, and non-motorized vehicles using annotation tools like
Labellmg.

e  Balancing Datasets: Oversampling underrepresented classes (e.g., buses) to avoid class imbalance.
3.3 Preprocessing

®  Resizing, normalization, and augmentation.

e Annotation for bounding boxes (YOLO/Faster R-CNN).
3.4 Model Development

®  CNN (Baseline Model):

O  The model is built with three convolutional layers using ReLU activation, along with max-pooling and fully connected
layers that perform the classification.

o  Used as a benchmark for performance comparison.
®  YOLOV8 (Real-Time Detection):
o  Grid-based detection approach.
o  Capable of detecting multiple vehicles in a single frame with bounding box regression and classification.
o  Optimized for inference speed to meet real-time constraints.
e  Faster R-CNN (High Precision):
O An RPN is utilized to produce candidate regions likely to contain objects.
o  Stronger accuracy for small or occluded vehicles.

o  Used in controlled scenarios where accuracy outweighs speed.
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3.5 Training & Evaluation

®  Loss function: Cross-Entropy.
®  Optimizer: Adam/SGD.

(] Metrics: Accuracy, Precision, Recall, F1-score, mAP.
3.6 Integration with Traffic Control

®  (lassified results — dynamic adjustment of green/red light timing.
e  Prioritization for buses, emergency vehicles. Evaluation Metrics

The boxes drawn by the vehicle detection model were compared with the actual labeled boxes (ground-truth data) to find out which model gave the most
accurate results. The findings from this step are important because they affect all the later stages in the system.

The main performance measure, called Correct Detections, shows how well the model can correctly identify vehicles in each frame. This is calculated
by checking how much the predicted box overlaps with the real box. The overlap is measured using something called the Jaccard Index or Intersection
over Union (loU), which is given by the formula:

GNP

TGP =T6ur

Another important measure is Computation Time, which adds up how long it takes to process all the video frames. This helps decide which detector is
best suited for different uses — for example, whether it’s needed for real-time traffic monitoring, field analysis, or offline research.

Accuracy was also checked using this formula:
TP+TN

Accuracy = TP+ TN + FP ¥ FN
where:
® TP (True Positive): Cases correctly detected as part of a class.
® TN (True Negative): Cases correctly detected as not part of a class.
® [P (False Positive): Cases wrongly detected as part of a class.
® N (False Negative): Cases that belong to a class but were missed.

All the tests were carried out on a computer running Ubuntu 18.04, with an AMD Ryzen Threadripper 1920x processor (12 cores), an NVIDIA Titan
RTX graphics card (24 GB), and 64 GB of DDR4 RAM.
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4. Expected Outcomes

e  Performance Goals:
o  Vehicle classification accuracy of >90%.
O  Real-time detection at >30 FPS on surveillance video feeds.
e  Traffic Impact:
O  Reduced average waiting time by 15-25% at intersections.
O  Reduction in fuel wastage and CO: emissions through optimized signal timing.
o  Enhanced public transport prioritization by dynamically recognizing buses and allocating faster signal clearance.
e  System Contribution:
o  Prototype Intelligent Traffic Management System (ITMS) integrating Al-based classification with adaptive signals.

O  Scalable framework applicable to smart city infrastructure and future autonomous vehicle ecosystems.

5. Applications

e  Traffic Decongestion: Smarter signal timing.
e  Urban Planning: Vehicle distribution insights.
e  Law Enforcement: Detecting violations.

e  Environment: Lower emissions due to reduced idling.

6. Challenges & Future Scope

Challenges:
®  Occlusion of vehicles in dense traffic.
e  Limited processing power in edge devices.
®  Varying lighting and weather conditions.
Future Scope:
e  Federated learning for privacy-preserving data sharing.
(] Reinforcement learning for adaptive traffic signal control.

e Integration with 5G-enabled 10T systems for smart cities.

7. Conclusion

Deep learning provides advanced capabilities for vehicle image classification and real-time traffic management. By incorporating models such as
Convolutional Neural Networks (CNNs) and YOLO into intelligent traffic systems, cities can effectively minimize congestion, enhance road safety,
and promote sustainable urban transportation.

An initial comparison of various object detection algorithms, conducted on the GRAM Road Traffic Monitoring video dataset, demonstrated that
YOLOV3 is well-suited for real-time vehicle detection, achieving an accuracy rate exceeding 80%.

For traffic state categorization, two methods were formulated and evaluated using the TrafficDB video dataset. The first method leveraged conventional
computer vision methods plus machine learning classifiers, and the second used deep learning models that could automatically learn features while
training on labeled data.In the traditional setup, the Random Forest classifier achieved an accuracy of 84%, whereas the deep learning-based model
attained an accuracy above 98% under the same experimental conditions—representing a significant 14% improvement in performance.
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