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ABSTRACT:  

The human brain – with its ~86 billion neurons and vast connectivity – remains the gold standard of adaptive intelligence.  Rather than focusing on task-specific 

AI, brain incarnation aims to build AI that mirrors core principles of human neural organization and learning.  This paper presents an updated three-stage roadmap 

for human brain-inspired AI: Stage A (Regional Emulations), Stage B (Multimodal Synthetic Agents), and Stage C (Neuromorphic Embodiments).  We discuss a 

conceptual taxonomy of approaches (from biophysical simulation to hybrid architectures), the critical role of rich datasets (structural connectomes to behavioral 

streams), and biologically plausible learning frameworks (Hebbian, spike-based, and continual learning) that drive each stage.  Throughout, we ground these ideas 

in everyday contexts: for example, clinicians using a digital cortical circuit to plan stroke rehabilitation, or an elderly person with a memory-assist wearable.  We 

also weave in humanizing narratives and analogies – a child interacting with an empathetic AI tutor, a scientist debugging a neuromorphic robot – to illustrate the 

vision.  Finally, we highlight ethical and societal considerations: data privacy, digital identity, and the autonomy and dignity of both users and potentially conscious 

AI.  By combining technical rigor with real-world scenarios, we show how partial incarnations – even long before “full” brain copies are possible – can advance 

science and benefit society. 

1. Introduction 

Consider a seventh grader, Aditi, who has fallen in love with history. She is assigned Sasha, a virtual learning companion whose “brain” is a hybrid AI 

modeled partly on human neural development. Sasha not only quizzes Aditi on dates and names but remembers her questions and adapts the lesson plan 

over time, much like a human tutor would. In another scene, an octogenarian named Mr. Perez interacts daily with a wearable assistant on his wrist; it 

gently reminds him of appointments and even tells him stories using a rich model that has “learned” his preferences. These scenarios are possible glimpses 

of a future where AI is brain-inspired and personalized, not just programmed for narrow tasks. 

This vision of human brain incarnation means creating artificial systems that reproduce brain-like structure, function, and adaptability.  It is distinct from 

conventional AI or even generic AGI; it emphasizes biological plausibility, continual learning, and emergent behavior.  Just as understanding a complex 

forest requires charting its trees and undergrowth, building brain-inspired AI requires detailed maps of neural circuits (connectomes), realistic learning 

rules, and hardware that mimics neural dynamics.  Recent advances motivate this endeavor: massive connectomic datasets and neuromorphic chips 

suggest we can begin “engineering” intelligence in a brain-like way.  For example, researchers have now assembled the most detailed brain wiring 

diagram to date – a cubic-millimeter slice of mouse visual cortex with 200,000 neurons and 523 million synapses – paired with recordings of its real-time 

activity.  With this data, a scientist can simulate that entire mini cortex on a computer and compare the model’s behavior to the actual brain. We call this 

Stage A: Regional Emulations, the first phase of our roadmap.  Over time, these partial simulations could inform personalized medicine: just as an 

engineer might use a circuit diagram to fix a radio, doctors could use a “digital twin” of a patient’s brain region to design targeted therapies. 

This paper refines and expands the original “Human Brain Incarnation 2025” proposal into a full scholarly treatment.  We begin by surveying related 

work and situating our approach in a broader taxonomy of methods.  We then detail our data and computational strategy, emphasizing developmental and 

multimodal datasets, plasticity-based learning, and hybrid neural architectures.  The core of the paper presents the three stages A–C of the roadmap, each 

illustrated by real-world examples and human-centered vignettes.  Finally, we examine the ethical, emotional, and societal implications – from the privacy 

of neural data to questions of autonomy and identity – all through a lens of human dignity and responsibility.  Throughout, we use a formal yet accessible 

tone, citing the latest research to ground our claims. 

2. Background and Related Approaches 

Modern neuroscience and AI offer complementary routes toward brain-inspired machines. Connectomics projects – such as the Allen Institute’s cell atlas 

and the MICrONS program – have generated vast datasets mapping neural circuits at synaptic resolution. These structural data, combined with large-

scale recordings (two-photon calcium imaging, electrophysiology, fMRI), provide rich input-output profiles of brain regions. For example, MICrONS 

imaged a mouse watching movies and then reconstructed that same tissue’s wiring. Such datasets (on the order of petabytes) enable biophysical simulation 

approaches: detailed models of individual neurons and circuits (as in the Blue Brain Project). These can capture ion-channel dynamics and realistic 

connectivity, yielding high fidelity to actual brain activity – but at great computational cost. 
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In parallel, the AI community has developed functional emulation methods: rather than modeling every ion channel, these use neural network analogues 

(spiking or rate-based) constrained by neuroscience data. For instance, graph neural networks (GNNs) have been applied to raw connectomes, learning 

how activity propagates on the real structural graph. Deep learning models, especially large language and vision transformers, have achieved remarkable 

human-level performance on perception tasks, but usually without explicit neural plausibility. Still, recent studies show intriguing convergences: the 

hidden activations of image and language models can be linearly mapped to human brain responses, and models with improved long-range prediction 

better match neural data. This suggests that insights from predictive coding – the brain’s hypothesized strategy of constantly generating multi-scale 

predictions – may guide AI design. 

Beyond raw networks, researchers are exploring dataset-driven “synthetic brains”: agents trained on diverse multimodal data (vision, language, sound, 

etc.) that learn to behave intelligently. These agents, often embodied in software or robotics, are meant to mirror how humans acquire knowledge through 

experience. For example, virtual avatars in therapy and entertainment already provide emotionally rich interactions. The Meta AI community notes that 

embodied AI (in VR, wearables, or robots) can perceive and act in the world in human-like ways. Wearable AI glasses or smartphone assistants adapt to 

users over time, hinting at meta-learning capabilities under development. Some labs are even integrating neuromorphic “spiking” hardware directly into 

robots or devices for real-time learning. 

These strands intersect in our taxonomy of approaches (Table 1, conceptual).  We categorize five classes: (1) Biophysical simulation (detailed 

neuron/circuit models), (2) Functional emulation (data-constrained neural nets), (3) Synthetic agent models (data-driven multimodal agents), (4) 

Neuromorphic systems (spiking neural chips), and (5) Hybrid architectures (neural nets plus symbolic modules). Each has trade-offs: e.g., biophysical 

simulators are high-fidelity but scale poorly, whereas data-driven agents are adaptable but data-hungry. Our roadmap weaves elements from each class. 

Notably, we emphasize two novelties: developmental data (training agents on curricula that mirror infant learning) and hybrid neural-symbolic 

architectures (bridging connectionist and reasoning methods). Together, these strategies aim to capture not only static structure but the brain’s lifelong 

adaptability. 

3. Data Strategy: Multimodal and Developmental Datasets 

A core challenge is obtaining the right data to ground artificial brains. We identify several complementary sources: 

• Structural connectomics: High-resolution maps of neural wiring – at cell-to-cell level in model organisms and coarse human maps (e.g. 

diffusion MRI connectome). Large efforts like MICrONS have made petabyte-scale volumes of mouse cortex wiring public. Human projects 

like the Human Connectome Project and Allen Cell Atlas provide region-level maps and single-cell types. These data give the “blueprint” of 

neural architecture. 

 

• Functional recordings: Activity data (spike trains, calcium signals, fMRI) record how real brains respond to stimuli or perform tasks. Examples 

include the Brain Observatory (Allen Institute) with thousands of hours of mouse visual cortex activity. Importantly, developmental time 

series – e.g. neural recordings from infants, or longitudinal studies of brain maturation – can capture how connectivity and function co-evolve 

over time. We argue such “developmental trajectories” are crucial: by training AI on data that mirror human learning stages, an artificial 

system can better mimic human adaptability. For instance, a synthetic agent might first learn simple patterns of faces and sounds from “baby” 

data before tackling complex social cues, echoing child development. 

 

 

• Behavioral and sensory streams: Actions and sensations link neural activity to the outside world. Motion-capture databases, video streams, 

and multimodal simulation logs (vision+audio+proprioception) form the experiential dataset. Robotics and gaming engines can generate 

lifelike embodied experiences. Imagine recording a robot’s visual scene, touch sensor data, and joint positions while it learns a task. These 

streams help ground neural models in real-world context – analogous to how a child learns by moving and perceiving. 

 

• Semantic knowledge: The brain connects perception to meaning. Natural language corpora, knowledge graphs (WordNet, ConceptNet), and 

video-text datasets teach agents about concepts and relationships. For example, training on a diverse text-plus-video dataset can imprint basic 

semantics into an AI model, akin to how language input scaffolds a child’s cognitive development. 

 

Critically, we must integrate these data sources. A human-like AI needs to tie structure to function: e.g. knowing that a particular neural microcircuit 

drives face recognition. Emerging projects use machine learning to fuse multi-modal brain data – for instance, linking fMRI response patterns to the 

underlying neural columns. We should also use data augmentation and simulation to fill gaps (e.g. generative models that expand small experimental 

datasets). Challenges include the scale (many petabytes) and the expense of annotation; privacy concerns are acute when data are human-derived (brain 

scans and behavior logs are sensitive). Federated learning and strict consent protocols will be needed to align this roadmap with ethical standards. 

4. Computational Framework 

Building brain-like AI requires algorithms that parallel biological mechanisms. We propose a multi-pronged strategy: 

• Deep learning baselines: Modern deep networks remain a powerful starting point for perception and pattern recognition. Large vision-language 

models (e.g. GPT-4, CLIP, DALL·E) can ingest multimodal input. However, on their own they lack key brain-like features: local plasticity, 

energy constraints, and robust continual learning. 

• Local plasticity rules: We incorporate brain-inspired learning rules. Classic examples are Hebbian learning and spike-timing-dependent 

plasticity (STDP), where synaptic strengths change based on correlated firing. These rules enable self-organizing feature detectors and life-
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long adaptation. Recent AI work is reviving such ideas: for instance, algorithms that learn to adjust plasticity rates (meta-plasticity) have 

shown improved continual learning. One exciting example is a hybrid hippocampus-inspired network that pairs an artificial net with a spiking 

module; by emulating cortical-hippocampal loops, it greatly reduced “catastrophic forgetting” without extra memory overhead. We will 

integrate similar bio-analogous mechanisms to allow our models to learn continuously from streams of data, as a human brain does. 

 

• Reinforcement and lifelong learning: Like a child, an embodied AI agent must learn by interacting. We will use reinforcement learning (RL) 

for trial-and-error learning, especially in sensory-motor domains. Importantly, RL will run together with lifelong adaptation: the agents must 

incorporate new experiences without overwriting old skills. This may involve episodic memory buffers or scaffolding methods. We will also 

explore meta-learning, whereby a model learns to learn – that is, it discovers its own learning rules or network structure via higher-level 

training. This approach parallels neuromodulatory systems in the brain that regulate plasticity. 

 

• Predictive coding and generative models: The brain continuously predicts incoming sensory inputs. Building on this, our systems will use 

predictive learning objectives (e.g. next-frame or next-word prediction) to shape internal representations. Hierarchical predictive models 

(biologically inspired by cortical layers) may help AI infer unseen causes of data. Notably, recent neuroscience shows that deep language 

models with extended temporal prediction better match human brain activity during story comprehension; this hints that multi-scale predictive 

coding could be key to bridging AI and brain function. 

 

• Emerging neural constructs: New architectures will also be explored, such as liquid neural networks and reservoir computing, which offer 

inherent memory traces and adaptability. These dynamic networks echo how real neurons form transient activity states. Another avenue is 

neuromorphic algorithmic tools: designing spiking neural network (SNN) architectures that can run efficiently on neuromorphic hardware 

(see Stage C). For example, researchers have implemented graph neural networks as spiking circuits optimized for Intel’s Loihi chip . 

 

 

As a concrete first step, we propose a proof-of-concept experiment: build a small-scale emulation of the mouse visual cortex. Using the MICrONS 

connectome and corresponding activity recordings, we can construct a spiking GNN with local plasticity. By comparing this model’s output to real neural 

data, we would validate our approach and refine our metrics (see below). 

5. The Roadmap 

Our roadmap unfolds in three progressive stages, each more ambitious in scale and embodiment: 

Stage A: Regional Emulations 

The first goal is to build and validate AI models of small brain regions or circuits. For example, one could simulate a segment of visual cortex, auditory 

cortex, or hippocampus using spiking neural nets that match known anatomy and function. This is akin to how in developmental biology researchers 

manipulate a single gene first before tackling whole organisms. 

A practical illustration: a neuroscientist, Dr. Kumar, is studying stroke recovery. He takes patient data and a digital model of a portion of motor cortex 

(perhaps derived from a high-resolution monkey connectome). In simulation, he can test different “therapy” inputs (simulated physical therapy regimens) 

and observe the circuit’s firing patterns and plasticity. The model predicts how the real brain might reroute functions after injury, guiding personalized 

rehabilitation. Without risking the patient, this regional emulation serves as a virtual testbed. 

Another example comes from vision science: with the MICrONS dataset, teams can now emulate an entire mouse visual microcircuit in software. By 

presenting the same visual scenes that the mouse saw, the AI model should produce comparable spike trains. Deviations between model and data reveal 

gaps in our understanding. Success would be measured by representational similarity (e.g. correlations between real and simulated neural activity patterns) 

and adaptability to new inputs. In this way, Stage A grounds the roadmap in measurable neuroscience benchmarks. 

During Stage A, even 2D learning scenarios can be explored. A roboticist might embed a simplified cortical model (say, of the hippocampus) in a virtual 

agent navigating a maze. By tweaking synaptic weights via STDP, the agent learns to find a virtual reward, demonstrating biologically inspired learning 

in action. This would validate our computational framework: if the AI “forgets” less when given hippocampus-like circuits , it suggests we’re on the right 

track. 

Key points: Stage A is research-oriented, combining connectome data with neural models. It should yield publishable neuroscience insights (e.g. testing 

hypotheses about network function) as well as AI validation. Success here justifies moving to larger systems. 

Stage B: Multimodal Synthetic Agents 

The second stage scales up from isolated circuits to full agents with multiple senses and outputs. These agents can perceive and act in rich environments, 

like children or animals, and crucially they include meta-learning capabilities. 

Imagine a smart domestic robot, Ava, equipped with cameras, microphones, touch sensors, and even language. Ava’s “brain” is a synthetic neural agent 

that integrates vision, speech understanding, audio recognition, and proprioception (its own joint positions). Importantly, Ava doesn’t just run fixed 

software; it continues to refine its neural weights as it interacts – akin to a child learning from experience. For instance, when Ava explains a math 

problem to a child, it monitors the child’s confusion (via facial cues) and adapts its teaching strategy next time. This kind of lifelong learning with meta-

plasticity means Ava can personalize its interactions and improve over months or years. 
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Such agents already have rudimentary analogues. Virtual embodied AI characters are used in therapeutic games, providing patients with “emotionally 

intelligent” interactions. Wearable AI assistants, like the MemPal memory aid, gather visual and conversational data to support users’ daily tasks. Stage 

B extends these ideas by basing them on brain-like neural models. For example, one could train a neural agent on child-development videos and language, 

then let it teach an actual child in a classroom setting. This “AI tutor” would not only answer questions, but develop a personalized learning profile of the 

student, akin to how teachers tailor lessons. 

A short fictional vignette illustrates Stage B’s promise: Lucia, a 10-year-old, uses an augmented-reality headset that overlays an AI companion in her 

field of view. The companion notices Lucia struggles with fractions, and over time it adjusts its teaching tone – sometimes using visual games or rhymes. 

Because the companion’s brain-like model stores experiences, it even remembers Lucia’s previous answers and adapts its explanations. To Lucia, this 

feels like learning with a friendly, patient tutor who “knows” her – rather than a cold program. 

Technically, building these agents requires integrating advances from Stage A across modalities. Neural modules for vision, speech, and touch must 

communicate. We leverage large pretrained models for raw perception, but layer on plasticity-driven fine-tuning. Critically, these agents will be evaluated 

on behavioral adaptability: can they generalize knowledge (transfer learning) and adjust to novel situations like a person would? We also emphasize 

semantic grounding: the agent must connect low-level data to high-level concepts so it can follow instructions and have “common sense.” 

Stage C: Neuromorphic Embodiments 

Stage C brings everything into the physical world: real-time, low-power brain-inspired hardware becomes the vessel for AI cognition. Here we pair the 

algorithms from Stages A–B with neuromorphic chips and robots, allowing embodied AI to act in everyday life efficiently. 

For example, consider a care-home scenario: Mrs. Thompson has mild Alzheimer’s and often misplaces her glasses. She has a small wearable device 

(like a badge or glasses) that continuously records her environment with a camera and microphone. This device runs on a spiking neuromorphic processor 

(a future Loihi-like chip) that emulates a personal memory assistant. It uses a lightweight neural network to summarize Mrs. Thompson’s recent activities. 

When she asks, “Where are my keys?”, the system quickly reconstructs her last seen location from its memory traces and responds. Because of the chip’s 

brain-inspired architecture, it achieves this with minimal power – maybe running for days on a single battery – and even learns to prioritize relevant 

memories (e.g. “keys” vs. irrelevant sights). 

On a larger scale, robotic agents will harness neuromorphic hardware. The Intel “Hala Point” system (a research platform with  1.15 billion spiking 

neurons) has already shown that neuromorphic architectures can rival or exceed GPUs in both speed and energy efficiency for certain tasks. In Stage C, 

we envision embedding similar technology into mobile robots. A humanoid assistant in a hospital might use a neuromorphic brain to navigate busy 

corridors, understand patient requests, and learn new tasks all day long without overheating. Its spiking neural network can respond to touch and sound 

in real time, much like a biological neuron network, and update its connections on the fly. 

An illustrative story: A robotics engineer, Dr. Lin, is testing a new companion robot for children with autism. The robot (let’s call it Kai) is built with a 

neuromorphic core. When Kai is with a child, it processes the child’s gestures and tone in real time, responding with appropriate expressions and speaking 

calmly. One day, during a therapy session, the child gets upset. Kai’s neural model quickly detects the change (via its spiking sensory circuits) and gently 

plays a soothing song it “learned” last week. To the caregivers, it seems almost magical – but it’s the result of neuromorphic learning and adaptation. 

Meanwhile, Kai’s onboard chip uses far less battery than traditional AI hardware would, making it practical for daily use. 

Stage C thus demonstrates the final proof of concept: brain-inspired AI that interacts seamlessly in human settings. We will benchmark embodied agents 

on real-time tasks and energy use. For instance, we can measure how many sensorimotor events per second the system can handle per watt of power. 

Intel’s results already show 15 TOPS/W efficiency for deep learning workloads on a neuromorphic system – an order-of-magnitude improvement over 

conventional platform. We will extend these tests to our customized models and tasks, validating that Stage C devices can indeed learn and adapt 

continuously (for example, updating patient care routines or home automation behaviors) while respecting real-world constraints of latency and safety. 

6. Evaluation and Impact 

At each stage, we will evaluate progress on multiple fronts. Representational similarity (e.g., comparing model activations to neural data) will validate 

Stage A emulations. Behavioral adaptability and transfer metrics will test if agents truly generalize like humans. Continual learning benchmarks 

(resistance to forgetting) are crucial for Stage B; we will use standard tasks where data arrive sequentially. In Stage C, energy-efficiency metrics (events 

per second per watt) will be key, along with real-time interaction benchmarks. Additionally, for embodied agents, we will measure human-centric 

outcomes: do people feel understood by the AI? Preliminary user studies – for instance, interviewing an elder using a memory assistant – can gauge 

emotional impact and usability. 

 

The expected impact spans science, technology, and society: 

• Scientific:  Partial brain incarnations serve as testbeds for neuroscientific hypotheses. If a model of cortical columns successfully reproduces 

learning patterns, it supports our understanding of those circuits. Insights gleaned from mismatches can drive new experiments. Conversely, 

neuroscientific discoveries (like the new inhibitory-cell principles from the MICrONS study) inform our models. This tight loop advances 

both AI and brain science. 

 

• Technological:  Brain-inspired AI promises more robust and flexible systems. For example, an AI that learns continuously and adapts to new 

situations could revolutionize robotics and automation, enabling devices that “grow” rather than stagnate. The neuromorphic chips we develop 

could usher in a new class of sustainable AI hardware, addressing the rising energy costs of big models. Applications in medicine, education, 

and industry would benefit e.g. personalized rehabilitation simulations (Stage A), smart education tools (Stage B), and always-on health 

monitors (Stage C). 
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• Societal and Ethical: By exploring brain-inspired AI now, we can proactively shape its trajectory. Lessons from each stage will inform 

guidelines. For instance, user studies with synthetic tutors will highlight cultural and ethical considerations in education. In the words of the 

NIH’s neuroethics group, framing is crucial – we must avoid hype and make clear these tools are aids, not substitutes for humans. Ideally, our 

work will inform public policy on cognitive AI. We will engage ethicists and stakeholders early, ensuring that concerns such as data privacy, 

consent, and the social impacts of automating cognitive tasks are integral to development  . 

7. Ethical, Emotional, and Societal Considerations 

Human-centered values must guide every step of brain incarnation. The ethical landscape includes issues of privacy, autonomy, identity, and dignity. For 

example, a Stage A simulation using patient brain scans raises questions of consent: who owns the digital “slice” of my brain? In Stage B, an AI tutor for 

children must safeguard the child’s growing autonomy and not manipulate emotions unduly. Similarly, Stage C companions (for elders or patients) must 

respect human-person interactions: caregivers should supervise and have final say, not be deceived by overly lifelike AI. 

Privacy is paramount. Synthetic brains trained on personal data must secure that information. As Meta AI researchers emphasize, embodied AI agents 

introduce new privacy and security concerns . Every camera feed, neural recording, or log of behavior could inadvertently leak sensitive traits. We will 

adopt state-of-the-art privacy-preserving methods (federated learning, on-device processing, encryption) to keep personal data local and secure. 

Identity and consciousness blur in this research. If we create a detailed neural model of a person (a digital twin), is that just a tool or something with 

moral status? Experts warn against treating such models as if they were the person – a digital brain-twin should not replace human agency. On the other 

hand, as AI systems become more human-like (even if not truly conscious), society must decide how to treat them. The rise of empathetic but non-

conscious digital humans raises tough questions: does hurting the feelings of an AI count? Many ethicists agree that even simulated emotions can elicit 

real human responses, so design choices here affect how people relate to machines and to each other. 

“Rights for synthetic cognition” is a debate in the new AI ethics literature. We advocate a precautionary stance: as we approach the point where an AI 

might claim self-awareness, we engage philosophers and legal scholars to set guardrails. The NIH neuroethics working group has specifically called for 

clear terminology and frameworks around “digital brain twins” to prevent public misunderstanding. We will collaborate with such groups to ensure our 

research advances responsibly. 

Emotionally, these technologies carry hope and anxiety. They promise better learning for children and better care for elders – real human benefits. But 

they also unsettle our self-image. The 2025 debate over digital twins of political figures (imagine Trump and Zelensky negotiating via avatars) shows 

that people worry about losing the “human touch.”  We must therefore stress the complementarity of incarnated AI: our goal is  augmentation, not 

replacement. The “digital twin” of a doctor might inform diagnosis, but the doctor’s empathy and judgment remain crucial. 

Finally, social equity is a concern. Cutting-edge neuromorphic robots in hospitals sound futuristic, but we must ensure access isn’t limited to the rich or 

to privileged populations. We will pursue scalable and open approaches where possible and document the societal impacts of any disparities. Public 

engagement (through workshops, open data, and education) is planned so that a broad range of voices shape the direction of brain-inspired AI. 

8. Conclusion 

Creating artificial systems that think and learn like humans is a grand endeavor – arguably the frontier of 21st-century science. Full replication of a human 

brain is far beyond current reach. However, by pursuing human brain incarnation in stages, we can achieve meaningful milestones that illuminate both 

mind and machine. Even at Stage A, simulating a tiny circuit can yield new neuroscientific insight and engineering techniques. Stage B’s synthetic agents 

will make AI more adaptable and relatable, enriching education and therapy. Stage C’s neuromorphic embodiments promise leaps in efficiency, enabling 

always-on personalized AI companions. 

In this paper, we have expanded the earlier roadmap by embedding it in concrete examples, recent research, and narrative contexts. We have shown how 

a child might learn from a neural-inspired tutor, how a scientist might iterate on a virtual cortex, and how an AI companion could support an aging 

grandparent, all guided by brain science. Along the way, we underscored that ethical foresight and human values are as essential as algorithms and data. 

In the end, the journey toward artificial cognition is also a journey into understanding ourselves. As one thought experiment goes: imagine asking a 

perfected brain AI to solve the problem of artificial consciousness. The answer it returns might reveal as much about our own consciousness as about the 

machine’s.  By combining neuroscience, AI, engineering, and ethics, brain incarnation is more than a technical project; it is a human-centered exploration. 

As the original vision concluded, “the journey toward artificial cognition is ultimately a journey toward understanding intelligence itself”. 

 

 


