
International Journal of Research Publication and Reviews, Vol 6, Issue 10, pp 1615-1621, October, 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Hybrid AES–RSA Encryption and Decryption for Secure Data

Transmission

Shukla Kushang Akshay, Sidapara Prem Vimalbhai, Roy Arjunkumar Rameshbhai, Shaikh Mo

Ifrah, Prof. Vijaysinh Jadeja

Department of Computer Engineering, SAL College of Engineering, Ahmedabad, India

A B S T R A C T

Hybrid cryptosystems combine symmetric and asymmetric encryption to achieve both high performance and strong key management. This paper proposes and

implements a hybrid scheme using AES-GCM (symmetric authenticated encryption) for data and RSA-OAEP (asymmetric) to encrypt the AES session key. We

implement the scheme in Python, benchmark both encryption and decryption times across varying file sizes and RSA key lengths, and analyze security properties

and trade-offs. Experimental results (tables and plots) demonstrate that hybrid encryption and decryption achieve low latency with robust key encapsulation, making

it suitable for secure file transfer and real-time applications. The paper concludes with guidelines for parameter selection and directions for future research.

Keywords: Hybrid encryption, AES-GCM, RSA-OAEP, authenticated encryption, key encapsulation, Python, benchmarking, information security.

1. Introduction

Modern secure communication demands both confidentiality and practical performance. Pure asymmetric encryption (e.g., RSA) is computationally

expensive for large payloads, while symmetric algorithms (e.g., AES) offer speed but require secure key exchange. Hybrid cryptosystems use symmetric

encryption for data and asymmetric encryption to secure the symmetric key.

This paper presents a Python implementation of such a hybrid system using AES-GCM for confidentiality and integrity, and RSA-OAEP for key

encapsulation. The implementation is benchmarked with varying dataset sizes and RSA key lengths to evaluate encryption and decryption performance

and security trade-offs.

Motivation

• Provides a real-world approach used in TLS and secure messaging systems.

• Matches course outcomes: symmetric & asymmetric cryptography, hashing/authentication (via AES-GCM), and key management.

• Practical, reproducible experiment for a BE project or course submission.

2. Literature Review

Hybrid encryption is standard in secure protocols (e.g., TLS uses symmetric cipher for payload and RSA/ECDH for key exchange). AES-GCM is

preferred due to its authenticated encryption (AEAD) properties, protecting confidentiality and integrity simultaneously. RSA with OAEP padding

mitigates chosen-ciphertext attacks and is recommended for key encapsulation. Prior works analyze hybrid schemes’ performance, focusing on both

encryption and decryption latency. This paper contributes a clear Python implementation and experimental benchmarking on realistic file sizes.

3. Design and Methodology

3.1 Cryptographic Choices & Rationale

• AES-GCM (256-bit): AEAD cipher offering confidentiality and integrity without separate MAC. High performance.

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol 9, Issue 10, pp 1615-1621 October, 2025 1616

• RSA-OAEP (2048 / 3072 / 4096 bits): Secure key encapsulation using OAEP with SHA-256. Benchmarked multiple RSA sizes to show

trade-offs.

• Key Flow: Generate ephemeral AES key per message (session key). Encrypt message with AES-GCM and encrypt AES key with receiver’s

RSA public key. Transmit tuple: (RSA-encapsulated AES key, AES nonce, AES tag, ciphertext).

3.2 Security Goals

• Confidentiality: Only holder of RSA private key can derive session key.

• Integrity & authenticity: AES-GCM tag ensures tamper detection.

• Forward secrecy note: RSA key encapsulation does not provide forward secrecy; DH/ECDH would be required.

3.3 Experimental Plan

• Files to encrypt/decrypt: Randomly generated binary files: 100 KB, 500 KB, 1 MB, 3 MB, 5 MB.

• RSA key sizes tested: 2048, 3072, 4096 bits.

• Metrics: Encryption time, decryption time, ciphertext size overhead, and CPU usage (optional).

• Repetitions: Each measurement repeated N=5 or 10; average and standard deviation computed.

4. Implementation (Python)

Requirements: Python 3.8+, cryptography, matplotlib, pandas, numpy

Install:

 pip install cryptography matplotlib pandas numpy

4.1 Python Code — Hybrid AES-GCM + RSA-OAEP

(Save as hybrid_aes_rsa.py — code includes both encryption and decryption, benchmarking, CSV output, and plots.)

• RSA key generation (2048 / 3072 / 4096 bits)

• AES-GCM session key encryption and decryption

• Benchmarking encryption and decryption times for multiple files

• CSV output and matplotlib plots

Note: Ciphertext size includes RSA-encrypted AES key + nonce + AES ciphertext.

Experimental Setup

• Environment: CPU, RAM, OS (e.g., Intel i5, 8 GB RAM, Ubuntu 22.04)

• Software: Python 3.8+, cryptography 39.x, pandas, matplotlib

• Files: Random files 100 KB — 5 MB

• Repetitions: N=5; report mean ± stddev

• Metrics: Encryption time, decryption time, ciphertext size

Results

Table 1: Encryption Times

RSA_Size File_Size_KB Encryption_Time_s

2048 100 0.008398

2048 500 0.000647

International Journal of Research Publication and Reviews, Vol 9, Issue 10, pp 1615-1621 October, 2025 1617

2048 1000 0.001335

2048 3000 0.005452

2048 5000 0.008297

3072 100 0.001122

3072 500 0.00067

3072 1000 0.001999

3072 3000 0.006116

3072 5000 0.009041

4096 100 0.00071

4096 500 0.00067

4096 1000 0.002544

4096 3000 0.007116

4096 5000 0.008905

Table 2: Decryption Times

RSA_Size File_Size_KB Decryption_Time_s

2048 100 0.002

2048 500 0.001333

2048 1000 0.001004

2048 3000 0.00416

2048 5000 0.005007

3072 100 0.001911

3072 500 0.002007

3072 1000 0.002118

3072 3000 0.005243

3072 5000 0.005688

4096 100 0.004218

4096 500 0.005195

4096 1000 0.00447

4096 3000 0.00649

4096 5000 0.00902

Figures

• Figure 1: Encryption time vs. File size for RSA 2048/3072/4096

International Journal of Research Publication and Reviews, Vol 9, Issue 10, pp 1615-1621 October, 2025 1618

• Figure 2: Decryption time vs. File size

Discussion & Analysis

• Performance: AES dominates file encryption/decryption time; RSA key size primarily affects encryption of session key and decryption

latency.

• Trade-offs: Larger RSA keys increase security but add CPU overhead for both encryption and decryption.

• Overhead: Ciphertext size = length(encrypted AES key) + nonce + tag + AES ciphertext.

• Security: AES-GCM ensures integrity; RSA-OAEP prevents padding oracle attacks. Forward secrecy requires ephemeral key exchange.

Conclusion

This paper demonstrates a practical hybrid cryptosystem implementing both encryption and decryption in Python. AES-GCM provides fast,

authenticated encryption/decryption; RSA-OAEP secures session keys. Benchmarking across file sizes and RSA key lengths allows reproducible

experiments, making this work suitable for academic submission and practical demonstrations.

Acknowledgements

I would like to express my sincere gratitude to all those who provided guidance and support throughout this project.

I extend my heartfelt thanks to my Prof. Vijaysinh Jadeja Sir, whose valuable insights and constructive feedback helped me plan and execute the

experiments systematically. Special thanks to my colleagues and peers for their encouragement and for reviewing the Python implementation and

benchmark results.

International Journal of Research Publication and Reviews, Vol 9, Issue 10, pp 1615-1621 October, 2025 1619

I am also grateful to the developers of the Python cryptography library, matplotlib, and pandas, whose tools made reproducible experimentation and

visualization possible.

Python Implementation

def run_experiments(output_csv, rsa_sizes=[2048, 3072, 4096], file_sizes_kb=[100, 500, 1000, 3000, 5000],

 repeats=3, mode="encryption"):

 results = []

 files = generate_test_files(file_sizes_kb)

 for key_size in rsa_sizes:

 print(f"Generating RSA keys with size {key_size} bits...")

 key = rsa.generate_private_key(public_exponent=65537, key_size=key_size, backend=default_backend())

 public_key = key.public_key()

 for file_path in files:

 print(f"Benchmarking file {file_path} with RSA {key_size}-bit in {mode} mode...")

 times = []

 for _ in range(repeats):

 if mode == "encryption":

 times.append(benchmark_encryption(file_path, public_key))

 else:

 times.append(benchmark_decryption(file_path, key))

 avg_time = sum(times) / repeats

 results.append({

 "RSA_Size": key_size,

 "File_Size_KB": os.path.getsize(file_path) / 1024,

 f"{mode.capitalize()}_Time_s": avg_time

 })

 df = pd.DataFrame(results)

 df.to_csv(output_csv, index=False, mode='w')

 print(f"Results saved to {output_csv}")

 return df

Appendix B — How to Run Experiments

1. Install dependencies:

pip install cryptography pandas matplotlib numpy

2. Run the script:

International Journal of Research Publication and Reviews, Vol 9, Issue 10, pp 1615-1621 October, 2025 1620

python hybrid_aes_rsa.py --output results.csv --repeats 5

• Generates RSA keys, test files (100 KB–5 MB), results.csv, and plots.

Appendix C — Figures and Tables

• Figures:

o Figure 1: Encryption time vs file size for RSA 2048/3072/4096

o Figure 2: Decryption time vs file size for RSA 2048/3072/4096

• Tables:

o Table 1: Encryption Times

o Table 2: Decryption Times

Appendix D — Security Notes

• Always use OAEP padding for RSA; never raw RSA.

• Ensure AES-GCM nonces are unique per session key.

• Protect RSA private keys; optional passphrase encryption recommended.

• AES-GCM tag validates integrity; tampered ciphertext will fail decryption.

Appendix E — Project Repository and Resources

• Project Codebase: https://github.com/KushangShukla/Hybrid-AES-RSA-Encryption-and-Decryption-for-Secure-Data-

Transmission

Appendix F — Pseudo-Code / Flow Diagram

• Hybrid Encryption & Decryption Flow:

1. Sender:

o Generate AES session key → Encrypt file → Encrypt AES key with RSA → Send (RSA AES key, nonce, ciphertext)

2. Receiver:

o Decrypt AES key with RSA → Decrypt ciphertext using AES-GCM → Validate tag

https://github.com/KushangShukla/Hybrid-AES-RSA-Encryption-and-Decryption-for-Secure-Data-Transmission
https://github.com/KushangShukla/Hybrid-AES-RSA-Encryption-and-Decryption-for-Secure-Data-Transmission

International Journal of Research Publication and Reviews, Vol 9, Issue 10, pp 1615-1621 October, 2025 1621

References

[1] W. Stallings, Cryptography and Network Security: Principles and Practice, 6th ed., Pearson, 2014.

[2] NIST Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, NIST SP 800-38D, 2007.

[3] M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption — How to Encrypt with RSA,” Eurocrypt, 1994.

[4] RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, 2016.

[5] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.

[6] cryptography library — Python Cryptography Toolkit Documentation.

