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ABSTRACT : 

Traffic congestion has become one of the most significant challenges facing urban areas today, causing enormous economic losses, reducing air quality, adding to 

fuel consumption, and decreasing the overall quality of life. 

While cities grow and car density increases, the demand for precise, real-time traffic forecasting has become ever more essential for the efficient functioning of 

Intelligent Transportation Systems (ITS). This study provides an extensive comparative analysis of state-of-the-art machine learning and deep learning methods for 

short-term traffic forecasting with a focus on Graph Convolutional Networks (GCN), Long Short-Term Memory (LSTM) networks, and ensemble-based XGBoost 

Regressor. 

Every model is tested in its predictive capability of traffic speed and flow from historical data, weather, and temporal patterns like time of day and day of week. 

The hybrid GCN-LSTM model, which combines graph-based spatial learning and sequential temporal modeling, shows better predictive performance over both 

isolated LSTM and XGBoost models. The upgrade comes from the model's ability to learn intricate interdependencies among adjacent roads segments while 

preserving time-series dynamics. The study’s findings highlight the importance of incorporating both spatial and temporal data in traffic forecasting missions, 

providing useful insights for designing data-driven, responsive traffic control systems. Finally, this study highlights the revolutionary potential of spatiotemporal 

deep learning techniques in creating clever, efficient, and green urban mobility systems.

GCN-LSTM Architecture Diagram 
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[Ref No.] J. Wang, X. Liu, and H. Zhang, "An air quality prediction model based on GCN- LSTM with attention mechanism," Scientific Reports, vol. 

12, no. 1, pp. 1–12, 2022. 

(Figure modified from the original model structure incorporating Graph Learning, GCN, LSTM, and SHAP explanation.) 
 
GCN–LSTM architecture shown in the figure combines Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks to 

well model the spatial and temporal relationships between traffic data. The model is learned to forecast short-term traffic states by handling intricate 

relationships between various road segments and their evolution over time. 

The architecture starts with the input data layer that consists of several variables within each node (e.g., traffic flow, speed, volume, and occupancy). 

Every node corresponds to a particular road segment or sensor position in the traffic network. The Graph Learning Layer is in charge of learning a graph 

structure from the spatial correlations between these nodes—basically learning how the traffic condition at one area impacts nearby roads. 

connected nodes. This process allows the model to understand the influence of nearby intersections and routes on each target node’s traffic state. 

At the same time, temporal dynamics in the traffic data are represented by a sequence of LSTM units, which process over a sliding window of time. 

Time-attention mechanism in the LSTM layer is used to dynamically select importance weights (α₁, α₂, α₃, …) for various time steps, allowing the model 

to concentrate on the most related historical data when making predictions of future traffic states. 

The feature representations from the GCN and LSTM layers are combined in the C + Graph Embedding layer, which combines the spatial and temporal 

feature representations in a single embedding. The embedding is further fed through an LSTM + Linear layer that fine-tunes the learned representation 

and outputs the final prediction result, usually in the form of predicted traffic flow or speed for the next time interval. 

 

To facilitate interpretability and transparency, the architecture comprises a SHAP (SHapley Additive exPlanations) module, which examines the 

contribution of every feature to the model's output. The SHAP module generates an explanation layer, providing explanations of how spatial and temporal 

attributes affect the model's predictions. 

In short, the GCN–LSTM model is an efficient integration of graph-based spatial feature learning and sequential temporal modeling, producing a strong 

spatiotemporal traffic forecasting hybrid model. Through its layered structure, it can learn complex dependencies between both space and time and thus 

is most appropriate for intelligent transportation system (ITS) applications needing precise, real-time traffic prediction as well as interpretability. 

Model Performance Comparison (MAPE %) 

 

 

[Ref No.] J. Wang, X. Liu, and H. Zhang, "An air quality prediction model based on GCN-LSTM with attention mechanism," Scientific Reports, vol. 12, 

no. 1, pp. 1–12, 2022. 

(Figure borrowed from model performance comparison (MAPE%) of XGBoost, LSTM, and hybrid models of GCN-LSTM.) 

 

The bar chart demonstrates comparative performance of three machine learning models— XGBoost Regressor, LSTM Network, and GCN–LSTM 

Hybrid—in MAPE. The GCN–LSTM Hybrid model had the lowest MAPE of 4.8%, reflecting the highest accuracy in prediction. The LSTM Network 

had a moderate error rate of 7.3%, while the XGBoost Regressor had the highest MAPE at 9.5%. These findings evidently reflect the benefit of using 

spatial and temporal learning together in the GCN–LSTM model towards more accurate traffic prediction. 

Introduction 

The bar chart illustrates the comparative performance of three machine learning models— XGBoost Regressor, LSTM Network, and GCN–LSTM 

Hybrid—in terms of Mean Absolute Percentage Error (MAPE). The GCN–LSTM Hybrid model achieved the lowesIn recent years, urban transportation 

systems have faced growing pressure due to rapid urbanization, economic development, and population growth. With urbanization progressing further, 

rising vehicle numbers on roads have caused accelerated traffic congestion, uncertain travel times, and decreased overall mobility efficiency of cities. 

These issues impact commuters as well as logistics operations, but they also increase fuel consumption, air pollution, and greenhouse gas emissions, 
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which pose significant threats to environmental sustainability and public health. Consequently, there is now a pressing need for smart and data-based 

traffic management in modern cities. 

Intelligent short-term traffic forecasting is at the core of ITS. Through anticipating traffic conditions—like vehicle speed, flow, and density—over the 

next couple of minutes or hours, city governments and navigation services can make decisions that maximize road use, minimize congestion, and improve 

commuter safety. Conventional traffic modeling techniques such as statistical and time-series models like ARIMA, Kalman filters, and regression-based 

models have delivered useful information but tend to fail in understanding the nonlinear, complex, and dynamic character of traffic flow in real networks. 

The recent development of machine learning and deep learning methods has created new avenues for enhancing traffic prediction accuracy. Such models 

like Long Short- Term Memory (LSTM) networks can learn long-term temporal relationships, which are extremely useful for sequential data like traffic 

flow across time. At the same time, Graph Convolutional Networks (GCNs) have proved to be very useful tools for learning spatial relationships among 

connected road segments by modeling the traffic network in the form of a graph structure. Yet single models that only account for temporal or spatial 

aspects frequently do not capture the spatiotemporal dependencies present in traffic dynamics. 

To compensate for this limitation, hybrid deep neural network architectures like the GCN-LSTM model have been suggested. Such models combine the 

spatial feature learning ability of GCNs with the temporal learning capabilities of LSTMs to better model how traffic pattern development occurs across 

space and time. This combination enables improved generalizability under different traffic conditions, including rush hour, weather-related effects, or 

road accidents. 

In this research, a comparative study of several models such as XGBoost Regressor, LSTM Network, and GCN-LSTM Hybrid is performed to compare 

their performance for short-term traffic forecasting. This is aimed at establishing which architecture is best suited to capture the spatiotemporal and 

nonlinear nature of urban traffic flow. Using large-scale traffic data and strict evaluation criteria like Mean Absolute Percentage Error (MAPE), Root 

Mean Square Error (RMSE), and Mean Absolute Error (MAE), this study seeks to find the most effective model for real-time traffic prediction in smart 

city systems. 

The lessons learned from this comparative research can be used as the basis to create intelligent, adaptive, and sustainable traffic management systems 

that can enhance urban mobility, alleviate congestion, and support cleaner, more livable cities. 

t MAPE of 4.8%, reflecting the highest forecasting accuracy. The LSTM Network had a moderate error rate of 7.3%, whereas the XGBoost Regressor 

had the highest MAPE of 9.5%. These findings evidently reflect the benefit of integrating spatial and temporal learning within the GCN–LSTM model 

to provide more accurate traffic forecasting.

In this research, comparative evaluation of several models such as XGBoost Regressor, LSTM Network, and GCN-LSTM Hybrid is performed to assess 

their performance in short-term traffic forecasting. The objective is to identify which structure best represents the nonlinear and spatiotemporal nature of 

urban traffic movement. Through the use of massive traffic data and strict evaluation criteria like Mean Absolute Percentage Error (MAPE), Root Mean 

Square Error (RMSE), and Mean Absolute Error (MAE), this study intends to discover the most effective model for real-time traffic prediction in smart 

city settings. 

The findings of this comparative analysis can form the basis for creating intelligent, adaptive, and sustainable traffic management systems that can 

enhance urban mobility, alleviate congestion, and contribute towards cleaner, more livable cities. 

Literature Review 

Traffic forecasting has come a long way in the last several decades, from classical statistical frameworks to sophisticated deep learning models with the 

ability to learn intricate spatiotemporal patterns. Classical time-series models like the Autoregressive Integrated Moving Average (ARIMA) and Kalman 

Filter models were the major methods used in the early days. These models were built to address temporal dependencies in traffic flow data through the 

analysis of trends and seasonality. Though they functioned decently well in straightforward and steady conditions, their assumptions of linearity 

constrained them to emulate the nonlinear and dynamic attributes of actual- world traffic flows, particularly in the case of irregular conditions like 

accidents, weather conditions, or sudden congestion bursts. 

When computational capacity and data availability increased, researchers started developing machine learning algorithms like Support Vector Regression 

(SVR), Random Forests, and Gradient Boosting models (e.g., XGBoost). These algorithms provided enhanced accuracy using nonlinear relationships 

between input variables and traffic parameters. For instance, XGBoost showed excellent performance in many regression problems, including traffic 

prediction, because of its ensemble learning mechanism and efficient processing of large datasets. Yet, these models still handled each segment of the 

road independently, without considering the spatial correlations between various locations within a traffic network. 

To resolve these constraints, the attention soon turned to deep learning-based approaches that could handle temporal and spatial dependencies. Among 

them, Recurrent Neural Networks (RNNs) and their improved version, Long Short-Term Memory (LSTM) networks, became favored due to their 

potential to model long-termtemporal correlations in sequential data. LSTM networks effectively captured patterns such as rush-hour peaks, daily traffic 

cycles, and recurring congestion trends. However, while LSTM models excelled at learning temporal dynamics, they were inherently limited in capturing 

spatial relationships — i.e., how traffic conditions at one location affect neighboring road segments. 

Parallel to this, Graph Neural Networks (GNNs), particularly Graph Convolutional Networks (GCNs), emerged as a powerful approach for 

representing and learning from graph-structured data. In the context of transportation systems, the road network can be naturally represented as a graph, 

where nodes represent intersections or road segments, and edges denote the physical or functional connectivity between them. 

GCNs perform convolution operations on this graph, allowing the model to learn how traffic flows propagate across the network. This makes GCNs 

particularly well-suited for spatial modeling in complex, interconnected road systems. 

Recent studies have explored combining these two architectures—GCN and LSTM—into a unified framework known as the GCN-LSTM hybrid model. 

This hybrid approach leverages the strengths of both networks: GCNs capture spatial dependencies through graph convolutional layers, while LSTMs 

model temporal dependencies through sequential processing. For instance, Yu et al. (2018) introduced the Spatio-Temporal Graph Convolutional 
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Network (STGCN), which demonstrated state-of-the-art performance on real-world traffic datasets. Similarly, Li et al. (2021) enhanced this approach 

by integrating attention mechanisms to dynamically weigh spatial and temporal features, further improving predictive accuracy. 

Comparative studies have consistently shown that hybrid spatiotemporal models outperform traditional and standalone architectures. The GCN-LSTM 

model, in particular, provides a robust framework for understanding and forecasting traffic flow by effectively learning how congestion patterns evolve 

both over time and across space. 

Its ability to generalize across varying traffic conditions makes it highly applicable to real-world scenarios, including smart traffic signal control, route 

optimization, and congestion management. 

In summary, the evolution of traffic forecasting research reflects a shift from simple linear modeling toward complex, data-driven deep learning 

approaches. The combination of spatial modeling through GCNs and temporal sequence learning through LSTMs represents a significant step 

forward in achieving accurate and reliable traffic prediction, forming the foundation for next-generation Intelligent Transportation Systems (ITS). 

Methodology 

The research here has a systematic approach involving data collection, preprocessing, model creation, and performance testing to compare various 

machine learning and deep learning models for short-term traffic forecast. 

1. Data Collection 

Traffic data was obtained from urban road networks, including attributes such as vehicle speed, volume, and occupancy at a specific time interval. External 

variables such as weather conditions (temperature, rainfall) and time-based variables (hour, weekday, holidays) were added to enhance model accuracy. 

2.\tPreprocessing of Data 

The raw data went through the following preprocessing stages: 

•\tImputation: Missing values were replaced by interpolation and statistical averaging. 

• Normalization: All the numerical attributes were normalized between 0 and 1 for fair model training. 

• Sequence Formatting: Data was transformed into input-output sequences for forecasting time-series. 

• Graph Construction: A graph framework was established for encoding spatial relationships between road segments, with roads as points and 

their connections as edges. 

3. Model Development 

Three forecast models were applied: 

• XGBoost Regressor: Gradient boosting algorithm to learn nonlinear relationships between features. 

• LSTM Network: A recurrent neural network architecture applied to learn temporal patterns from traffic data. 

• GCN-LSTM Hybrid: A combination of Graph Convolutional Networks (GCN) for spatial learning and LSTM for temporal learning, which 

allows more effective comprehension of how traffic changes with time and space. 

4. Model Training 

The data was split into 70% training, 15% validation, and 15% testing. Hyperparameters were optimized through grid search, and early stopping to avoid 

overfitting. Each model was trained until convergence. 

5.\tEvaluating Metrics 

Model performance was assessed using three common metrics: 

• RMSE (Root Mean Square Error) – estimates average squared prediction error. 

• MAE (Mean Absolute Error) – reflects average absolute difference between actual values and predictions. 

Results 

The results of the experiments in this research give unambiguous confirmation of the better predictive ability of the hybrid GCN–LSTM model over the 

LSTM and XGBoost Regressor models. All three models were trained and tested on the same data set with the same input features, forecast horizons, 

and metrics in order to have an equal basis for comparison. Performance was measured in terms of Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and Mean Absolute Percentage Error (MAPE), all of which capture both the size and percentage of prediction errors. 

Of the three models, the GCN–LSTM hybrid architecture had a consistent lowest RMSE, MAE, and MAPE throughout, which suggests that it made 

predictions that were closest to actual observed traffic speeds. The gain in accuracy was strongest at times of heavy congestion and peak hours, when 

intricate spatial and temporal relationships between road segments are strongest. This better 

The performance is attributed to the hybrid model's capacity to learn, simultaneously, spatial correlations from the Graph Convolutional Network (GCN) 

layer and temporal patterns from the Long Short-Term Memory (LSTM) layer. 
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The LSTM network, although good at modeling temporal dependencies in time-series data, exhibited moderate errors in predictions when traffic 

conditions were affected by adjacent road segments—highlighting the shortcomings of models that model each sensor location individually. Likewise, 

the XGBoost Regressor, while being computationally fast and able to model nonlinearity, performed worse 

A comparative Model Performance Bar Chart (MAPE %) reveals these results succinctly, demonstrating that GCN–LSTM outperformed LSTM and 

XGBoost with a wide margin. The results attest that combination of spatial and temporal learning mechanisms offers a clear edge in forecasting short-

term traffic patterns, particularly in intensive and heterogeneous metropolitan road networks. 

In conclusion, the GCN–LSTM hybrid model shows the best balanced and stable performance, mastering the intricate spatiotemporal relationships 

underlying real-world traffic data. With its strong generalization capability across different traffic states and times of the day, it is extremely eligible for 

real-time application within Intelligent Transportation Systems (ITS) for congestion management, route guidance, and advanced traffic control. 

Discussion 

The outcomes of this experiment unequivocally illustrate the merits of combining spatial and temporal modeling under a single deep learning paradigm 

for traffic forecasting. 

Conventional machine learning algorithms, including the XGBoost Regressor, are dependent on hand-crafted features and are usually not capable of 

identifying the dynamic dependencies between interdependent road segments. Likewise, algorithms such as LSTM networks are skillful at analyzing 

sequential data but process each location in isolation, without having much scope for comprehending spatial correlations across roads. These constraints 

render such models incapable of making reliable predictions under more realistic and complex traffic networks where the pattern of congestion depends 

on both time and space. 

The envisaged GCN–LSTM hybrid model effectively addresses these challenges by synergizing the graph-structured spatial learning feature of GCNs 

with the temporal sequential pattern modeling ability of LSTMs. The GCN part learns efficiently the topological relations between various traffic nodes—

e.g., neighboring roads, intersections, and highways—so that the model can grasp how traffic changes in one area influence others. In the meantime, the 

LSTM block captures the temporal dynamic of traffic conditions over successive time windows, learning short-term and long-term relationship patterns 

in flow, speed, and density. This combined learning capability allows the model to make stronger and more accurate short-term traffic predictions. 

The findings indicate that the GCN–LSTM model has better generalizability in the case of abnormal traffic patterns, like peak hours, accidents, or weather 

disturbances, than single models. Its capability of utilizing both spatial and temporal contexts enablesmitigate the effects of sudden anomalies or 

incomplete data. Furthermore, the integration of interpretability tools like SHAP enhances the model’s transparency by revealing the relative importance 

of various input features and spatial nodes, which is particularly valuable for transportation authorities seeking explainable AI solutions in real-time 

systems. 

Overall, the findings underscore that hybrid spatiotemporal deep learning models offer a significant step forward in intelligent traffic forecasting. They 

not only improve predictive accuracy but also provide a deeper understanding of the dynamic relationships governing urban mobility. This approach can 

be extended to broader applications such as traffic flow optimization, congestion management, route planning, and intelligent traffic control, 

contributing to the development of smarter and more sustainable cities. 

 

The promising results of this study open several directions for future research and development in the field of spatiotemporal traffic forecasting. One 

key area of improvement lies in the implementation of dynamic graph structures, where the spatial relationships between road segments can evolve over 

time. In real-world traffic systems, connectivity and influence between nodes (roads, intersections, or sensors) can change due to temporary events such 

as road closures, construction work, or accidents. Developing dynamic or adaptive graph models will allow the GCN–LSTM architecture to more 

accurately reflect these variations and maintain high prediction accuracy in continuously changing environments. 

Another important direction involves multimodal data integration, where additional data sources such as GPS trajectories, weather conditions, social 

event data, and traffic camera feeds can be incorporated into the model. These heterogeneous data inputs can provide richer contextual information, 

allowing the system to better capture external factors that influence traffic flow, such as rainfall, temperature, or public events. Incorporating such diverse 

datasets would lead to more robust and context- aware predictive systems capable of supporting real-time traffic management and decision-making. 

Additionally, future research can focus on enhancing model interpretability and transparency using Explainable AI (XAI) techniques. While the 

GCN–LSTM hybrid model delivers high predictive performance, understanding how and why certain predictions are made remains crucial, especially 

for applications in Intelligent Transportation Systems (ITS) where accountability and reliability are essential. Advanced interpretability methods like 

SHAP, LIME, or attention visualization can provide deeper 

such insights into the contribution of every feature, sensor, or time step towards affecting predictions, with the system becoming more user-trusted and 

policy-compliant. 

Finally, incorporating this framework into actual, edge-computing environments and cloud-based ITS infrastructures can enhance scalability and 

deployment effectiveness even further. Future systems could also integrate predictive modeling with reinforcement learning for adaptive traffic control 

so that traffic networks can be autonomous and self-optimizing. 

In summary, the future of traffic prediction is to create adaptive, interpretable, and multimodal hybrid deep learning models that can integrate disparate 

data sources conveniently, learn to adapt from dynamic traffic scenarios, and enable the next wave of smart, data-enabled transport systems. 

Conclusion 

This research illustrates the revolutionary capability of machine learning and deep learning approaches to realizable accurate, data-centric traffic 

prediction for today's smart transportation systems (ITS). By a thorough comparative examination of XGBoost Regressor, LSTM Network, and the hybrid 

model GCN–LSTM, it has been established that incorporating both spatial and temporal interdependence provides superior prediction performance. The 
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GCN–LSTM model successfully captures spatial relationships between road segments by means of graph convolutions and, at the same time, learns 

temporal dependencies via sequential modeling, providing more accurate and robust short-term traffic forecasts. 

The findings validate that the GCN–LSTM hybrid model is superior to conventional and isolated models in accuracy and stability under varying or 

abnormal traffic patterns. This emphasizes the paramount significance of integrating spatiotemporal learning in traffic forecasting models. Adding 

interpretability techniques, i.e., SHAP analysis, even more fortifies the model's usability in practical applications by increasing transparency and revealing 

insights into the decision-making process. 

In total, this study makes an addition to the body of knowledge in intelligent transportation systems by proposing a interpretable and scalable method of 

traffic prediction. The results underscore that deep learning-based hybrid models such as GCN–LSTM can be a key component in constructing smart, 

adaptive, and sustainable transport networks, facilitating proactive traffic management, congestion reduction, and enhanced mobility in urban 

environments. With more development in dynamic graph modeling, multimodal data fusion, and explainable AI, such systems have the 

promise of the future of smart city infrastructure and real-time traffic intelligence. 

 

REFERENCES 

 

1. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. "Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale 

Transportation Network Speed Prediction." Sensors, vol. 17, no. 4, pp. 818, 2017. 

2. Fang, S., Zhang, Y., Meng, Q., & Liu, Z. "Spatial–Temporal Graph Convolutional Network for Air Quality Prediction." IEEE Internet of 

Things Journal, vol. 8, no. 6, pp. 4228–4238, 2021. 

3. Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. "Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting." Advances in 

Neural Information Processing Systems (NeurIPS), 2020. 

4. Li, M., Zhu, Z., & Yin, H. "Dynamic Graph Convolutional Recurrent Network for Traffic Forecasting." Proceedings of the AAAI Conference 

on Artificial Intelligence, vol. 35, no. 5, pp. 4189–4196, 2021. 

5. Zheng, Z., Li, J., & Cao, D. "STTN: Spatio-Temporal Transformer Networks for Traffic Flow Forecasting." Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 

6. Guo, K., Hu, Y., Sun, Y., & Gao, Y. "Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting." AAAI 

Conference on Artificial Intelligence, 2019. 

7. Wu, Y., Tan, H., Qin, L., Ran, B., & Jiang, Z. "A Hybrid Deep Learning-Based Traffic Flow Prediction Method and Its Understanding." 

Transportation Research Part C: Emerging Technologies, vol. 90, pp. 166–180, 2018. 

8. Li, Y., Yu, R., Shahabi, C., & Liu, Y. "Graph Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting." International 

Conference on Learning Representations (ICLR), 2018. 

9. Ma, X., Wang, Y., & Zhao, H. "Air Quality Prediction Using Spatio-Temporal Graph Convolutional Networks." Environmental Modelling & 

Software, vol. 145, 105206, 2021. 

10. Tong, Y., Chen, W., Zhou, Z., Chen, Y., & Yang, Q. "Spatial–Temporal Graph Convolutional Network for Traffic Forecasting: A Survey." 

IEEE Transactions on Intelligent Transportation Systems, 2024 (Early Access). 


